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Abstract—We present a symbol-by-symbol channel estimation
receiver for an orthogonal space-time block coded system, and
derive its analytical performance on a slow, nonselective, Rayleigh
fading channel. Exact, closed-form expressions for its bit error
probability (BEP) performance for M-ary phase shift-keying
modulations are obtained, which enable us to theoretically predict
the actual performance achievable under practical conditions
with channel estimation error. Our BEP expressions show ex-
plicitly the dependence of BEP on the mean square error of the
channel estimates, which in turn depend on the channel fading
model and the channel estimator used. Tight upper bounds are
presented that show more clearly the dependence of the BEP
on various system parameters. Simulation results using various
fading models are obtained to demonstrate the validity of the
analysis.

Index Terms—Space-time block codes, channel estimation,
symbol detection, bit error probability, nonselective Rayleigh
fading, Kalman filter, Wiener filter, PSAM.

I. INTRODUCTION

TRANSMIT diversity coupled with the use of space-
time coding is an effective technique to improve the

performance of wireless systems [1]–[5]. In particular, space-
time block codes (STBC) [4], [5] have been shown to have a
simple decoder structure. A STBC with two transmit antennas
was first introduced in [4], and it was later generalized for
an arbitrary number of transmit antennas in [5]. The designs
of orthogonal STBC were extensively studied and complex
orthogonal designs (COD) were presented in [6]–[10] for
more than two transmit antennas. The achievable rate of
STBC is conjectured in [11]. A systematic construction of
COD’s achieving the rate bound proposed in [11] is presented
in [12]. The designs in [12] are not given in closed-form
linear combination format. Independently in [14], a systematic
COD algorithm given in closed-form linear combinations of
modulated symbols to reach the rate bound in [11].
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The beauty of STBC is that its orthogonal structure allows
detection of individual symbols to be performed independently
using only linear processing. This was shown in [4] for the
case of perfect channel state information (CSI), i.e., when
channel estimation is perfect. In practice, however, perfect
channel estimates are not readily available, and one expects to
perform simultaneous data detection and channel estimation.
The aim of this paper is to develop a simple, symbol-by-
symbol (SBS), channel estimation receiver for STBC. The
work here can be considered as an extension of the work
on optimum, SBS detection on nonselective Rayleigh fading
channels for the case of a single transmit and multiple receive
antennas [15]. Following the approach in [15], we arrive at a
receiver structure which is similar to that in [4], with the actual
channel fading gains replaced by their minimum mean square
error (MMSE) estimates. We then obtain simple, exact, closed-
form expressions as well as tight upper bounds for its bit error
probability (BEP) performances with phase shift-keyed (PSK)
modulations. The BEP results show clearly the dependence of
BEP on the MSE of channel estimates, which in turn depends
on the channel fading model, the additive channel noise level,
and the estimator structure used. Finally the theoretical results
are validated with simulations.

Performance results for STBC can be found in [16]–[23]. In
[16]–[21], perfect CSI knowledge is assumed at the receiver.
Specifically, in [16] exact BEP expressions of BPSK and
QPSK for Alamouti’s code [4] with one receive antenna is
presented for both coherent and differential detection. In [17],
error performance analysis is based on only those STBC’s
orthogonal in both space and time. In [18], the performance
analysis is not general by taking a few STBC examples. The
coherent results with PSK modulation under Rayleigh fading
in [16]–[18] can be shown to be a special case of our work
in this paper when there is no channel estimation error. In
[19], the authors obtained a pair-wise error probability (PEP)
expression based on perfect CSI knowledge using the moment
generating function method, and the result is not in explicit
form. Moreover, BEP is preferred over PEP for STBC systems.
PEP is more suitable for space-time trellis codes. Symbol error
probability expressions for M-PSK and M-QAM constellations
over the keyhole Nakagami-m channel are presented in [20]
assuming perfect CSI at the receiver. More recently in [21],
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an accurate BEP upper bound is proposed for a symbol-by-
symbol detector for perfect CSI sceanario. Channel estimation
error was taken into account in the PEP analysis approach in
[22] while, however, computation of the eigenvalues of a cor-
relation matrix is necessary. Reference [23] uses Alamouti’s
code [4] and pilot-symbol assisted modulation (PSAM) for
channel estimation, but the BEP result is given in an unsolved
integral form. In summary, the BEP results in [16]–[23] are
either not explicit or assume perfect CSI at the receiver. Space-
time trellis codes with first-order Markov channel model and
Kalman filtering (KF) is proposed in [24]. In [25], a receiver
for the Alamouti’s STBC of [4] with two transmit and one
receive antenna was proposed. This receiver is the same as
our earlier receiver in [15]. It uses decision-directed KF for
channel estimation, and considers a first-order Markov channel
model. No BEP analysis is done, and BEP results are obtained
only via simulations. Our present paper is more general than
the work in the existing literature in that it builds on the
theoretical foundation in [15] and presents exact, explicit,
closed-form analytical BEP results.

