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Abstract

Cloud radio access networking (C-RAN) constitutes a promising architecture for next-generation sys-

tems. Beneficial centralized signal processing techniques can be realized under the C-RAN architecture.

Furthermore, given the recent rapid development of cloud computing, the C-RAN architecture is an ideal

platform for supporting network function virtualization (NFV), software-defined networking (SDN) and

artificial intelligence (AI). However, most of the existing contributions on C-RAN are mainly focused

on the physical layer issues. The next-generation networks are expected to support compelling wireless

applications satisfying diverse delay requirements, such as ultra-reliable and low-latency communications

(URLLC), etc. Hence, we invoke the effective capacity theory for statistical delay-bounded QoS provision

in C-RAN architectures, where the delay is taken into account. Based on the system model proposed, we

conceive sophisticated power allocation schemes for maximizing the effective capacity of both single-

user and multi-user scenarios. Our simulation results show that a low delay outage probability can be

guaranteed by appropriately choosing the delay exponent. Furthermore, our simulation results demonstrate

that the proposed algorithm significantly outperforms the existing algorithms in terms of the achievable

effective capacity. Finally, some open research challenges are highlighted.
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I. INTRODUCTION

Due to the substantially increased data volumes, the fifth-generation (5G) cellular networks are expected

to significantly exceed the data throughput of 4G systems [1]. Massive MIMO systems constitute a

promising technique of achieving this ambitious goal by exploiting the high degrees of spatial freedom [2],

and have attracted substantial research attention. However, in centralized deployments the performance of

massive MIMO systems tends to be limited by the correlated fading of antennas. This issue can be dealt

with by deploying a large number of geographically distributed antennas for the sake of maintaining

the benefits of massive MIMO. Furthermore, both the link quality and cell coverage are dramatically

improved by this distributed architecture, since the average access distance of each user is significantly

reduced. This is the so-called cloud radio access network (C-RAN) concept [3], which is a promising

network architecture capable of achieving the ambitious next-generation goals.

However, most of the existing literature devoted to the C-RAN concept is focused on the physical

layer issues and the system performance evaluation is mainly based on the concept of classic Shannon

capacity. Although this information-theoretic framework is eminently suitable for analyzing the single-

user link-efficiency, it gives no cognizance to the delay from data-link layer. One of the most challenging

5G operational models is constituted by ultra-reliable and low-latency communications (URLLC) [4]

conceived for supporting tactile Internet applications [5], vehicle-to-vehicle communications [6], remote

control of industrial manufacturing, etc. These applications have stringent end-to-end delay requirements

(say around 1 ms). Additionally, some popular multimedia services, such as seamless lip-synchronized

video conferencing and interactive gaming also impose stringent delay requirements. Hence, research

attention also has to be dedicated to data-link layer by considering these delay requirements. It is of

paramount importance to account for the quality of service (QoS) requirements quantified in terms of

delay when designing next-generation transmission schemes.

Due to the highly time-varying wireless channel conditions, it is quite a challenge to guarantee deter-

ministic delay-bounded QoS requirements for these compelling applications. Fortunately, the statistical

delay-bounded QoS theory has been proven to be a powerful tool of handling the delay requirements of

near-real-time traffic. More specifically, we can control the data rate of the incoming stream for ensuring

that the delay-outage probability is always below a certain threshold. For example, in the Long Term
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Evolution (LTE) Advanced standard, the probability that the delay of online gaming is higher than 50

ms should be kept below 2% [7]. To facilitate the analysis of statistical delay QoS performance, Wu et

al. introduced the important notion of effective capacity, which represents the maximum constant packet

arrival rate that can be supported by the system, whilst satisfying a maximum delay-outage probability

constraint.

The rest of this paper is organized as follows. We briefly introduce the C-RAN architecture and show

that C-RANs constitute an ideal platform of supporting salient paradigms, such as network function

virtualization (NFV), software-defined networking (SDN) and artificial intelligence (AI) aided system

optimization. We then introduce the effective-capacity-based statistical delay-bounded QoS provision

concept into the C-RAN architecture and propose a dynamic power allocation algorithm that can adapt

both to the delay requirements and to the channel conditions. We provide simulation results for quantifying

the benefits of our proposed algorithm and show that extremely tight delay requirements can be met by

using our proposed algorithm. Finally, we conclude with some future research challenges.

