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Abstract—Soft iterative detection/decoding algorithms are fun-
damentally necessary for multiple-input multiple-output orthog-
onal frequency-division multiplexing (MIMO-OFDM) adopted in
the 3rd Generation Long Term Evolution - Advanced (LTE-
A) in order to increase the capacity and achieve high data
rates. However, their high performance critically requires log
likelihood ratio (LLR) computations with prohibitive complexity.
This challenge will be addressed in this paper. We first use
the the assumption of Gaussian transmit symbols to show the
equivalence among several existing algorithms. We next develop a
non-Gaussian approximation for high-order constellations, which
paves the way for interference cancellation based detectors.
Based on both Gaussian and non-Gaussian approximations, we
thus develop several capacity-achieving iterative MIMO-OFDM
demodulation and decoding algorithms. To this end, we adopt K-
best algorithms to take advantage of both types of approximations
and the list decoder. Unlike existing algorithms, our proposed
K-best algorithms make use of the a priori probabilities to
generate the list. Simulations of standard-compliant LTE systems
demonstrate that the proposed algorithms outperform existing
ones.

Index Terms—Iterative decoding, MIMO-OFDM, K-best,
Gaussian approximation, LTE-A, turbo principle, 3GPP.

I. INTRODUCTION

THE 3rd Generation Partnership Project (3GPP) has stan-
dardized the Long Term Evolution - Advanced (LTE-A)

in Release 10 [1] with ambitious data rates at more than 1
Gb/s in local areas and 100 Mb/s in wide areas. To meet
these challenging requirements, multiple-input multiple-output
(MIMO) techniques as well as high spectrum allocation of 100
MHz promise a linear increase of the wireless link capacity. To
counteract the delay spread and to facilitate flexible resource
allocation, in the downlink, orthogonal frequency-division
multiplexing (OFDM) is combined with MIMO. However, to
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attain the capacity gains of MIMO-OFDM, one of the funda-
mental challenges is the complexity of the detection/decoding
algorithms measured by decoding power consumption/silicon
area [2]–[5].

Even for uncoded MIMO systems, the complexity of op-
timal maximum likelihood (ML) decoding is exponential in
the number of antennas. Low complexity but sub-optimal
receiver structures such as the vertical Bell Laboratories Lay-
ered Space-Time (V-BLAST) nulling/cancelling algorithm and
many others are thus developed [6]–[10]. On the other hand,
the complexity of ML decoding can be significantly reduced,
especially in the high signal-to-noise ratio (SNR) region, by
sphere decoding (SD) [11]. Nevertheless, if channel coding is
added to MIMO, then the size of the search space is exponen-
tial in the product of the code blocklength and the number of
antennas. The optimal joint detector/decoder is prohibitively
complex notwithstanding the use of SD. For this reason, the
main idea of near-capacity iterative detection/decoding method
[12] is the iterative exchange between the MIMO detector and
the channel decoder — the MIMO detector uses log likelihood
ratio (LLR) information from the channel decoder, which then
incorporates soft information from the MIMO detector. These
iterations continue until desired performance is achieved. The
decoder computing exact LLR is called maximum a posteriori
(MAP) decoder. However, repeated LLR computations are
essential.

The computation burden of LLR for each bit must be
reduced. To achieve this goal, [12] modifies the standard SD
to generate a list of candidates at the detector and only the
contributions from the list are included in the LLR values
needed for the iterative process. Moreover, the LLR compu-
tation is simplified via the max-log approximation. Although
these two steps allow [12] to reach near-optimal performance
with lower complexity, the complexity depending on SNR
can nevertheless be high. Another idea is to avoid the rapid
expansion of the search tree by retaining only a fixed number
of nodes at each step. Following this idea, a K-best SD is
proposed in [13] for both uncoded and coded MIMO systems,
which has a constant complexity across the entire range of
SNR. Another approach [14]–[17] to adopt soft information in
iterative detection and decoding is to use nonlinear interference
cancelation followed by a single-input single-output (SISO)
iterative detector and decoder in [18], which is shown to have
low complexity. Yet another idea is for the computation of the
LLR of each bit, the other symbols are ranked according to
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their contributions to the LLR of the said bit, and a subset
of those symbols with less contributions are approximated as
Gaussian variables [19].

In this paper, we consider efficient iterative detec-
tion/decoding for MIMO-OFDM based LTE-A systems. As in
the aforementioned works, the burden of LLR computations
is the critical factor. The method of LLR computation is what
differentiates the various algorithms in [12], [14]–[17]. The
algorithms in [14]–[16] are equivalent to using a Gaussian
approximation. However, it is ineffective for high order mod-
ulations such as 64 quadrature amplitude modulation (QAM),
which is needed in LTE-A. We thus propose non-Gaussian
approximation by exploiting the probability mass function
(PMF) of the constellation points into a unified form followed
by relaxing the discrete variable to take continuous values. By
integrating over the resultant non-Gaussian probability density
function (PDF), we approximate the LLR value. Next, we
propose combining the K-best algorithm and the Gaussian
or non-Gaussian approximation to take advantage of both. In
the proposed modified K-best algorithms, we generate a list
of K lattice points. There are two major differences between
our proposed algorithm and that in [12]. First, we use sum-log
rather than max-log to compute the LLR value by summing
over all lattice points in the list. Second, the list generation
method is different. To generate the list, we adopt the a priori
probability, which is approximated using Gaussian and non-
Gaussian distributions. We also discuss several variations of
the basic algorithms and efficient implementation in com-
mercial MIMO-OFDM receivers. In addition to non-Gaussian
approximation for high order constellations, we propose sev-
eral list-decoding algorithms while all lattice points are used
in [19] for the symbols not using Gaussian approximation.
Different from [20] where a zero-forcing detector is used
to approximate max-log LLR and Gaussian approximation
is used to study the distribution of LLR, we use Gaussian
and non-Gaussian distributions for sum-log listing decoding.
Simulation results using an LTE simulator show that the
proposed algorithms outperform the existing ones, especially
for higher-order modulations.

The rest of the paper is organized as follows. In Section II,
the MIMO-OFDM system model is presented. In Section III,
the iterative receiver structure is outlined and several existing
algorithms are reviewed. A non-Gaussian approximation based
algorithm and several modified K-best algorithms are given
in Section IV. Simulation results are provided in Section V
and Section VI draws the conclusions.

