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Joint Channel and Frequency Offset Estimation in
Distributed MIMO Flat-Fading Channels

The-Hanh Pham, A. Nallanathan, Senior Member, IEEE, and Ying-Chang Liang, Senior Member, IEEE

Abstract— In this paper, we consider the problem of joint
channel and frequency offset estimation in a flat-fading multi-
input multi-output (MIMO) system. We assume that each pair of
transmit and receive antennas has a different frequency offset.
We present two computationally efficient iterative algorithms
based on expectation conditional maximization (ECM) and
space-alternating generalized expectation-maximization (SAGE)
algorithms. The mean-square-error (MSE) performance of the
interested parameters for the proposed algorithms is compared
with the Cramér-Rao Bound (CRB). Simulation results show that
the proposed iterative algorithms achieve the CRB and overcome
the drawbacks of existing algorithms.

Index Terms— Channel estimation, flat-fading channel, fre-
quency offset estimation, multi-input multi-ouput (MIMO).

I. INTRODUCTION

MULTI-ANTENNA transmission over multi-input multi-
output (MIMO) channels has been proved to be ef-

fective in combating multipath fading, as well as increasing
the channel capacity [1], [2]. In practice, coherent detection
requires accurate channel and frequency offset information,
thus channel and frequency offset estimation has become a
critical task in modern wireless communication systems. In
conventional MIMO systems, the transmit/receive antennas
are colocated, thus they usually share one oscillator, and it is
usually assumed that there is only one frequency offset within
the system [3]–[9]. Recently, there is an increasing interest
in the research of the distributed MIMO systems [10]–[12]
where each of the transmit antennas is utilized by one user
and the receive antennas are distributed in various locations
in order to compensate for long-term shadowing fading. One
typical distributed MIMO scenario is the cellular systems
where several cell edge users communicate with several base
stations. In this case, each transmit/receive antenna is equipped
with its own oscillator, thus different transmit-receiver pair
may have different frequency offset.

Maximum-Likelihood (ML) estimation of channel coeffi-
cients and frequency offsets in a flat fading MIMO channels
with the assumption of having different frequency offsets
between different transmit and receive antenna pairs has been
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studied in [13]. In this work, the authors stated that the ML
estimation is a multi-dimensional minimization problem and
thus has a very high computational complexity. Then, they
introduced two computationally efficient algorithms which
require that when one transmit antenna transmits a training
symbol, the others do not transmit anything (i.e., other anten-
nas are off). Consequently, it increases the dynamic range of
the power amplifier [14]. Furthermore, it was pointed out that
there exists numerical problems when the frequency offsets are
estimated using the popular training sequences, e.g., sequence
consisting of all ones, or if the frequency offsets are close to
each other. This is due to the fact that the involved matrices
are rank-deficient. To overcome this drawback, in [15], the
authors proposed a correlation-based method for frequency
offset estimation. This method, however, introduces an error
floor in the MSE performance due to the existence of the
interference in a multi-antenna system. In addition, if the
frequency offset is too large, this method does not perform
well.

Recently, an iterative method has been introduced in [14],
where the frequency offsets are obtained using the method
of [15]. Based on these values, coarse estimates of channel
coefficients are obtained using least-square method. Then, the
interference from unintended transmit antennas is subtracted
from the received signal and the process is repeated. This
method does not have the error floor as compared to in [15].
However, the performance does not reach the CRB. Further-
more, the estimation of frequency offsets is inherited from
[15], therefore, whenever a large frequency offset estimation
range is required, the performance becomes worse.

In this paper, we propose two iterative algorithms to esti-
mate the channel coefficients and frequency offsets in a flat-
fading MIMO channel. We assume that each pair of transmit-
receive antenna has a distinct frequency offset value. Our pro-
posed algorithms decouple the multi-dimensional optimization
problem into many one-dimensional optimization problems
where the channel coefficient and frequency offset of each
pair of transmit-receive antenna can be determined separately.
Simulations show that the proposed methods reach the CRB
while avoiding the drawbacks of methods in [13]–[15].