Section II presents the system model, and introduces the
SBS receiver. Section III derives the closed-form BEP ex-
pression for MPSK modulation with channel estimation, and
Section IV shows how the BEP results are evaluated for
various channel models and estimators. Simulation results in
Section V confirm our analysis. A summary is given in Section
VI.

II. SYSTEM MODEL AND RECEIVER STRUCTURE

A generalized complex orthogonal STBC for a multi-
input-multi-output (MIMO) communication system with MT

transmit and NR receive antennas is a P × MT matrix S.
Each MT -dimensional row vector of the code matrix S is
transmitted through the MT transmit antennas at one time,
and the transmission of the matrix S is completed in P
symbol periods. In this paper, we consider linear COD of
STBC. During the P symbol periods, the system transmitsK
symbols sk, k = 1, . . . , K , which are from a certain complex
constellation. Each entry of S is a linear combination of
sk, k = 1, . . . , K and their conjugates s∗k. The rate of the
STBC is defined as K/P . In summary, a linear orthogonal
STBC satisfies:

(i) Linearity: Each entry of S can be linearly decomposed
as [6], [7]

S =
K∑

k=1

(skAk + s∗kBk) (1)

where Ak, Bk are P × MT matrices with constant complex
entries, e.g., the Alamouti code [4]:

S =

(
s1 s2

−s∗2 s∗1

)
, and

A1 =

(
1 0
0 0

)
, A2 =

(
0 1
0 0

)
,

B1 =

(
0 0
0 1

)
, B2 =

(
0 0
−1 0

)

(ii) Orthogonality: The matrix Ssatisfies S†S = D, where
S† is the Hermitian transpose of S, and D is a diagonal matrix
[5]. Using the STBC property in (i), we have

S†S = diag

[
K∑

k=1

λ1,k|sk|2, . . . ,
K∑

k=1

λMT ,k|sk|2
]

= D (2)

where {λi,k}MT

i=1 are non-negative numbers. For arbitrary sig-
nal constellations to satisfy the orthogonality condition in (2),
one requires that

A†
kA′

k + B′†
k Bk = δkk′diag[λ1,k, . . . , λMT ,k]

and A†
kB′

k + A′†
k Bk = 0

(3)

where δkk′ is the Kronecker delta.

A. Transmitter

We assume M -PSK modulation and constrain the av-
erage transmitted energy per bit to a constant Eb. It is
then easy to show that the total energy assigned to one
block is EbK log2 M . From the STBC definition in (2),
it is clear that the total transmitted energy in a block is∑MT

i=1

∑K
k=1 λi,k|sk|2. Thus, for each PSK symbol, the al-

located energy is

Es = |sk|2 = EbK log2 M/

MT∑
i=1

K∑
k=1

λi,k (4)

The symbol is now defined as sk =
√

Ese
jφk , where φk takes

on a value in the set {2nπ/M}M−1
n=0 .

B. Receiver

Denoting the m-th transmitted signal block as S(m), the
received signal matrix is

R(m) = S(m)H(m) + N(m) (5)