II. SYSTEM MODEL

We consider a MIMO-OFDM system with M transmit and
N receive antennas. The system has Ns subcarriers in an
OFDM block. There are M data streams to be transmitted 1.
The constellation Qm is applied on stream m, where Cm is the
number of bits per constellation symbol. The incoming bits of

1Note that in LTE standard, when there are 4 antennas, there are still two
data streams rather than four data streams but the coded symbols of each
stream are sent on different antennas. The discussion in this paper can be
readily extended to this case. To simplify discussion, we use the current
notation.
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Fig. 1. The diagram of a MIMO-OFDM system.

each stream m of length NsCmRm, m=1,... ,M , is encoded
using a channel code (typically a convolutional or turbo code)
of rate Rm, resulting in a bit vector bm. The encoded bits
are converted into symbols using a mapping function xi,m=
Mm(bm((i−1)Cm+1:iCm)) (e.g., Gray mapping and set
partitioning mapping), i=0,. ..,Ns−1, where xi,m is the
symbol to be transmitted over subcarrier i and antenna m. The
inverse discrete Fourier transform (IDFT) of the data block
x0,m,. ..,xNs−1,m yields the time domain sequence, i.e.,

Xj,m=
1√
Ns

Ns−1∑
i=0

xi,meȷ2πij/Ns , j=0,. ..,Ns−1. (1)

After adding cyclic prefix (CP), the received signal on carrier
i after DFT can be written in vector form as

yi=Hixi+wi, i=0,... ,Ns−1, (2)

where xi=[xi,1,... ,xi,M ]T is the transmitted signal
on M transmit antennas, yi=[yi,1,... ,yi,N ]T and
wi=[wi,1,.. .,wi,N ]T are the received signal and the
additive noise on N receive antennas, respectively, and Hi

denotes the N×M channel matrix. Each entry in wi has
mean zero and variance σ2. The MIMO-OFDM system is
depicted in Fig. 1. Each subcarrier (2) is a distinct MIMO
system. In this paper except in Section IV-B, we will neglect
the subscript i in (2) for brevity. We assume channel matrix
(Hi, i=0,1,... ,Ns−1) is known at the receiver which can
be estimated using algorithms in [21]–[26].

III. EXISTING ITERATIVE DETECTION AND DECODING
ALGORITHMS

A. Basic Concepts

The optimal joint detector and decoder must compute the
likelihood of each bit given the received signals y0,... ,yNs−1

on all subcarriers. However, this is computationally infeasible,
the algorithms in [12], [14]–[16], [18] thus use the “turbo
principle", where information is exchanged between the de-
tector and decoder iteratively. In this paper, we focus on how
to generate extrinsic information at each subcarrier using the
received signals on this subcarrier and the a priori information
on each bit from the channel decoder. The generated extrinsic
information on all subcarriers is then input to the soft-in-soft-
out channel decoder for the next iteration of decoding and
detection. We briefly review several such existing algorithms
and unravel their relationships, which will motivate our algo-
rithms in Section IV.
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B. Iterative Detection and Decoding

The a priori probability (APP) is usually expressed as a
LLR value (L-value). The sign of L-value indicates if a bit is
zero or one. The magnitude of L-value indicates the reliability
of a bit decision; e.g., magnitude close to zero shows an
unreliable bit. We represent the logical zero for a bit by bi=−1
and logical one by bi=+1, respectively. Given the APP from
the channel decoder, the a posteriori LLR value of the bit bi
conditioned on the received vector y is

L(bi|y)=log
Pr(bi=+1|y)
Pr(bi=−1|y)

. (3)

We can rewrite (3) using Bayes’ theorem as

L(bi|y)=log

∑
x∈Xi,+1

Pr(y|x)

M∑
m=1

Cm−1∏
j=0,j ̸=i

Pr(bj=Bj(x))

∑
x∈Xi,−1

Pr(y|x)

M∑
m=1

Cm−1∏
j=0,j ̸=i

Pr(bj=Bj(x))︸ ︷︷ ︸
LE(bi|y)

+log
Pr(bi=+1)

Pr(bi=−1)︸ ︷︷ ︸
LA(bi)

,

(4)

where Xi,+1 and Xi,−1 are the set of 2
∑M

m=1Cm−1 vectors such
that the i-th bit is +1 or −1, respectively; Namely Xi,±1=
{x|M(b)=x, bi=±1}, b=B(x) is the inverse mapping of
x=M(b) and Bj(x) is the j-th bit of B(x).

In the case of Gaussian channel (2), we can further write
L(bi|y) as

L(bi|y)=log

∑
x∈Xi,+1

exp

−∥y−Hx∥2

σ2 +

M∑
m=1

Cm−1∑
j=0,j ̸=i,bj=1

LA(bj)


∑

x∈Xi,−1

exp

−∥y−Hx∥2

σ2 +

M∑
m=1

Cm−1∑
j=0,j ̸=i,bj=1

LA(bj)


+LA(bi).

(5)

To find the L-value for each bi using (5), a search is
needed over 2

∑M
m=1Cm−1 terms, which is exponential in the

total number of bits
∑M

m=1Cm. Since this complexity is
prohibitive, a list sphere decoder (LSD) is adopted in [12].

We consider a commercial iterative decoding and demod-
ulation architecture for MIMO-OFDM in Fig. 2 adapted
from [27]. LE(bi|y) computation in (4) corresponds to the
demodulator in Fig. 2. Besides iterative decoding in turbo
decoder, there is an outerloop iterative procedure to exchange
LA(bi) between demodulator and turbo decoder. In LTE-A,
rate matching is used to match the number of bits in transport
block to the number of bits that can be transmitted in the
given allocation [1]. Rate matching involves many things
including sub-block interleaving, bit collection and pruning.
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Matching
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LA(bi)

LA(bi)
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L(bi)
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Fig. 2. Iterative decoding and demodulation architecture for MIMO-OFDM.

Derate matching is the reverse operation of rating matching.
We can find the corresponding symbol x for bi in (4) through
rate matching.