The organization of this paper is as follows. Section II
presents an overview of expectation maximization (EM) and
EM-type 1 algorithms. Section III presents the system model
and ML estimation of channel and frequency offsets. Sec-
tion IV describes the two proposed iterative algorithms. Sim-
ulation results are presented in Section V. Finally, conclusions

1In this paper, we refer the classical EM algorithm simply as EM algorithm.
EM-type algorithms refer to ECM and SAGE.
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are drawn in Section VI.
Notations: The capital bold letters denote matrices and the

small bold letters denote row/column vectors; transpose and
Hermitian of a vector/matrix are denoted by (·)T and (·)H ,
respectively; �{a}, �{a}, |a| and a∗ denote the real part,
imaginary part, absolute value and conjugate of a complex
number a, respectively; � denotes the element-wise product
of two vectors/matrices. IN denotes the identity matrix of size
N .

II. OVERVIEW OF EM AND EM-TYPE ALGORITHMS

In this section, we give an overview of EM and EM-
type algorithms which are used to find the ML estimate
with a lower complexity. Let θ denote a possibly vector-
valued parameter to be estimated from a possibly vector-
valued observation y with probability density f(y|θ). The ML
estimate of θ is given by θ̂ = arg maxθ f(y|θ). This ML
estimate usually has a very high complexity. Therefore, EM
[16]–[18] and EM-type algorithms are proposed to find the
ML estimate in an iterative manner.

A. EM Algorithm

The derivation of EM algorithm relies on the concept of
a hypothesis, so-called complete data space x. The observed
random variable y, which is referred to as incomplete data
space, is related to x by a mapping y = g(x). The function
g is a many-to-one transformation. Since x is not observable,
at the mth iteration, the EM algorithm computes its first step,
called expectation step (E-step), which gives

Q
(
θ|θ̂[m]

)
= E

{
log f(x|θ)|y, θ̂[m]

}
. (1)

In the second step, called maximization step (M-step), the
parameter vector is updated according to

θ̂[m+1] = arg max
θ

Q
(
θ|θ̂[m]

)
. (2)

The ability of the EM algorithm to find a global maximum
depends on the initialization θ̂[0]. The convergence rate of the
EM algorithm is inversely related to the conditional Fisher
information matrix of x, y [19]. This rate is very slow when
the dimension of the complete data is large.

B. Expectation Conditional Maximization (ECM) Algorithm

In some cases, when the M-step of EM algorithm is too
complicated, the ECM algorithm can be used to simplify the
computation. The ECM algorithm [20] replaces the compli-
cated M-step of EM algorithm by a series of smaller and less
complicated steps. Specifically, if the parameter vector θ can
be divided into M groups of θl, l = 1, 2, · · · ,M , then the M-
step of EM algorithm at the mth iteration can be performed
by M smaller steps in which θl is updated at the lth step,
l = 1, 2, · · · ,M , while θv’s, v �= l are fixed at their most
updated values. The lth step consists of:

Finding : θ̂
[m+1]
l = arg max

θl

Q
(
θ|θ̂[m]

)∣∣
θv=θ̂

[m]
v , v �=l

Updating : θ̂
[m]
l = θ̂

[m+1]
l (3)

C. Space-Alternating Generalized Expectation-Maximization
(SAGE) Algorithm

Despite the versatility of EM algorithm, it has slow conver-
gence rate. To overcome this problem, the SAGE algorithm
[19] has been proposed. The idea of the SAGE algorithm is
to divide the parameter vector into smaller groups and update
them sequentially. While updating one group of parameters,
the other groups remain unchanged. In SAGE algorithm,
instead of one large complete data, an admissible hidden-data
space is introduced for each group of parameters. Suppose S is
an index set [19], θS denotes a vector consists of element(s) of
θ indexed by the members of S, θS̃ is the vector consists of all
remaining element(s) of θ. Let xS be the admissible hidden-
data space for θS . SAGE algorithm, to update θS , consists of
two steps:

E-step: Determine the conditional expectation of the log-
likelihood of

QS

(
θS |θ̂[m]

)
= E

{
log f

(
xS |θS , θ̂

[m]

S̃

)|y, θ̂[m]
}
. (4)

M-step: Maximize (4) to find

θ̂
[m+1]
S = arg max

θS

QS

(
θS |θ̂[m]

)
. (5)

III. SYSTEM MODEL AND ML ESTIMATION

Consider a MIMO system with NT transmit and NR re-
ceive antennas operating under a flat-fading environment. We
assume that each transmit-receive antenna pair has a different
frequency offset. The received signal at the kth receive antenna
at time t can be written as [13]

yk(t) =
NT∑
l=1

hk,le
jwk,ltsl(t) + nk(t), t = 1, 2, · · · , N

(6)

where

• {sl(t)}N
t=1 is the sequence of symbols transmitted from

the lth transmit antenna.
• hk,l and wk,l are the channel coefficient and frequency

offset between the lth transmit antenna and the kth

receive antenna, respectively. hk,l and wk,l are assumed
to be unknown and unchanged over the interval of t =
1, 2, · · · , N . Here, we make a standard assumption that
hk,l’s are statistically independent and complex-valued
Gaussian random variables with zero-mean and variance
of 1.

• {nk(t)}N
t=1 is a sequence of zero-mean, independent and

identically distributed complex-valued Gaussian random
variables having variance of σ2. Noise sequences at NR

receive antennas are statistically independent.
For the purpose of joint channel and frequency offset

estimations, the training sequence {sl(t)}N
t=1 is assumed to

be known.
If we define:

yk = [yk(1) yk(2) · · · yk(N)]T (7)

hk = [hk,1 hk,2 · · · hk,NT
]T (8)

wk = [wk,1 wk,2 · · · wk,NT
]T (9)

Swk
=
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⎡
⎢⎢⎢⎣

s1(1)ejwk,1 s2(1)ejwk,2 · · · sNT
(1)ejwk,NT

s1(2)ej2wk,1 s2(2)ej2wk,2 · · · sNT
(2)ej2wk,NT

...
...

. . .
...

s1(N)ejNwk,1 s2(N)ejNwk,2 · · · sNT
(N)ejNwk,NT

⎤
⎥⎥⎥⎦
(10)

Then the ML estimation of {hk,l} and {wk,l} is achieved
through minimizing of the following log-likelihood function
[13]:

Λ =
NR∑
k=1

‖yk − Swk
hk‖2. (11)

Since the term in the sum of (11) depends only on wk and
hk, each set of hk and wk can be derived by minimizing
separate functions. Specifically, the ML estimation of hk and
wk amounts to the minimization of

Λk = ‖yk − Swk
hk‖2. (12)

For a given value of wk, the hk that minimizes (12) is given
by

ĥk = (SH
wk

Swk
)−1SH

wk
yk. (13)

Substituting (13) back to (12), the frequency offset estimation
is as follows

ŵk = arg max
wk

yH
k Swk

(SH
wk

Swk
)−1SH

wk
yk. (14)

Equation (14) is a multi-dimensional minimization problem
which has a high computational complexity.

IV. PROPOSED ITERATIVE JOINT CHANNEL AND

FREQUENCY OFFSETS ESTIMATORS

It is evident that the channel coefficient and frequency offset
estimation problem for a MIMO system can be considered as
NR independent estimation problems for NR MISO (Multi-
Input Single-Output) systems. Hence, in this section, without
loss of generality, we only present the algorithms to estimate
the channel coefficients and frequency offsets from all transmit
antennas to the kth receive antenna using the received signal
at the kth receive antenna and the information of training
sequences from all transmit antennas.