II. C-RAN ARCHITECTURE

The C-RAN architecture is shown in Fig. 1, which is composed of three parts:

1) Radio remote heads (RRHs) randomly located over the coverage area;

2) Baseband unit (BBU) pool with powerful cloud computing capability in a data center;

3) High-speed low-latency fronthaul links that connect the RRHs to the CPU.

The main feature of C-RANs is that the signal processing tasks of each small cell base station (BS)

are migrated to the BBU pool, which is responsible for all the baseband signal processing, such as

coordinated multi-point (CoMP) transmission, centralized resource allocation, joint user scheduling, data

flow control, etc. The conventional full-functionality small BSs are replaced by low-cost RRHs, which

are only used for low-complexity transmission and reception. Due to its low-complexity functionality, its

size is smaller than that of the conventional small-cell BSs and can be readily installed on lamp-posts

and building walls, hence imposing a low maintenance cost. In Fig. 1, the C-RAN is expected to support

diverse applications, such as augmented reality (AR) based tele-conferencing, drone-based parcel delivery

[8], tactile Internet, vehicular communication, smart factory support, etc.

Apart from the benefits of the air interface layer, this network architecture also enjoys further benefits at

the network level. For example, compelling techniques, such as network function virtualization, software-

defined networking and artificial intelligence, can be realized in this centralized architecture.
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Fig. 1. Illustration of a 5G C-RAN architecture.

1) Network Function Virtualization: Through NFV, some network functions are separated from the

conventional hardware infrastructure and can run on the cloud-computing infrastructure in the

BBU pool with all the high-complexity power-thirsty signal processing tasks executed there. The

main benefit of NFV is that sophisticated network functionalities can be dynamically supported

depending on the near-instantaneous network state [1]. Additionally, new services can be created

for discerning customers. More details about the NFV can be found in [9].

2) Software-Defined Networking: The SDN philosophy is at the heart of intelligent programmable

networks. The key feature of SDN is that the control as well as data planes are decoupled, hence the

network becomes more flexible in terms of supporting intelligent future applications. The key merit

of this technology is the partitioning of network functionalities into separate software platforms,

hence configuring the services by sophisticated programmable controllers. This technology is more

amenable to employment in C-RANs, since the BBU pool is responsible for the whole suite of

networking services. Its computing resources can be adaptively assigned and controlled through

programmable controllers in the BBU pool.

3) Artificial Intelligence: User-centric clustering and proactive caching constitute a pair of key enabling

techniques in C-RANs, which can be supported by machine learning. For user-centric clustering,
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each user is cooperatively served by several of its nearby RRHs, which may indeed eliminate the

cell-edge interference, provided that the near-instantaneous network conditions are known. However,

this method may be unable to meet the stringent delay requirement of 5G, because excessive time

is required for estimating the prevalent network state and to calculate the corresponding optimal

cluster set for each user. This issue can be mitigated by using AI techniques [10]. Specifically, the

BBU pool can store the users’ historic data, such as their locations, the requested service, mobility

pattern and speed, service demand profiles, channel characteristics, etc. By using machine learning

techniques, these data can be analyzed and beneficially exploited. Then, one can predict the user’s

future locations, service request and even their channel information. Hence the future cluster of

each user can be determined in advance, leading to low-latency predictive clustering algorithms.

In C-RANs, the BBU pool is responsible for supporting the entire network. Hence, the AI-aided

C-RAN is capable of forming globally optimal user-centric clusters. By contrast, the conventional

cellular network is only capable of providing locally optimal solutions, since its operation is based

on local information. Another promising technique in C-RANs is content caching. By caching the

popular contents at the RRHs, the contents requested by the users can be directly transmitted from

the nearby RRHs to the users, rather than fetching it from the core network. Hence, the access

latency of the contents can be significantly reduced, therefore the fronthaul traffic is alleviated,

which constitutes the bottleneck of C-RANs. The key question in cache-aided C-RAN is, which

contents file should be cached in which RRH. This large-scale matching problem can also be solved

by using AI techniques. For example, by analysing the users’ history of requesting files from the

BBU pool, machine learning is capable of calculating the file-popularity in support of this content

placement problem.