C. Iterative Detection and Decoding with Gaussian Approxi-
mation

Here we review a Gaussian approximation for iterative
detection and decoding and relate different existing algorithms,
where we can gain insights to develop new algorithms. To this
end, note that we can rewrite (4) as

L(bi|y)=log

∑
xm∈Xm

i,+1

Pr(xm)
∑
x−m

Pr(y|x−m,xm)Pr(x−m)∑
xm∈Xm

i,−1

Pr(xm)
∑
x−m

Pr(y|x−m,xm)Pr(x−m)
,

(6)
where xm denotes the symbol that bi belongs to, x−m denotes
the vector that contains all entries of x except for the m-th
entry, and Xm

i,+1 (Xm
i,−1) is the set of 2Cm−1 vectors such

that bi is +1 (−1). For any given xm, we need to compute∑
x−m

Pr(y|x−m,xm)Pr(x−m). A suboptimal approach is to
replace the summation over x−m with an integration over a
continuous distribution. One common choice is the Gaussian
distribution. If we assume the entries of x−m are independent
Gaussian random variables with mean and variance

µm′=E{xm′},ν2m′=E{|xm′ |2}−E2{xm′}, (7)

m′=1,.. .,M , m′ ̸=m and Gaussian channel model (2) is used,
then we have

Pr(y|xm)=
∑
x−m

Pr(y|x−m,xm)Pr(x−m)

≈
∫ +∞

−∞
Pr(y|x−m,xm)f(x−m)dx−m

∝exp
(
−(y−H−mµ−m−hmxm)

H
R−1

m

× (y−H−mµ−m−hmxm)) ,

(8)

where the integral is from −∞ to ∞ in each dimension, H−m

contains the columns of H except for the m-th column, hm is
the m-th column of H, µ−m=[µ1,. ..,µm−1,µm+1,... ,µM ]T ,

Rm=H−mdiag
{
ν21 ,. ..,ν

2
m−1,ν

2
m+1,. ..,ν

2
M

}
HH

−m+σ2IN ,
(9)

and IN is an N×N identity matrix. To maximize Pr(y|xm)
in (8) we only need to search through 2Cm possible xm’s.
The complexity of computing LLR reduces from 2

∑M
m=1Cm

by searching through all possible constellation combinations
to 2Cm .

It can be shown that different algorithms [14]–[16] are
equivalent to the Gaussian approximation (8).
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IV. PROPOSED ITERATIVE DETECTION AND DECODING
ALGORITHM

In this section, we assume all transmit symbols are from
a square-QAM constellation, as in LTE-A [1], but our work
can also readily extend to arbitrary constellations. To achieve
a good performance-complexity tradeoff especially for high
order constellations such as 64-QAM, we can try two different
avenues. First, by following [12], we may compute L-values
with the LSD. However, the number of summands in (4) is
exponential. Since LSD depends on the maximally possible
searching time, its detection throughput is variable, which
would demand I/O buffers adding an extra overhead in a
practical system [13]. Second, we may use the Gaussian
approximation to get the closed-form (8) but its performance
is not good for higher order modulations [16]. Due to these
reasons, our goal is to combine LSD and continuous integral
approximation of discrete summation by taking the advantage
of both. Before doing that, for square-QAM, we write (2) as
a real system, i.e.,[

ℜ(yi)
ℑ(yi)

]
︸ ︷︷ ︸

ỹi

=

[
ℜ(Hi) −ℑ(Hi)
ℑ(Hi) ℜ(Hi)

]
︸ ︷︷ ︸

H̃i

[
ℜ(xi)
ℑ(xi)

]
︸ ︷︷ ︸

x̃i

+

[
ℜ(wi)
ℑ(wi)

]
︸ ︷︷ ︸

w̃i

,

(10)
where i=0,... ,Ns−1 and ℜ(x) and ℑ(x) denote the real part
and imaginary part of x, respectively and the entries of x̃i are
from pulse-amplitude modulation (PAM) constellations. With
a slight abuse of notations, we still use (2) to represent the
real system with the entries of xi from PAM.

A. Iterative Detection and Decoding with Non-Gaussian Ap-
proximation

To motivate our non-Gaussian approximation, we start with
the Binary Phase Shift Keying (BPSK), i.e., X∈{+1,−1}.
Let Pr(X=+1)=p and Pr(X=−1)=1−p, where p is from
LA(bi) in (4). We can write this PMF into a single equation
as

Pr(X=x)=p(
x+1
2 )

2

(1−p)(
x−1
2 )

2

, x=±1. (11)

A natural continuous approximation of this PMF is obtained
by relaxing x to be a real number with a scaling factor to
keep

∫
Pr(X=x)dx=1. Note that there are several choices

of the PMF (11). For example, we may choose Pr(X=x)=

p
x+1
2 (1−p)

1−x
2 . But this function will diverge when x goes

to ∞, which is undesirable. We may also choose Pr(X=x)=

p
|x+1|

2 (1−p)
|x−1|

2 . But this function is not amenable to closed-
form integrations.

The PMF in (11) can be extended to higher modulations.
For a given modulation Q with Pr(X=xi)=pi and

∑
pi=1,

we can write the PMF into a single equation as

Pr(X=x)=
∏
xi∈Q

p

∏
xj∈Q,xj ̸=xi

(x−xj)
2

∏
xj∈Q,xj ̸=xi

(xi−xj)
2

i =exp

2(|Q|−1)∑
l=0

alx
l

 ,

(12)

where x∈Q and al is a constant depending on the constella-
tion, e.g.,

al=

dl

∑
xi∈Q logpi

∏
xj∈Q,xj ̸=xi

(x−xj)
2

∏
xj∈Q,xj ̸=xi

(xi−xj)2


dxl

∣∣∣∣∣
x=0

.

The PDF can be obtained by relaxing x to be a real
number. When |Q|>2, if we use (12) directly in (8), then the
integral involves a polynomial greater than the second order
in the exponent, whose closed-form may be hard to obtain.
Therefore, we approximate the PMF (12) with a second order
polynomial in the exponent for any Q, i.e.,

Pr(X=x)=exp
(
−
(
c+2rx+ax2

))
, (13)

where c,r,a are constants. Note that the Gaussian distribution
is a special case of (13), which contains a nonnegative a. The
coefficients a,r,c are found by solving

min
a,r,c

∑
i

ωi

(
exp

(
−
(
c+2rxi+ax2

i

))
−pi

)2
, (14)

where ωi≥0 is a weight for symbol xi. We may choose
uniform weights or assign higher weights to the symbols with
large probability. At each iteration of decoding, we can get p
from LA(bi) in (4) and solve (14) using convex optimization.