Here R(m) is the P × NR received matrix, where each
entry rpl(m) is the received signal at the p-th symbol slot
on the l-th receive antenna. H(m) is a MT × NR channel
matrix, where each entry hil(m) is the fading gain on the
il-th link, which is from the i-th transmit to l-th receive
antenna, during the m-th block interval. The hil(m) ’s are
spatially independent, identically distributed (i.i.d.), complex,
Guassian processes from link to link. It is assumed in (5)
that all the channels are block-wise constant, i.e., they re-
main constant for P symbol durations. All the theoretical
derivations are based on this assumption in this paper unless
otherwise stated. Thus, for each link, {hil(m)}∞m=0 forms a
zero-mean, complex, Gaussian process with autocorrelation
function E[hil(m)h∗

il(m
′)] = 2Ω(m−m′). The system model

is shown in Fig. 1. N(m) is the P ×NR noise matrix, whose
entries npl(m) ’s are i.i.d., zero-mean, complex, Gaussian ran-
dom variables (r.v.’s) due to channel additive, white, Gaussian
noise (AWGN) at the p-th symbol slot on the l-th receive
antenna with E[n∗

p′l′(m
′)npl(m)] = δpp′δll′δmm′N0.
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Fig. 1. System model and symbol-by-symbol channel estimation receiver
structure.

C. Channel Estimation

We consider the decision feedback (DF) and the PSAM
schemes for channel estimation here.

For DF scheme [15], [27], define the m-th decoded signal
block as Ŝ(m), and assume the signal-to-noise ratio (SNR) is
sufficiently high so that all the past decisions can be assumed
correct. The receiver performs modulation wipe-off on the past
received blocks, and generates:

Y (m′) = [Ŝ†(m′)Ŝ(m′)]−1Ŝ†(m′)R(m′)

= vH(m′) + Ñ(m′), 0 ≤ m′ ≤ m − 1
(6)

Y (m′) is a noisy observation on the channel matrix H(m′),
and each entry yil(m′), i = 1 . . .MT , l = 1 . . .NR of Y (m′)
can be expressed in the form yil(m′) = hil(m′) + ñil(m′),
where {ñil(m′)}m′ is a set of i.i.d., zero mean, complex,
Gaussian r.v.’s with variance [

∑K
k=1 λi,k]−1E−1

s N0. Define
Λ(m) = {Y (m′), 0 ≤ m′ ≤ m − 1} as the information set
containing the channel measurements available to the receiver
up to the beginning of the m-th block.

After decoding the current block S(m), the measurement
Y (m) is obtained and fed back to update the channel estima-
tor. A problem with such a scheme is that the measurement
errors resulting from decision errors may accumulate in the
stored channel information, which in turn causes further
decision errors. To control the error propagation, pilot blocks
must be periodically inserted into the transmission to update
the filter with correct channel information.

PSAM was proposed in [32]. For the STBC system with
PSAM, one pilot block is inserted into the data stream every
Lf blocks[32], and the estimation of the channel matrix H(m)
is based on the 2Lp pilot blocks nearest in time to the m-th
block. Thus, we define the information set

Λ(m) = {Y (m′)|
([[m/Lf ]] − Lp + 1)Lf ≤m′ ≤ ([[m/Lf ]] + Lp)Lf}

(7)

as the set of channel measurements for the estimation of
channel matrix H(m), where [[·]] denotes the floor function.
There is no error propagation in PSAM, however, decision
delay is introduced, as the receiver must wait until enough
pilots are received before decoding.

The estimate Ĥ(m) of H(m) is, from [15], the condi-
tional mean or MMSE estimate of the channel gain ma-
trix H(m) given Λ(m), i.e., Ĥ(m) = [ĥij(m)]MT ×NR =
E [H(m)|Λ(m)], and can be generated linearly from the

measurements in Λ(m). Thus, given Λ(m), each hil(m)
is conditionally Gaussian with mean ĥil(m), and variance
2V 2(m) given by

2V 2(m) = E[|hil(m) − ĥil(m)|2|Λ(m)] (8)

The MSE’s 2V 2(m) are identical for all channels due to the
identical channel assumption.

D. Decoder

The optimum maximum-likelihood (ML) block-by-block re-
ceiver detects S(m) based on R(m) with the aid of the infor-
mation set Λ(m) as Ŝ(m) = arg max

S(m)
p(R(m)|S(m), Λ(m)).