Hence, the C-RAN architecture is an ideal platform of supporting the above low-delay techniques. In the

following section, we introduce the effective capacity theory for statistical delay-bounded QoS provision

over C-RAN.

III. THE EFFECTIVE CAPACITY THEORY OF STATISTICAL DELAY-BOUNDED QOS GUARANTEE

OVER C-RAN

The delay-bounded architecture of C-RANs is shown in Fig. 2. Each user’s data stream is entered

into its first-in-first-out (FIFO) buffer at a constant arrival rate of µk (measured in bit/s). At the data-

link layer, the upper-layer packets are partitioned into transmission frames and then each frame will

be mapped to bit-streams at the physical layer. Then, the BBU pool calculates the transmission rate
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Fig. 2. The statistical QoS provisioning over the 5G C-RAN.

required and the power to be assigned to each user according to their delay requirements and to their

channel state information (CSI) received via the feedback channel. Finally, the users’ data streams are

read out of the FIFO buffer and sent to all RRHs for transmission over the wireless channel at the

service rates requested. The RRHs are assumed to be equipped with a single antenna. A block fading

channel is considered, whose complex channel envelope is fixed during each transmission frame, and it

is independently faded over different time frames.

We first introduce the important notion of the delay exponent θ that establishes the relationship between

the maximum queue length and the buffer overflow probability, assuming that different users have different

delay requirements characterized by θk, k = 1, · · · ,K. For the C-RAN architecture of Fig. 2, the buffer

overflow probability of the kth user is approximated by eθkQth,k , where θk and Qth,k are the delay

exponent and the maximum buffer length of user k. Hence, the delay exponent θk reflects the decay

rate of the buffer overflow probability. A higher θk corresponds to a faster overflow decay rate, which

implies that the system is capable of meeting a more stringent delay requirement for user k. By contrast,

a lower θk leads to a slower buffer overflow decay rate, which represents a looser delay requirement for

user k. In the extreme case of θk → ∞, the system cannot tolerate any delay, which corresponds to an

extremely tight delay requirement for user k. On the other hand, when θk → 0, an arbitrarily long delay
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can be tolerated by user k.

The probability that the delay is longer than a maximum bound of Dmax can be approximated as [11]

P out
delay = Pr {Delay ≥ Dmax} ≈ εe−θµDmax , (1)

where ε is the probability that the buffer is non-empty. In general, the delay-violation probability of

P out
delay has to be extremely low for the ULLRC services.

Based on the above discussions, we now introduce the important concept of effective capacity proposed

by Wu et al. [11], which is defined as the maximum constant transmission frame arrival rate that the system

can support, while satisfying a maximum delay-outage probability constraint. The effective capacity of

user k is expressed as [11]

EC(θk) = − 1

θk
log(E{e−θkRk}), (2)

where E denotes the expectation operator, Rk is the instantaneous data rate of user k that is given

by Rk = TfBlog2

(
1 +

∑I
i=1 pi,kαi,k

)
with Tf , B, pi,k and αi,k denoting the fixed length of each

transmitted frame, the system bandwidth, the transmit power and channel gains from RRH i to user k,

respectively. For simplicity, the multiuser interference is not considered here. If the delay-bound violation

probability is P out
delay, one should limit the incoming data rate to a maximum of µk = EC(θk).

In conventional wireless communication systems, most of the contributions mainly focus on the ergodic

capacity maximization problem, which ignores the delay requirement. By contrast, we aim for designing

delay-bounded strategies to maximize the sum of the effective capacity of all users under the particular

reqirement of all users. Specifically, we formulate the sum effective capacity maximization problem under

the following constraints:

1) Each RRH has its individual average power constraint;

2) Each RRH is also subject to a specific peak power constraint.

The first constraint is closely related to the long-term power budget, while the second one is imposed for

guaranteeing that the instantaneous power remains within the linear range of practical power amplifiers.