The integration in (8) is from −∞ to +∞, which may dis-
tort the LLR value. Practical constellations typically contain fi-
nite alphabets, e.g., 2D-PAM is {−2D+1,−2D+3,.. .,2D−
3,2D−1}. We can integrate from −U to U instead. Some
possible choices of U are 2D or 2D−1+σ. With (13) and
U=2D, we can write (8) as

Pr(y|xm)

(a)
≈
∑
x−m

Pr(y|x−m,xm)
∏

k ̸=m,2dk−1=xk

∫ 2dk

2dk−2

f(xk)dxk

(b)
≈
∫ +U

−U

Pr(y|x−m,xm)f(x−m)dx−m

∝exp

(
−∥y−hmxm∥2

σ2

)

×
∫ +U

−U

exp

(
−2

(
rT−m− 1

σ2
(y−hmxm)TH−m

)
︸ ︷︷ ︸

bT
−m

x−m

−xT
−m

(
A−m+

HT
−mH−m

σ2

)
︸ ︷︷ ︸

Rm

x−m

)
dx−m,

(15)

where r−m=[r1,... ,rm−1,rm+1,.. .,rM ]T and
A−m=diag{a1,.. .,am−1,am+1,.. .,aM}, rm′ and am′

are obtained from (14). In (a), we have approximate the PMF
using a finite integration over PDF as

Pr(xk=2dk−1)≈
∫ 2dk

2dk−2

f(xk)dxk.
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Fig. 3. PDF comparison between non-Gaussian and Gaussian approximations
for 4-PAM with Q={−3,−1,1,3} when Pr(X=−3)=0.32, Pr(X=
−1)=0.08, Pr(X=1)=0.12, and Pr(X=3)=0.48.

In (b), we have applied the mean value theorem for definite
integrals where∫ 2dk

2dk−2

Pr(y|x−(m,k),xm,xk)f(xk)dxk

=Pr(y|x−(m,k),xm,x̃k)

∫ 2dk

2dk−2

f(xk)dxk

≈Pr(y|x−m,xm)

∫ 2dk

2dk−2

f(xk)dxk,

where x−(m,k) denotes the vector that contains all entries of
x except for the m-th and k-th entries.

Comparing (15) with (8), we see that there are two main
differences. First, r−m and A−m are not from the matched
mean and variance but from matching the PMF directly.
Second, the integral is from −U to U .

Let the singular value decomposition of Rm be VTΛV and
g(xm)=Vb−m, where Λ=diag{λ1,.. .,λM−1}. We change
variables by defining z=Vx−m. However, the integration
region of z is an M−1 dimensional polytope, making the
integral hard to compute. For simplicity, we enlarge the
integration region by setting a bound Zi=U

∑M−1
j=1 |Vi,j | for

dimension i. We can then approximate (15) as

Pr(y|xm)∝ exp

(
−∥y−hmxm∥2

σ2

)

×
M−1∏
i=1

∫ +Zi

−Zi

exp
(
−2gi(xm)zi−λiz

2
i

)
dzi,

(16)

where gi(xm) is the i-th entry of g(xm)=Vb−m. When λi>
0, we can rewrite the integral in (16) into a Q-function. When
λi<0, we can compute the integral using numerical methods.

To compare Gaussian and non-Gaussian approximations,
we consider 4-PAM with Q={−3,−1,1,3}. Two bits (b1,b2)
are mapped to Q via gray mapping (0,1)→−3,(0,0)→

−1,(1,0)→1,(1,1)→3. After several decoding iterations,
we may have Pr(b1=1)=0.6 and Pr(b2=1)=0.8, which
gives Pr(X=−3)=0.32, Pr(X=−1)=0.08, Pr(X=1)=
0.12, and Pr(X=3)=0.48. We compare the PDF’s of
non-Gaussian (14) and Gaussian approximations in Fig. 3.
The areas between 2i−2 and 2i (as an approximation
of the symbol probability P (X=2i−1)), i=−1,0,1,2 are
0.31,0.09,0.10,0.49 for the non-Gaussian approximation and
0.15,0.29,0.33,0.23 for the Gaussian approximation. Clearly
the Gaussian approximation does not match the discrete dis-
tribution when some bits are unreliable. This problem is a
lot more severe when each symbol contains more than 2 bits,
which may be the reason that the probabilistic data association
(PDA) performs poorly for high order modulations as observed
in [16].

For general bit mappings, due to the constraint on the
second order polynomial, (13) may not fit the PMF for all
symbols in large constellations. Moreover, it is observed in
[18] that Gray mapping does not perform well in iterative
joint detection and decoding. Other mappings such as set
partitioning mapping may perform better. For set partitioning
mapping, we can resolve the polynomial order constraint via
constellation decomposition. Let bi=+1 for logical one and
bi=−1 for logical zero. Let C be a positive integer. We
can write the set partitioning mapping for 2C-PAM (Q=
{−2C+1,−2C+3,... ,2C−3,2C−1}) as

x=

C−1∑
i=0

2ibi=dTb, (17)

where d=[1,2,.. .,2C−1]T and b=[b0,... ,bC−1]
T . Note that

we have ignore the scaling factor in the modulation to keep
unit average power. As each entry of b takes BPSK, the
continuous approximation to the PMF is given in (11), where
(13) is exact with

a=c=−1

4
(logp+log(1−p)), b=−1

4
(logp− log(1−p)) .

(18)
Define H̃−m=H−mdiag{dT

1 ,.. .,d
T
m−1,d

T
m+1,... ,d

T
M}

and b−m=[bT
1 ,.. .,b

T
m−1,b

T
m+1,... ,b

T
M ]T . By replacing

H−m with H̃−m and x−m with b−m in (15), we can obtain
a similar form as (16). The only difference is that the new
eigenvalue λ̃i is nonnegative as a in (18) is nonnegative. We
can thus rewrite (16) as

Pr(y|xm)∝exp

(
−∥y−hmxm∥2

σ2
+

M−1∑
i=1

g̃2i (xm)

λi

)

×
M−1∏
i=1

(
Q

(√
2λ̃iZi+

√
2

λ̃i

g̃i(xm)

)

−Q

(
−
√
2λ̃iZi+

√
2

λ̃i

g̃i(xm)

))
,

(19)

where λ̃i and g̃i(xm) are defined similarly as in (16) by replac-
ing H−m with H̃−m. This approach may be extended to other
similar bit mappings resulting in constellation partitioning.
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B. K-Best algorithm with Discrete Distribution Approxima-
tion

In [13], a K-best iterative MIMO receiver is proposed. The
K-best algorithm offers the advantages of parallel implemen-
tation and fixed throughput regardless of the operating SNR.
However, the original K-best [13] does not consider the impact
of APP on the K best paths. Here, we consider a K-best
algorithm which will generate different sets of K-best paths
at each iteration by using a distributional approximation.