From (5), given S(m) and the set Λ(m), R(m) is condition-
ally Gaussian with mean S(m)Ĥ(m). The column vectors
of R(m) are independent of one another, and each has a
covariance matrix of C = 2V 2(m)S(m)S†(m)+N0I. Thus,
the ML block-by-block receiver becomes

Ŝ(m) = arg min
S(m)

{NR ln det(C)+

Tr[(R(m) − S(m)Ĥ(m))†C−1(R(m) − S(m)Ĥ(m))]}
(9)

The detector in the form (9) makes a simultaneous decision
on all the symbols of the entire block S(m). This makes the
decoder computationally complex and impossible to analyze
its performance in general. Thus, we consider a simpler
decoder which makes independent SBS decisions. Observe
that with PSK modulation, if the STBC employed satisfies:

S(m)S†(m) ∝ IP×P , (10)

then C becomes constant and proportional to an identity
matrix, and (9) simplifies to Ŝ(m) = arg min

S(m)
||(R(m) −

S(m)Ĥ(m))||2, which can be further simplified to a SBS
detector for PSK modulation where symbols carry identical
energy:

ŝk(m) = arg
s′

k

max
k′=1...K

Re[z′k(m)s′∗k (m)] (11)

where z′k(m) = Tr[R†(m)Bk′Ĥ(m) + Ĥ†(m)A†
k′R(m)].

This detector (11) is computationally much simpler than the
detector (9). For those STBC’s that satisfy condition (10), it
is clear that the detector (11) is the ML block-by-block PSK
detector. For such STBC’s, the BEP performance analysis in
Section III would give the best performance achievable. For
those STBC’s that do not satisfy condition (10), we continue
to use the SBS detector (11), which is then a mismatched
receiver. The BEP analysis results in Section III would then
not represent the best performance achievable by such codes.
For these latter codes, the optimum detector is the block-by-
block detector in (9). A similar optimum receiver structure
is also presented in [26], which shows that the gain from
the optimum one is limited compared to its cost in terms of
complexity.

III. BIT ERROR PERFORMANCE ANALYSIS

With PSK modulation, i.e., sk =
√

Ese
jφk , the decoding

rule (11) is equivalent to

ŝk = arg
sk

max
k=1...K

Re
{
zke−jφk

}
(12)
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where

zk =Tr[R†BkĤ + Ĥ†A†
kR] = xk + uk

xk =
K∑

k′=1

{
s′∗k Tr[H†A′†

k BkĤ + Ĥ†A†
kB′

kH ]

+s′kTr[Ĥ†A†
kA′

kH + H†B′†
k BkĤ ]

}
uk =Tr[N†BkĤ + Ĥ†A†

kN ]

(13)

Hereafter, we drop the block index m for simplicity.
For equally likely symbols, the main quantity of in-
terest is the probability P

(
Re[zke−jα] < 0

∣∣ sk =
√

Es

)
[15], where α is some angle. By conditioning on hav-
ing the information set Λ, we first evaluate the condi-
tional probability P

(
Re[zke−jα] < 0

∣∣ sk =
√

Es , Λ
)
. Since

Λ is a set of Gaussian r.v.’s, it follows that xk in
(13) is a conditionally complex Gaussian r.v. given sk

and Λ, with mean sk

∑MT

i=1

∑NR

l=1 λi,k|ĥil|2 and variance
2V 2Es

∑MT

i=1

∑NR

l=1 ωi,k|ĥil|2, where {ωi,k}MT

i=1 are positive
numbers given by

ωi,k =
K∑

k′=1

MT∑
j=1

[
|a′j†

k bi
k|2 + |b′j†k bi

k|2 + |ai†
k b′jk |2 + |ai†

k a′j
k |2
]

(14)
and where {ai

k, bi
k}MT

i=1 are P × 1 column vectors of Ak, Bk.
The definition of ωi,k in (14) can be obtained from the
properties of orthogonal STBC’s in (2) and (3), by re-writing
the matrices in terms of their column vectors. Similarly, in (13)
the quantity uk is also a complex Gaussian r.v. conditioning
on Λ, with mean zero and variance N0

∑MT

i=1

∑NR

l=1 λi,k|ĥil|2.
From (13), it is straightforward to show that zk is conditionally
a complex Gaussian r.v. given by

(zk|sk, Λ) ∼ N

(
sk

MT∑
i=1

NR∑
l=1

λi,k|ĥil|2 ,

Es2V 2
MT∑
i=1

NR∑
l=1

ωi,k|ĥil|2 + N0

MT∑
i=1

NR∑
l=1

λi,k|ĥil|2
) (15)

Thus, the quantity Re
{
zke−jα

}
in (12) is

conditionally a Gaussian variable with variance
EsV

2
∑MT

i=1

∑NR

l=1 ωi,k|ĥil|2 + N0
2

∑MT

i=1

∑NR

l=1 λi,k|ĥil|2
and mean

√
Es cos(φk − α)