A. Single-user Case

We first study the single user case to glean initial insights. Due to the complex expression of the

effective capacity, most of the existing contributions have been focused on the power allocation of single-

transmitter scenarios, where only a single sum-power constraint is imposed. The optimal solution to this

problem can be readily derived, which obeys a water-filling-like format. By contrast, in a C-RAN, all

RRHs are subject to their individual power constraints, since the power cannot be shared among the
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RRHs. Hence the conventional optimization method is no longer applicable and the power allocation of

each RRH will no longer be the water-filling solution.

Hence we turn to convex optimization theory and derive the optimal power allocation in closed-form

for the C-RAN scenario, which depends not only on the channel conditions, but also on the delay

requirements. For the special case of a single RRH, the power allocation lends itself to the conventional

water-filling solution. For the general case associated with multiple RRHs, the solutions reveal that the

RRHs with higher channel gains have higher priorities to transmit with full power.

We can also find the closed-form solution for two extreme cases, namely when the delay exponent θ

becomes zero and infinity. For the first case, the original optimization problem reduces to the conventional

ergodic capacity maximization problem and its power allocation solution only depends on the channel

conditions. For the latter case, the system cannot tolerate any delay and the optimal power allocation for

each RRH reduces to the channel inversion associated with a fixed data rate.

B. Multiuser Case

Due to the powerful computational capability of the BBU pool, the C-RAN will serve multiple users.

However, the expression of effective capacity is much more complex than that of the conventional Shannon

capacity. The power control problem of the multiuser case is much more challenging to solve. To simplify

the analysis, we assumed that all the RRHs transmit orthogonal signals to the different users in order to

avoid the multiuser interference. Additionally, the peak power constraints are ignored for simplicity. In

this case, we are able to obtain the optimal power allocation solution for each user in closed-form.

IV. PERFORMANCE EVALUATIONS

We performed simulations to evaluate the performance of our proposed power allocation scheme for

a statistical delay-bounded C-RAN architecture deployed within a square area of 2 km × 2 km. We

adopted the Nakagami-m block-fading subsuming the Rayleigh, Rician and the additive white Gaussian

noise (AWGN) channel. The simulation results are based on the following parameters: Time frame of

length Tf = 0.04 ms; system bandwidth of B = 5 MHz; the average power constraint and peak power

constraint of each RRH are set to P avg = 0.5 W and P peak = 1 W, respectively; the Nakagami fading

parameter is set to m = 2; the path-loss model is given by PLi,k = 148.1 + 37.6log10di,k (dB) [7],

where di,k is the distance between the ith RRH and the kth user measured in km; the noise power density

is set as -174 dBm/Hz.
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Fig. 3. Delay-outage probability versus delay exponent θ for various values of Dmax for our proposed algorithm.

A. Single-user Case

We first consider the single-user case, where the user is located at the center of our C-RAN network.

Let us assume that there are two RRHs with their coordinates randomly chosen as [−600, 800] and

[900, 946] that is measured in meter.

Fig. 3 shows the delay-outage probability versus the delay exponent θ for our proposed power control

algorithm. Three different values of the maximum delay threshold Dmax are tested, namely, Dmax =

2, 1, 0.5 ms. The rate of incoming data streams is set as µ = EC(θ). As illustrated in Fig. 3, the

delay-outage probability decreases rapidly with the delay exponent θ, since a higher θ implies a more

stringent delay requirement. As expected, a higher Dmax leads to a lower delay outage probability. When

Dmax = 1 ms, the delay outage probability achieved by our proposed algorithm can be as low as

3.5× 10−12, when θ is chosen as θ = 10−1.8, which satisfies the stringent delay requirement of URLLC

[4], while for the case of Dmax = 2 ms, the delay-outage probability can reach 10−15 when θ is set as

θ = 10−2. Hence, the delay exponent can be adaptively set to satisfy the diverse delay requirements.

Next, we compare our algorithm to the following existing algorithms in terms of the achievable effective

capacity:

1) Nearest RRH serving algorithm: As the terminology suggests, this algorithm assigns the nearest
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Fig. 4. Normalized EC for various algorithms vs delay exponent θ for a single user.