The LSD only considers the maximum term among all
the 2

∑M
m=1Cm−1 terms in (4), and the list is generated by

using Pr(y|x1,.. .,xM ) only without the a priori information
Pr(xm′), m′=1,. ..,M . Moreover, when the LSD comes to
the i-th data stream, it only checks the symbols satisfying

(
ỹi−Ri,ixi−

M∑
j=i+1

Ri,j x̃j

)2
+

M∑
j=i+1

(
ỹj−

M∑
l=j

Rj,lx̃l

)2
≤r2,

(20)
where ỹi is the i-th entry of QHy, Ri,j is the (i,j)-th entry
of R with QR decomposition H=QR, and x̃j is the trial
value of xj . Using (20) is myopic and does not consider the
effect of choosing xi on the data streams 1,.. .,i−1. On the
other hand, the Gaussian approximation algorithm (Section
III-C) considers the summation in (4), but is not good for
high-order constellations. We next develop an algorithm that
unifies both approaches. The key idea is to use the Gaussian
approximation or non-Gaussian approximation as a metric to
guide the search, by taking into account the impact of stream
i on streams 1,. ..,i−1.

As with LSD, we also want to find a list of K lattice points.
But there are three key differences from LSD. First, we try to
find a list Li,±1 containing K points for each bi=±1 rather
than a common list for both bi’s. The LLR value of bi in (4)
is then approximated as

L(bi|y)≈ log

∑
x∈Li,+1

Pr(x|y)∑
x∈Li,−1

Pr(x|y)
. (21)

Second, we use sum-log rather than max-log used in LSD.
The third difference lies in the way we generate the list. We
want to find K lattice points x∈Xi,±1 such that Pr(x|y)
is maximized rather than maximizing Pr(y|x), where the a
priori information is exploited in the former case.

In the initial step of the proposed method, we assume that
bi belongs to data stream m and check each x̃m∈Xm

i,±1 to find
the K candidates such that Pr(xm|y) is maximized. Then we
add m into a set V containing the streams that have been
checked. We can write Pr(x̃m|y) as

Pr(x̃m|y)∝
∑
x−m

Pr(y|x−m,x̃m)Pr(x−m). (22)

Direct computation of (22) requires 2
∑M

m′=1,m′ ̸=m
C′

m summa-
tions, which may be computationally prohibitive. We replace
the summation in (22) as an integral

Pr(x̃m|y)∝
∫

Pr(y|x−m,x̃m)f(x−m)dx−m, (23)

where f(x−m) is the matched PDF of x−m, which could be
either Gaussian or non-Gaussian. With Gaussian approxima-
tion (non-Gaussian approximation can be derived similarly),
we have

Pr(x̃m|y)∝exp
(
−(y−H−mµ−m−hmx̃m)

H

×R−1
m (y−H−mµ−m−hmx̃m)

)
,

(24)

where µ−m and Rm are defined in (8). The K x̃m’s with the
largest Pr(x̃m|y) are added into a list L, which is initialized
to be ∅.

The process then goes for x1,x2,.. .,xM . Before it reaches
xj , j ̸=m, we have V={m,1,.. .,j−1} and the list L
contains K candidates, each of which has the form zV=
[xm,x1,... ,xj−1]

T . For each zV∈L and x̃j∈Qj , we compute
Pr(zV ,x̃j |y). Among the resultant K|Qj | candidates, we only
choose K of them such that Pr(zV ,x̃j |y) is maximized, update
the list L with the K chosen vectors, and add j into V . We
can approximate Pr(zV ,x̃j |y) in the same way as in (23). In
case of Gaussian approximation, we have

Pr(zV ,x̃j |y)

∝exp
(
−
(
y−H−{V,j}µ−{V,j}−HVzV−hj x̃j

)H
×R−1

{V,j}
(
y−H−{V,j}µ−{V,j}−HVzV−hj x̃j

))
,

(25)

where µ−A constitutes the entries of µ that are not in A,
H−A consists of the columns of H that are not in A, and

R{V,j}=H−{V,j}diag
{
ν2
−{V,j}

}
HH

−{V,j}+σ2IN . (26)

The process ends when j=M . After obtaining a list for bi=
±1 respectively, we use (21) to compute the LLR value.

C. Extensions

The basic K-best algorithm (Section IV-B), named as sum-
algorithm, can be extended in several ways.

Max-Algorithm: Different from the sum-algorithm where
Pr(xV ,x̃j |y) is maximized consecutively, in the max-
algorithm, we maximize Pr(x|y) directly. At the first step, for
each x̃m∈Xm

i,±1, we find the corresponding x̃−m such that

x̃−m=arg max
x−m∈X−m

Pr(x̃m,x−m|y)

=arg max
x−m∈X−m

Pr(y|x̃m,x−m)Pr(x̃m,x−m),
(27)

where X−m includes all possible lattice points. We put K
x̃m into the list L such that Pr(x̃m,x̃−m|y) is the largest and
add m into a set V . Similarly we replace Pr(x̃m,x−m) with
its continuous Gaussian or non-Gaussian approximations and
relax the discrete set X−m into a continuous set C−m.

When C−m is bounded, the boundary on xj is defined by the
largest and the smallest elements in Qj . For example, when
Qj={−3,−1,1,3}, we choose −3≤xj≤3. When the non-
Gaussian approximation (13) is used, we need to solve

x̂−m=arg min
x−m∈C−m

∥y−H−mx−m−hmx̃m∥2

+2σ2rT−mx−m+σ2xT
−mA−mx−m.

(28)
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As (28) is quadratic in x−m, when the objective function of
(28) is convex, x̂−m can be found using convex optimization
tools. If not, the problem is shown to be NP-hard [28]. We
thus find a local minimum using numerical methods such as
Newton’s method around

argmin
x−m∈C−m

∥y−H−mx−m−hmx̃m∥2 .

We can set x̃−m=x̂−m or map x̂−m to the closest lattice
point in X−m. Comparing with (20), (28) uses the a priori
information through r−m and A−m, and it counts the impact
of symbol x̃m on Pr(x̃m,x̃−m|y).