∑MT

i=1

∑NR

l=1 λi,k|ĥil|2. The
conditional probability Pe|Λ = P (Re

{
zke−jα

}
< 0|sk, Λ)

can now be evaluated as

Pe|Λ = Q

⎛
⎜⎜⎜⎜⎝

√√√√√√√√
Es cos2(φk − α)

(
MT∑
i=1

NR∑
l=1

λi,k|ĥil|2
)2

EsV 2
MT∑
i=1

NR∑
l=1

ωi,k|ĥil|2 + N0
2

MT∑
i=1

NR∑
l=1

λi,k|ĥil|2

⎞
⎟⎟⎟⎟⎠

(16)
Next, we have to average over the estimates ĥil(m) in (16) to
obtain the average error probability P (Re

{
zke−jα

}
< 0|sk =√

Es). Defining

ρi,k = ωi,k/λi,k,

ρmax,k = max
i=1...MT

{ρi,k} , ρmin,k = min
i=1...MT

{ρi,k} ,

λmax,k = max
i=1...MT

{λi,k} , λmin,k = min
i=1...MT

{λi,k} ,

(17)

the probability in (16) can be bounded as

Q

(√
λmax,kEs cos2 α

∑MT

i=1

∑NR

l=1 |ĥil|2
ρmin,kEsV 2 + N0

2

)
≤ Pe|Λ

≤ Q

(√
λmin,kEs cos2 α

∑MT

i=1

∑NR

l=1 |ĥil|2
ρmax,kEsV 2 + N0

2

) (18)

The equality signs hold in (18) when

λi,k = λk, ωi,k = ωk, for all i = 1 . . . MT , (19)

and the ρi,k ’s will then have a common value ρk =
ωk/λk, for all i = 1 . . .MT . Since the estimates ĥil(m) ’s are
themselves complex Gaussian r.v.’s, each with mean zero and
variance 2[Ω(0) − V 2(m)] [15], [27]. Therefore, the quantity
d2(m) =

∑MT

i=1

∑NR

l=1 |ĥil(m)|2 in (18) has a chi-square pdf
with 2MT NR degrees of freedom [30]( eq. 2-1-110). Using
this pdf to average the upper and lower bounds in (18) over
the quantity d2(m) gives the result [30](Sect. 14.4)

F (α, μ(ρmin,k, λmax,k)) ≤ P (Re
{
zke−jα

}
< 0|sk =

√
Es)

≤ F (α, μ(ρmax,k, λmin,k))
(20)

Here, the function F (α, μ) is given by

F (α, μ) =
[
1 − μ

2

]MT NR

·
MT NR−1∑

k=0

(
MT NR − 1 + k

k

)[
1 + μ

2

]k (21)

where

μ(ρ, λ) =
(

1 +
NR + ργs(1 − η)

λγsη cos2 α

)−1/2

,

γs = NR
2Ω(0)Es

N0
, and η = 1 − V 2(m)

Ω(0)

(22)

The bounds in (20) describe the error performance of a
single signal symbol sk. As there are K symbols in one block,
the average BEP is obtained from the average probability Γ(α)
given by

Γ(α) = 1
K

∑K
k=1 P (Re

{
zke−jα

}
< 0|sk =

√
Es) (23)

Now, for Gray coded PSK, it is clear that the BEP is given
by [28]

PBPSK
b = Γ(0) , PQPSK

b = Γ(π/4),

P 8PSK
b ≈ 2

3Γ(3π/8)[1 + Γ(π/8)]
(24)

In addition to these two tight upper and lower bounds in (20),
Γ(α) also admits a Chernoff upper bound by applying the
bound Q(x) < 0.5e−x2/2 to the upper bound in (18):

Γ(α) <
1

2K

K∑
k=1

(
1 +

λmin,kγsη cos2 α

NR + ρmax,kγs(1 − η)

)−MT NR

(25)
The Chernoff bound in (25) shows clearly that the BEP decays
exponentially with the product MT NR of the number of
transmit and receive antennas.
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TABLE I
PARAMETERS LIST FOR BEP EVALUATION