RRH to serve the user and the algorithm developed in [12] for simple point-to-point systems is used

for solving the power allocation problem. This algorithm is provided to show the gains gleaned

from cooperative transmission in C-RANs.

2) Constant power allocation algorithm: The transmit power of each RRH is set to its average power

limit P avg. This algorithm is used for showing the benefits of dynamic power allocation in the face

of different channel conditions.

3) Independent power allocation algorithm: In this algorithm, each RRH independently optimizes its

own transmission power purely based on its own channel conditions. This algorithm is provided

for demonstrating the merits of optimizing the power allocation according to the joint channel

conditions.

4) Ergodic capacity maximization algorithm: This algorithm maximizes the classic ergodic capacity

for the user without incorporating the delay requirement.

5) Channel inversion algorithm: In this algorithm, the power allocation of each RRH is proportional

to the channel inversion. This algorithm supports a constant transmission data rate.

Fig. 4 shows the normalized EC performance (which is the effective capacity divided by B and Tf )

for the different algorithms versus the delay exponent θ. As illustrated in Fig. 4, the effective capacity
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achieved by all algorithms (except the channel inversion algorithm) decreases with the delay exponent

θ. Intuitively, a higher θ corresponds to a more stringent delay requirement and lower delay-outage

probability requirement. Then, the maximum arrival rate that can be supported should be reduced for

satisfying the stringent delay requirements. It is observed from this figure that our algorithm has a much

better performance than the other algorithms, especially for high delay exponents. It is interesting to see

that the performance of the ergodic capacity maximization algorithm approaches that of our proposed

algorithm for low delay exponent θ, while it performs much worse than ours for a high θ. This can be

explained as follows. When θ is small, the delay requirement is loose and then maximizing the effective

capacity is approximately equivalent to maximizing the ergodic capacity, leading to similar performances

for these two algorithms. However, for high θ, the delay requirement is very strict, which has to be taken

into consideration when designing the transmission strategy, but this is not considered by the ergodic

capacity maximization algorithm, hence resulting in a much worse performance. By using cooperative

transmission among two different RRHs, the proposed algorithm has much better performance than

the ‘Nearest RRH serving algorithm’, where only one RRH is applied for transmission. For example,

when θ = 10−2, the performance gain is up to 0.6 bit/s/Hz. Since our proposed algorithm aims to

optimize the power allocation according to the joint conditions of channel gains and delay exponents,

the performance of our proposed algorithm significantly outperforms the ‘Constant power allocation

algorithm’, where the power is kept fixed all the time. By optimizing the power allocation according to

the joint channel conditions, our proposed algorithm achieves much higher normalized effective capacity

than the ‘Independent Power Allocation Algorithm’. As expected, the ‘Channel Inversion’ method has

the worst performance across a wide range of θ values since it aims to provide constant data rate for

various channel conditions.

B. Multiuser Case

Finally, in Fig. 5, we consider the multiuser case, where there are two users having the coordinates

given by [−100, 0] and [0, 100], respectively. It is assumed that there are four RRHs located at [650, 650],

[−650, 650], [−650,−650], and [650,−650]. We compare our proposed algorithm to the ergodic capacity

maximization algorithm in terms of the sum effective capacity performance. A similar performance trend

has been observed to that of the single-user scenario of Fig. 4. For example, both algorithms have almost

the same performance for low delay exponent θ, while our proposed algorithm outperforms the ergodic

capacity maximization for high delay exponent θ and the performance gain increases with θ. In addition,

we also compare the proposed algorithm with two other algorithms, namely, the ‘Nearest RRH serving
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Fig. 5. The sum normalized EC vs delay exponent θ for our proposed algorithm and the ergodic capacity maximization

algorithm, when supporting two users by four RRHs located at [650, 650], [−650, 650], [−650,−650], and [650,−650].

algorithm’ and the ‘Constant power allocation algorithm’. For the former algorithm, each user is served

by its nearest RRH, while for the latter algorithm, the instaneous transmit power for each RRH is set to its

average power limit P avg, and the instaneous transmit power assigned by each RRH to each user is equal.