The process then goes to x1,x2,... ,xM . Before it reaches
xj , j ̸=m, V ={m,1,. ..,j−1}, the list L contains K candi-
dates, each of which has the form zV=[xm,x1,.. .,xj−1]

T .
For each zV∈L and each x̃j∈Qj , we find the corresponding
x̃−{V,j} such that

x̃−{V,j}= argmax
x−{V,j}∈X−{V,j}

Pr(zV ,x̃j ,x−{V,j}|y). (29)

Among the resulting K|Qj | [x̃T
V ,x̃j ]

T , we only choose K of
them such that Pr(zV ,x̃j ,x̃−{V,j}|y) is maximized, update the
list L with the K chosen vectors, and add j into V . As in (28),
we can approximate x̃−m by solving

x̂−{V,j}=argmin
x−{V,j}

∥∥y−H−{V,j}x−{V,j}−HVzV−hj x̃j

∥∥2
+2σ2rT−{V,j}x−{V,j}+σ2xT

−{V,j}A−{V,j}x−{V,j},

(30)

where the notations are similar to those in (25) and (28).
Interestingly, when C−m is unbounded and the Gaussian

approximation is used, we can show that the sum algorithm is
equivalent to the max algorithm (see Appendix).

Bit-wise Algorithm: The sum-algorithm proceeds from sym-
bol to symbol, which can also be applied on bits. For
example, when set partitioning mapping is used, 2C-PAM
(Q={−2C+1,−2C+3,... ,2C−3,2C−1}) can be written as
a weighted sum of bits using (17). Taking the sum-algorithm as
an example, to compute L(bi|y), we start with bi and compute
Pr(bi=±1|y)=

∑
x∈Xi,+1

Pr(x|y). In (23), we replace every
xj except xm with a Gaussian or non-Gaussian continuous
variable and Pr(bi=±1|y) is computed by summing over all
possible xm in Xm

i,±1. We can even approximate xm as a
continuous variable. For example, when xm is assumed to be
Gaussian, we can compute the matched mean and variance as

µm,i,±1=
∑

xm∈Xm
i,±1

Pr(xm)xm (31)

and

ν2m,i,±1=
∑

xm∈Xm
i,±1

Pr(xm) |xm|2−|µm,i,±1|2 . (32)

When the non-Gaussian distribution is used, we can get
the distribution by fitting the distribution over the sym-
bols in Xm

i,±1 only. We can obtain Pr(bi|y) as (24).
When the algorithm reaches bit bj and its correspond-
ing symbol is xm′ , let bj=[b1,.. .,bj ]

T where symbols
xm′+1,... ,xm−1,xm+1,.. .,xM have not been visited. For any

b̃j from the list L, we can compute the matched mean and
variance for xm′ as

µm′,bj ,b̃j
=

∑
xm′∈Xm′

bj ,b̃j

Pr(xm′)xm′ (33)

and

ν2
m′,bj ,b̃j

=
∑

xm′∈Xm′
bj ,b̃j

Pr(xm′)|xm′ |2−
∣∣∣µm′,bj ,b̃j

∣∣∣2 , (34)

where Xm′

bj ,b̃j
is the set of constellation points for xm′ such

that the corresponding bits in bj is equal to b̃j . The rest of the
algorithm is identical to that of the symbol based algorithm.

The advantage of the bit-wise algorithm is that some
symbols can be pruned early when the first few bits of the
corresponding symbols are not chosen in the list with K
elements.

Early Stopping and Varied K: The sum-algorithm stops
after reaching xM . We can stop the algorithm at any xj . In
this case, we can compute the LLR value as (35).

We can then approximate∑
xj+1,...,xm−1,xm+1,...,xM

Pr(xj+1,.. .,xm−1,xm+1,. ..,xM )Pr(y|x)

using Gaussian or non-Gaussian approximation. When j=m,
K= |Qm| and Gaussian approximation are used, the K-best
algorithm with early stopping reduces to that in Section
III-C or the PDA method in [16]. The stopping level gives
a tradeoff between performance and complexity. This early
stopping can also be used when some symbols are not
reliable, e.g., every symbol in the constellation has roughly
the same probability or LLR value is less than a threshold.
In this case, different candidates may have roughly the same
metric and choosing the best K candidates may not be good.
We can reorder the symbols such that the unreliable symbols
correspond to the last few symbols and use early stopping
when the algorithm reaches the unreliable symbols.

We can also vary the list size K for different symbols. The
list size Kj can be chosen as Kj after symbol xj is visited.
For example, Kj can be chosen to be a large value for the
first few visited symbols as the choice of these symbols is
important to the overall performance, and Kj is chosen to be
a small value when the algorithm is close to the end to save
complexity.

Remarks:
• Note that the proposed algorithms are different from the

K best algorithm in [13] in the way how the K best
candidates are generated and updated and how the LLR
value is computed. In [13], LLR value is computed using
only the candidate from the list with the largest Pr(x|y)
while we consider all the candidates in the list.

• There are several interesting special cases of the proposed
algorithms. When K=1, the proposed algorithms become
an improved soft version of V-BLAST algorithm. When
K=+∞, they reduce to the optimal MAP detection in
Section III-B.

• The proposed K-best sum-algorithm can be considered as
a combination of soft successive interference cancellation
(SIC) and hard SIC, where a stream of data is canceled
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L(bi|y)≈ log

∑
[x1,...,xj ,xm]T∈Li,+1

Pr(x1,. ..,xj ,xm)
∑

xj+1,...,xm−1,xm+1,...,xM

Pr(xj+1,.. .,xm−1,xm+1,. ..,xM )Pr(y|x)∑
[x1,...,xj ,xm]T∈Li,−1

Pr(x1,. ..,xj ,xm)
∑

xj+1,...,xm−1,xm+1,...,xM

Pr(xj+1,... ,xm−1,xm+1,.. .,xM )Pr(y|x)
. (35)

by hard decision on the bits of a symbol followed by re-
modulation of the hard decoded bits. The sum-algorithm
uses soft SIC when choosing candidates from the list and
uses hard SIC before it proceeds to the next symbol.

• Instead of using sum-log to compute the LLR value, we
can also use max-log.

• In practical protocols there always exists some CRC
check bits. When a particular data stream passes the CRC
check, we do not need to include this data stream in
the future iterative demodulation and decoding. We can
cancel this data stream directly or hard SIC, which will
reduce the complexity of the proposed K-best algorithms.