STBC proposed in Size (P × MT ) Rate [λmin,k; ρmax,k]
upper bound

[λmax,k; ρmin,k]
lower bound

STBC with exact
BEP evaluation

[5] (Real Orthogonal Designs)
2 × 2 1 [1; 2]

[λmax,k; ρmin,k]
= [λmin,k; ρmax,k]

4 × 4, 3 1 [1; 4,3]
8 × 8, 7, 6, 5 1 [1; 8, 7, 6, 5]

[15] (1Tx case) 1 × 1 1 [1; 1]
[4] (Alamouti) 2 × 2 1 [1; 2]
[5], [6] 4 × 4 3/4 [1; 3]
[13] 30 × 6 2/3 [1; 4]
[14] 56 × 8 5/8 [1; 5]

[5] (Systematically Constructed
Half-Rate STBC’s)

4 × 2

1/2

[2; 2]
8 × 4, 3 [2; 4, 3]
16 × 8, 7, 6, 5 [2; 8, 7, 6, 5]

STBC with
lower/upper
bound for BEP
evaluation

[5], [6] 4 × 3 3/4 [1; 3] [1; 2]
[8] 7 × 4 4/7 [1; 4] [1; 2]
[8] 11 × 5 5/8 [1; 4] [2; 3]k=1,2,3

[1; 3]k=4,5,6,7

[9], [10] 15 × 5 2/3 [1; 4] [1; 3]
[8] 30 × 6 3/5 [1; 5]k=1...11,18

[1; 4]k=12...17

[2; 4]k=1,2,3[2; 3.5]k=4...11
[1; 4]k=12...17[1; 3]k=18

[12] 56 × 7 5/8 [1; 5] [1; 4]

When condition (19) is satisfied, the upper and lower
bounds in (18) and hence those in (20) coincide with each
other. The BEP expression in (23) is now given by

Γ(α) = 1
K

K∑
k=1

F (α, μ(ρk, λk)) (26)

A summary of those known STBC’s having the exact BEP
expression (26) is given in the upper half of Table I. For
those special square designs satisfying S†S = SS† =
I · ∑K

k=1 |sk|2 in Table I, it can be shown from (14) that
ωi,k = K, ρk = K, λk = 1, for all k when calculating (26).

When condition (19) cannot be met, it is impossible to
average (16) over all channel estimates analytically. Only the
bounds in (18) can be obtained in general. It will be shown
in Section V that these two bounds still provide very good
approximations to the BEP performance. Those orthogonal
STBC’s that do not satisfy (19) are illustrated in the lower
half of Table I.

IV. FADING MODELS, CHANNEL ESTIMATION, AND

THEORETICAL BEP COMPUTATION

We illustrate the BEP computation using Markov channel
models with DF, KF channel estimation, and Jakes’ model
with DF and PSAM Wiener filter (WF) channel estimation.

A. Channel Models

1) A.1 Markov Channel Models: Here, the in-phase com-
ponent ai,l(m) = Re[hi,l(m)] and the quadrature-phase com-
ponent bi,l(m) = Im[hi,l(m)] of each fading process evolve
according to a model

xi,l(m + 1) = F xi,l(m) + G wi,l(m) (27)

of appropriate dimension, and where {wi,l(m)}∞m=0 is a
sequence of input AWGN with E[wi,l(m)] = 0 and
E[wi,l(m)wT

i,l(m
′)] = Qδmm′ . We consider here in particular

the case of a first-order Butterworth (1BTW) and a third-order
Butterworth (3BTW) model for the channel.

In the 1BTW model, we have F = exp[−ωdT ], G = 1, and
Q = σ2(1 − e−2ωdT ). T is the interval between discrete time
points. In the 3BTW model, we have

xi,l(m) =

⎛
⎜⎜⎝

x
(1)
i,l (m)

x
(2)
i,l (m)

x
(3)
i,l (m)

⎞
⎟⎟⎠ , G =

⎛
⎜⎝

0
0
1

⎞
⎟⎠ , Q = 3σ2 ωdT,

F =

⎛
⎜⎝

1 ωdT 0
0 1 ωdT

−ωdT −2ωdT 1 − 2ωdT

⎞
⎟⎠ .

(28)
2) Jakes’ Model: In Jakes’ model [31], the correlation

function is given by

2Ω(m) = E[hi,l(n)h∗
i,l(n − m)] = 2σ2 J0(mωdT ) (29)

where J0(·) is the zero-th order Bessel function of the first
kind.