It is seen from this figure that our proposed algorithm significantly outperforms these two algorithms.

Specifically, the performance gain achieved by our proposed algorithm over these two algorithms are 2.8

bit/s/Hz and 1.5 bit/s/Hz, respectively, and the performance gain keeps almost fixed over all the delay

exponent θ. By exploiting the multiuser diversity, the normalized EC achieved by the proposed algorithm

for the two-user case is much larger than that of the single-user case.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

We first highlighted the C-RAN architecture that consists of three components: the BBU pool, fronthaul

links and RRHs. Centralized signal processing techniques can be relied upon by the C-RAN architecture,

such as CoMP transmission, joint user scheduling and data flow control, etc. Additionally, the emerging

techniques of NFV, SDN and AI can be intrinsically integrated with the C-RAN architecture. Then,

we highlighted the effective capacity theory conceived for statistical delay-bounded C-RANs, where the
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delay requirement was incorporated. Under the cross-layer C-RAN model, we proposed power allocation

schemes for maximizing the sum effective capacity for both the single-user case and multiuser case

considered. The simulation results showed that by appropriately choosing the delay exponent θ, the

delay outage probability can be reduced below 10−9, which is appealing for URLLC. Furthermore,

the simulation results obtained also showed that our proposed algorithm significantly outperforms the

existing algorithms in terms of the achievable effective capacity, especially in the case of stringent delay

requirements.

However, substantial further research is required for delay-bounded C-RAN networks.

Interference Management: In this paper, we considered the idealized interference-free scenario, which

typically leads to a convex optimization problem. However, when each RRH is equipped with multiple

antennas, several users can be simultaneously served in the same time and frequency slot by adopting

powerful beamforming techniques, which additionally improves the effective capacity performance. This

kind of optimization problem becomes non-convex and hard to solve even for the simple Shannon capacity

expression. The complex expression of the effective capacity makes the optimization problem challenging

to solve, which needs further investigation in the future.

Limited Fronthaul Capacity: Due to their simple functionalities, RRHs can be densely deployed

at low implementational cost [13]. Traditionally, the fronthaul links are usually fixed links, such as

optical fibers or high-speed Ethernet. However, in densely deployed C-RANs, laying cables imposes high

installation operational and maintenance costs. Hence, wireless communication links, such as millimeter

wave (mmWave) transmission, are promising in this scenario. However, the available bandwidth is much

lower even at mmWave frequencies than that of the fixed links. Hence, the limited fronthaul capacity

should be taken into account when designing cross-layer operation.

Other Delay Sources: This paper only considered the queueing delay in the BBU pool. However, if

the C-RAN is expected to cover a large area, then the propagation delay of the fronthaul links should

also be taken into consideration. Furthermore, non-negligible time is required for calculating the power

allocation for each user. In contrast to the LTE network, where the delays can be ignored, in URLLC

the stringent delay requirements have to be carefully considered by future research. In this paper, we

only focus on the delay incurred from the data-link layer. However, the delay incurred by the upper

layer beyond the data-link layer should also be taken into account, such as routing and the access to a

number of virtualized network functions. Furthermore, some more advanced user scheduling algorithms

with low-complexity should also be developed to satisfy the stringent delay requirements.

Short Packet Transmission: In this paper, we adopted Shannon’s capacity for guantifying the in-
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stantaneous data rate in (2), which is accurate when the blocklength of channel codes is sufficiently

large. However, in URLLC applications, short packets are preferred. Hence Shannon’s capacity cannot

be approached. She et al. mentioned this issue in [14] and introduced an approximate achievable data rate

expression at a finite blocklength, which takes into account the transmission error probability. However,

the resource allocation optimization problem based on this modified capacity expression does not lead

to a convex optimization problem, which needs further investigation.

Energy efficiency issue: This paper focuses on the EC maximization problem. However, energy

efficiency, defined as the ratio of data rate to total power consumption [15], is a key performance metric

in the fifth generations (5G) cellular networks, and EE-oriented transmission design by considering the

delay requirements needs further study.
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