D. Complexity Reduction

Direct computation of (25) requires matrix inversion and
matrix multiplication for every x̃j∈Qj . From the expression
of R{V,j} in (26) and the matrix inversion lemma [29], we
have

R−1
{V,j}=

(
RV+ν2jhjh

H
j

)−1
=R−1

V −gj

(
ν−2
j +hH

j gj

)−1
gH
j ,

(36)

where gj=R−1
V hj . Initially, we need to compute(

Hdiag{ν2}HH+σ2IN
)−1

, which has a complexity
O(N2.376+NM2). Substituting (36) into (25), we obtain(

y−H−{V,j}µ−{V,j}−HVxV−hj x̃j

)H
R−1

{V,j}

×
(
y−H−{V,j}µ−{V,j}−HVxV−hj x̃j

)
=C−2x̃jB+x̃2

jA

(37)

where

A=hH
j gj−hH

j gj

(
ν−2
j +hH

j gj

)−1
gH
j hj

B=
(
1−hH

j gj

(
ν−2
j +hH

j gj

)−1
)
gH
j

×(y−H−Vµ−V+hjµj−HVxV)

C=yHR−1
V y−yHgj

(
ν−2
j +hH

j gj

)−1
gH
j y

(38)

Computing hH
j gj and gH

j y needs 2(N−1) additions and
2N multiplications. Moreover, yHR−1

V y and y−H−Vµ−V
are inherited from the previous step. HVxV is updated and
stored in the list and the update needs KN multiplications
and KN additions. Computing y−H−Vµ−V+hjµj−HVxV
needs N multiplications and 2N additions. The total number
of additions to compute the coefficients A,B,C for all the
elements in the list is 3(K+1)N+K−2 and the total num-
ber of multiplications is (2K+3)N+5. As (37) is a scalar
function in x̃j , we can search over Qj for each xV to find the
K candidates with the maximum (25). This simple algorithm
requires 2K|Qj | multiplications and 2K|Qj | additions.

Assuming exponential function can be computed by lookup
table, Table I compares the complexity of the proposed K-Best

algorithm, Gaussian approximation and solving (5) optimally
denoted as MAP (maximum a posteriori) in a N×M MIMO
system with constellation size Q, where we have assumed
matrix inversion uses Gauss-Jordan elimination [29]. From
the big-O notation, we can see that Gaussian approximation
reduces the complexity from O(QMNM) exponential in
M to O(QNM2). K-best algorithm can further reduce the
complexity to O(KNM).

V. SIMULATION RESULTS

In this section, we present simulation results to verify the ef-
fectiveness of the proposed algorithms. We consider a MIMO-
OFDM system with 1024 subcarriers and 960 subcarriers are
used for data transmission. Perfect knowledge of channel state
information is assumed. Each transmit antenna is assigned
power P . The SNR is defined as P/N0, where N0 is the
noise power. The simulations are conducted using an LTE
simulator with the encoder, interleaver, rate matching proce-
dure following LTE standard specified in [30]. We consider
Extended Vehicular A model (EVA) [31] in this section with
delay profile [0 30 150 310 370 710 1090 1730 2510] ns and
power profile [0 -1.5 -1.4 -3.6 -0.6 -9.1 -7 -12 -16.9] dB. The
channel power profile is normalized to unity. The scheme of
turbo encoder is a Parallel Concatenated Convolutional Code
(PCCC) with two 8-state constituent encoders and one turbo
code internal interleaver. The coding rate of turbo encoder is
1/3. The transfer function of the PCCC is: G(D)=[1, g0(D)

g1(D) ]

[30], where g0(D)=1+D2+D3, g1(D)=1+D+D3. Eight
iterations are performed within the turbo decoder. Finally, 64
QAM and Gray mapping are considered in this section.

The algorithm using (5) is denoted as MAP. LSD in [12] is
denoted as LSD (List sphere decoder). The Gaussian approx-
imation using (8) is denoted as Gaussian. Estimating x̂i from
(2) using a minimum mean square error (MMSE) estimator
followed by a turbo decoder without iterative demodulation
and decoding is denoted as MMSE. In LSD, we choose the list
size L=512 to be consistent with [12]. The K-best algorithm
using common list is denoted as K-best, while the K-Best
algorithm using (25) for each bit is denoted as K-Best-Bit.
The non-Gaussian approximation algorithm in Section IV-A
is denoted as Non-Gaussian.

A. Bit Error Rate (BER) Comparison of Different Algorithms

We first consider fixed scheduling, where both data streams
transmit using transport block size (TBS) 1916. The bit error
rates of different algorithms after simulating 20000 subframes
in a 2×2 MIMO-OFDM system are shown in Fig. 4. The
channel varies independently from subframe to subframe.
All algorithms use 6 iterations. It is clear that all iterative
algorithms benefit from the information exchange between the
demapper and decoder as compared with MMSE. We can see
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TABLE I
COMPLEXITY COMPARISON OF DIFFERENT ALGORITHMS TO COMPUTE L(bi|y).

additions multiplications Big-O
MAP QMN(M+1)−2 QM (N(M+1)+Q−1) O(QMNM)

Gaussian Q
(
N(M−1)2+ 1

3
N3+ 3

2
N2+ 1

6
N+MN

)
−2 Q

(
N(M−1)2+ 1

3
N3+ 3

2
N2+ 4

3
N+MN+1

)
O(QNM2)

K-Best M (3(K+1)N+2KQ+K−2)
+2KN(M+1)−2

M ((2K+3)N+2KQ+5)
+2K(N(M+1)+Q+1)

O(KNM)
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Fig. 4. BER comparison of different algorithms in a MIMO-OFDM system
with 2 transmit and 2 receive antennas over the EVA channel.

that Gaussian approximation incurs a 0.5 dB loss over MAP at
BER=10−3. The Gaussian approximation only needs to sum
over 64 terms while the MAP needs to compute 32×64=2048
terms in the numerator and denominator in (5), respectively.
With the proposed K-best algorithms, K-Best, K=64 has
a 0.08 dB gain over Gaussian approximation, and K-Best-
Bit, K=4 has a 0.15 dB gain over Gaussian approximation
at BER=10−3. K-Best-Bit, K=4 only needs to sum over
K=4 terms in the LLR computation but with improved
performance over Gaussian approximation. LSD with L=512
incurs a 1 dB loss over MAP at BER=10−3 but with a higher
complexity than Gaussian approximation and the proposed K-
best algorithms. The non-Gaussian approximation achieves a
0.3 dB gain over Gaussian approximation at BER=10−3. The
proposed K-Best algorithms achieve good performance with
reduced complexity.

B. Effects of the List Size K

In Fig. 5, the performance of the K-best algorithms are
compared with different list size K in a 2×2 MIMO-OFDM
system. We can see that for both K-Best and K-Best-Bit,
doubling K gives a 0.5 dB gain at BER=10−3. In high
SNR, the error floor is also reduced by increasing K. But
doubling K also means that the complexity is roughly dou-
bled. Moreover, more exponentials are needed to compute in
the LLR computation, which is very expensive in hardware
implementation.
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Fig. 5. K-best algorithm BER comparison with list size K in a MIMO-
OFDM system with 2 transmit and 2 receive antennas over the EVA channel.