B. Channel Estimation

When a state-space channel model is available, the KF
is the optimum channel estimator. The KF is more suitable
for the DF channel estimation scheme since it can operate
recursively in time as symbol decisions are made. Given the
measurements Λ(m) = {Y (m′)}m−1

m′=0 and the model (27), it
is easy to follow [29] and write down the KF for generating
the estimates Ĥ (m) = E [H(m) |Λ(m) ], for the Butterworth
models. A block-wise constant channel assumption is adopted
by setting T = TB in (27) and using the equivalent fade rate
ωdTB for the theoretical computation, where TB = PTs is the
block duration, and Ts is the symbol period. V 2(m) can be
obtained by solving the Riccati equations in [29]. V 2(m) is
recursively computed until a steady state value V 2∞ is reached,
V 2
∞ which is then used for BEP computation.
For Jakes’ channel model, a WF with Lw taps [27] is

used, and the estimate is given by ĥi,l(m) = wT
i ỹil(m),

where ỹil(m) = [yil(m − 1), . . . , yil(m − Lw)]T , Ξi =
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Fig. 2. Theoretical BEP performance of QPSK under Butterworth channel
models using KF estimator (2Tx-1Rx = 2 transmit and 1 receive antenna).

Fig. 3. Theoretical BEP performance comparison with different numbers of
transmit antennas under Jakes’ channel model using DF WF estimator.

E[ỹil(m)ỹ†
il(m)] pi = E[hil(m)ỹ†

il(m)] and w=
i Ξ−1

i pi.
The MSE of the filter is

V 2(m) = Ω(0) − pT
i wi (30)

where Ω(m) is defined in (29) with T = TB . Similarly, for
a PSAM system, one can only use a Wiener filter channel
estimator where the estimation is based on the nearest 2Lp

pilot blocks. The MSE of a PSAM system can also be
calculated by (30), using the set Λ(m) given in (7).

V. THEORETICAL PERFORMANCE AND SIMULATION

RESULTS

In the simulations, 10 preamble blocks are first sent to
enable the KF to acquire the channel estimates accurately
before data detection, and one pilot block is periodically
inserted into the transmission after every 9 data blocks. For
Jakes’ channel model, a decision-feedback WF with 10 taps
is used, and in the PSAM scheme the estimator uses the
10 nearest pilot blocks for generating the estimates. Using

the above results, the BEP’s of MPSK are computed and
plotted against the total mean received SNR per bit given by
γb = (10 / 9)γs

∑MT

i=1

∑K
k=1 λi,k/K log2 M , where the factor

(10 / 9) accounts for the energy in the pilot symbols. These
BEP results represent the actual performance achievable by
our receiver, under a block-wise constant channel model. BEP
performances of Alamouti’s scheme with Butterworth channel
models are demonstrated in Fig. 2. Also plotted are the BEP
with perfect CSI at the receiver with V 2(m) = 0, as well
as the conventional one-transmit antenna result obtained from
[15] to show the diversity gains. As mentioned in Section
IV, the performance calculation is based on the assumption
of block-wise constant channel and, thus, uses the block
normalized fade rate ωdTB instead of ωdTs. This idea is used
throughout this section unless otherwise stated. For a low fade
rate ωdTB = 0.001, the performance under the 3BTW channel
is almost the same as that of the receiver with perfect CSI.
However, performance under the 1BTW channel is worse than
that under the 3BTW channel. This is because for the same
fade rate, the 3BTW channel fluctuates more slowly than the
1BTW channel does. We use Alamouti’s design [4] and the
4×4 rate-3/4 designs in [5], [6] in Fig. 3, and as it shows, for
a faster channel with a normalized fade rate of ωdTs = 0.1,
the performance curves with channel estimation deviate more
from those with perfect CSI, with the deviation being greater
for the QPSK than for the BPSK modulation. In Fig. 4, we
compare the performances of the 2×2, 4×4, and 8×8 full-rate
real designs with, respectively, the systematically constructed
4 × 2, 8 × 4, and 16 × 8 half-rate COD proposed in [5],
respectively. The half-rate codes use QPSK, for fair compar-
ison. According to Table I, they have identical performances
when CSI is perfectly known. Under a 1BTW channel of
ωdTs = 0.001, it is shown that the full-rate designs with
shorter block length P outperform their corresponding half-
rate ones, and the performance gap between them becomes
larger as P increases. This loss is only due to the increased
block fade rate ωdTB . One can expect more loss due to a
longer block length P when the channel fluctuates even faster.
This indicates that in designing a practical STBC, one should
keep the block length P small while gaining from the space-
time diversity. When P is too large, the resulting performance
loss due to channel fluctuations might be greater than the
diversity gain, resulting in a worse overall performance.

The BEP curve of our receiver asymptotically reaches an
irreducible floor as the SNR approaches infinity. As for any
nonzero channel fade rate ωdTs, Ĥ(m) is a predicted estimate
with an irreducible, nonzero error variance, which leads to the
error floor.

As discussed in Section IV, an exact BEP expression cannot
be obtained for those STBC’s not satisfying condition (19).
In Fig. 2, the upper bound and lower bound of several such
STBC’s in Table I are plotted. It can be seen that with ωdTs =
0.005 and PSAM, these two bounds are very close to each
other, and thus provide a very good approximation to the actual
BEP.

Since the results so far were obtained under the assumption
that the channel is constant over a block, it would be of interest
to know how accurately our theoretical BEP results predict
the actual performance under a channel fluctuating from one
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Fig. 4. Theoretical BEP performance comparison between full- and half-
rate STBC’s under Jakes’ channel model using PSAM.

Fig. 5. Theoretical bounds of BEP performance for different STBC under
Jakes’ channel model using PSAM.

symbol period to the next. Fig. 6 shows the BPSK performance
under Jakes’ fading channel with Alamouti’s scheme for a
single receive antenna. The simulation is conducted under
a symbol-wise constant channel while the theoretical BEP
performances were obtained under the block-wise constant
assumption. It can be seen in Fig. 6 that the simulation
result is close to the theoretical performance, with an around-
1dB gap. To show the cause of this performance gap, we
simulated the case with ideal decision feedback (IDF). In
contrast to the actual decision feedback (ADF) mode, the IDF
estimator uses S(m) instead of Ŝ(m) when computing (6),
so that erroneous decision-feedbacks are removed. The IDF
simulation result matches perfectly the theoretical calculation
with imperfect CSI, which means the gap between ADF and
theoretical performance is almost completely caused by error
propagation; and a realistic channel with ωdTs = 0.001 is
slow enough to validate the block-wise constant assumption.
It is sound to make such an assumption in our derivations.

In Fig. 7, we adopt the 4×4 rate-3/4 STBC proposed in [6]
under a 3BTW channel. Besides the IDF condition, we also

Fig. 6. BEP of BPSK with Alamouti’s STBC with one receive antenna under
Jakes’ channel model.

Fig. 7. BEP Performance of rate-3/4 STBC with QPSK under 3BTW channel.

generate a block-wise constant channel for simulation. The
curves in the figure clearly show the factors that influence
the STBC performance. The simulation results with block-
wise constant channel and IDF match the theoretical prediction
perfectly, thus validating our analysis. The performance differ-
ence between the symbol-wise constant channel case and the
block-wise constant channel case is due to the channel fluctua-
tions within the block in the symbol-wise constant channel that
disturb the orthogonality of the STBC. Similar to Fig. 6, the
error propagation is still the main reason for the performance
degradation in an actual STBC system. We use PSAM in Fig.
8 to remedy this problem. The simulation is carried out under
a fast fading Jakes’ channel with ωdTB = 0.2. Again, the
simulation under a block-wise constant channel matches the
theoretical performance perfectly, and the loss caused by the
symbol-to-symbol fluctuation of the channel is within 1dB
even under high SNR. PSAM is thus preferable to a DF system
for channel estimation when the STBC block length is not very
large.
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Fig. 8. BEP performance of rate-3/4 STBC with QPSK under Jakes’ channel
model using PSAM.

VI. CONCLUSIONS

We presented a SBS channel estimation receiver for space-
time block coded systems. A simple, closed-form expression
for its BEP is obtained, showing clearly the dependence of
the BEP on the channel estimation MSE. We simulated the
receiver under the more realistic assumption that the channel
is constant over only a symbol period, and fluctuates from
one symbol period to the next. The simulations validate
the theoretical performance prediction, and verify that the
accuracy of the latter prediction depends on the fade rate ωdTs.
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