C. Effects of the Number of Iterations

In practice, it is crucial that the decoding time satisfies the
timeline constraint in LTE-A [1]. It is therefore important to
understand the performance of the iterative decoders in terms
of the number of iterations. Fig. 6 shows the BER performance
of the proposed K-best algorithm with K=64 and different
number of iterations in a 2×2 MIMO-OFDM system (Fig.
6(a)) and in a 4×4 MIMO-OFDM system (Fig. 6(b)). We
can see that marginal performance gain diminishes as the
number of iterations increases. When comparing SNR=8 dB
in Fig. 6(a) with SNR=6 dB in Fig. 6(b), we find that
convergence speed of the proposed K-best algorithm decreases
as the number of antennas increases. In general, three to four
iterations is good enough in a 2×2 MIMO-OFDM system
to achieve close to optimal performance using the proposed
K-best algorithms, which means the proposed algorithms can
be implemented with fixed complexity and fixed detection
throughput.

D. Throughput Comparison of Different Algorithms

BER does not translate to throughput performance directly.
A higher TBS may have higher BER even though data rate is
higher. In Fig. 7, we compare the throughput gain of different
algorithms over Gaussian approximation in a 2×2 MIMO-
OFDM system. The throughput gain is obtained after aver-
aging 50 channel realizations. For each channel realization,
we find the maximum TBS pair on the two streams that can
achieve average 10% block error rate (BLER) on both data



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXX 201X 10

1 2 3 4 5 6

10
−4

10
−3

10
−2

10
−1

10
0

The number of iterations

B
E

R

 

 

SNR=2 dB
SNR=4 dB
SNR=6 dB
SNR=8 dB
SNR=10 dB

(a) A 2×2 MIMO-OFDM system

1 2 3 4 5 6

10
−4

10
−3

10
−2

10
−1

10
0

The number of iterations

B
E

R

 

 

SNR=2 dB
SNR=4 dB
SNR=6 dB
SNR=7 dB
SNR=8 dB

(b) A 4×4 MIMO-OFDM system

Fig. 6. BER comparison of K-best algorithm with K=64 and different number of iterations
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Fig. 7. Throughput gain comparison of different algorithms over MMSE in a
MIMO-OFDM system with 2 transmit and 2 receive antennas over the EVA
channel.

streams. We choose 10% BLER because optimal throughput
can be achieved under most channel conditions by targeting
10% BLER [27], [32]. The modulation corresponding to each
TBS is chosen according to [30] and Hybrid ARQ is used. We
can see that the throughput gain of all algorithms decreases
as SNR increases. This is because in high SNR the MIMO
channel capacity with finite constellation is saturated to 6
bits/s/Hz as the largest constellation is 64QAM. In high SNR,
all algorithms can approach this limit. K-Best-Bit, K=4
achieves almost the same throughput as MAP in all SNRs.
Both K-Best, K=64 and K-Best-Bit, K=4 achieve more
than 5% gain over Gaussian approximation when SNR is
greater than 5 dB but the former two are less complex than
the latter one.

VI. CONCLUSION

The design of low complexity MIMO-OFDM LTE-A re-
ceivers to meet the data rate requirement while achieving
power consumption and silicon area savings is critically
important. In this paper, we developed several such low-
complexity iterative detection and decoding algorithms. Non-
Gaussian approximation was proposed to enhance the per-
formance of interference cancellation based detectors with
large constellations. Several modified K-best algorithms were
also developed to take advantages of both Gaussian or non-
Gaussian approximation and the list decoder, which provide
a flexible performance and complexity tradeoff. Simulation
results demonstrated that the proposed low complexity algo-
rithms can achieve a performance gain over existing ones for
practical systems that use high-order constellations.

APPENDIX
THE EQUIVALENCE BETWEEN THE SUM AND MAX

ALGORITHMS

In this appendix, we consider a general system

y=Hx+w, (39)

where x is of mean µ and covariance matrix Rx and w is of
mean zero and covariance matrix Rw. We show that by using
Gaussian approximation the sum algorithm (25) is equivalent
to the max algorithm. To do so, we solve

min
x−m∈C−m

∥y−H−mx−m−hmx̃m∥2

+(x−m−µ−m)
H
Λ−m (x−m−µ−m) ,

(40)

where Λ−m=diag
{
ν21 ,.. .,ν

2
m−1,ν

2
m+1,.. .,ν

2
M

}
. Define

f(y)=exp
(
−(y−Hµ)

H (
HRxH

H+Rw

)−1
(y−Hµ)

)
(41)
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which corresponds to (25). Define

g(y)=max
x

exp
(
−∥y−Hx∥2−(x−µ)

H
R−1

x (x−µ)
)

∝exp
(
−yHRwy+

(
HHR−1

w y+R−1
x µ

)H
×
(
R−1

x +HHR−1
w H

)−1(
HHR−1

w y+R−1
x µ

))
,

(42)

which corresponds to (40). From the definition of LLR value,
we want to show that f(y) is proportional to g(y), i.e., f(y)∝
g(y).

By using the matrix inversion lemma [29], we have

Rw−R−1
w H

(
R−1

x +HHR−1
w H

)−1
HHR−1

w

=
(
HRxH

H+Rw

)−1
,

(43)

which means that

yHRwy−yHR−1
w H

(
R−1

x +HHR−1
w H

)−1
HHR−1

w y

=yH
(
HRxH

H+Rw

)−1
y.

(44)

We also have

µHR−1
x

(
R−1

x +HHR−1
w H

)−1
HHR−1

w y

=µHR−1
x

(
Rx−RxH

H
(
HRxH

H+Rw

)−1
HRx

)
HHR−1

w y

=µH
(
IN−HH

(
HRxH

H+Rw

)−1
HRx

)
HHR−1

w y

=µHHH
(
IN−

(
HRxH

H+Rw

)−1
HRxH

H
)
R−1

w y

=µHHH
(
HRxH

H+Rw

)−1
y.

(45)

Substituting (44) and (45) into (42) and comparing with (41),
it can be readily seen that f(y)∝g(y). Therefore, the sum
algorithm (25) is equivalent to the max algorithm (40) under
the Gaussian approximation.
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