A. Algorithm 1: ECM Based Approach

If we define sl = [sl(1) sl(2) · · · sl(N)]T as the training
signal vector transmitted from the lth transmit antenna and
ek,l = [ejwk,l ej2wk,l · · · ejNwk,l ]T , then the received signal
vector yk in (7) can be written as

yk =
NT∑
l=1

(sl � ek,l)hk,l + nk, (15)

where nk = [nk(1) nk(2) · · · nk(N)]T and nk ∼
CN (0, σ2IN ). In the EM terminology, the observed signal
vector yk is the incomplete data space. The parameter to
be estimated is θ = [θT

1 · · · θT
l · · · θT

NT
]T , where θl =

[wk,l hk,l]T is the two parameters corresponding to the pair
of the lth transmit antenna and the kth receive antenna.

Following [21], we define the complete data space as zk =
[zk,1 zk,2 · · · zk,NT

]T where

zk,l � (sl � ek,l)hk,l + nk,l, l = 1, 2, · · · , NT . (16)

Thus, the relation between the complete data space zl and
incomplete data yk is given by

NT∑
l=1

zk,l = yk. (17)

In (16), nk,l’s are obtained by decomposing the total noise
vector nk into NT components such that

NT∑
l=1

nk,l = nk (18)

and nk,l’s are statistically independent, zero-mean Gaussian
random vectors with covariance matrix of βlσ

2IN . The βl’s
are non-zero real-valued numbers such that

NT∑
l=1

βl = 1, βl > 0. (19)

There is no available strategy to choose the optimum set of
{βl}NT

l=1. In practice, however, βl’s are usually chosen to be
equal, i.e., βl = 1

NT
for all l.

To process further, we denote θ̂[m] =
[
θ̂

[m]
1 θ̂

[m]
2 · · · θ̂[m]

NT

]T

as the estimated value of θ obtained after the (m − 1)th

iteration and forwarded to the mth iteration in which θ̂
[m]
l =[

ŵ
[m]
k,l ĥ

[m]
k,l

]T
, l = 1, 2, · · · , NT .

The proposed Algorithm 1 at the mth iteration contains the
E-step and M-step as follows.

1) E-step: In this step, we compute the expectation of
the complete data space log-likelihood function given the
parameter θ and conditioned upon the incomplete data and
the current estimated value of θ̂[m], that is:

Q
(
θ|θ̂[m]

)
� E

{
log f(zk|θ)|yk, θ̂[m]

}
. (20)

Due to the statistical independence among nk,l’s, the proba-
bility density function of zk as a function of θ is:

f(zk|θ) =
NT∏
l=1

f(zk,l|θl)

=
NT∏
l=1

1
(πβlσ2)N

exp
{
−‖zk,l − (sl � ek,l)hk,l‖2

βlσ2

}
.

(21)

Substituting (21) into (20), we obtain

Q
(
θ|θ̂[m]

)
= C1 −

E
{NT∑

l=1

1
βlσ2

‖zk,l − (sl � ek,l)hk,l‖2
∣∣yk, θ̂[m]

}

= C2 −
NT∑
l=1

1
βlσ2

‖ẑ[m]
k,l − (sl � ek,l)hk,l‖2, (22)

where

ẑ
[m]
k,l � E

{
zk,l

∣∣yk, θ̂[m]
}
. (23)
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and C1 and C2 are two constants independent of θ.
Since zk,l and yk are jointly Gaussian distributed and satisfy
(17), it is easy to have

ẑ
[m]
k,l =

(
sl � ê

[m]
k,l

)
ĥ

[m]
k,l + βl

(
yk −

NT∑
v=1

(
sv � ê

[m]
k,v

)
ĥ

[m]
k,v

)

(24)

where ê
[m]
k,v =

[
ejŵ

[m]
k,v ej2ŵ

[m]
k,v · · · ejNŵ

[m]
k,v

]T
.

2) M-step: In this step, the updated value of θ, θ̂[m+1], is
determined as

θ̂[m+1] = arg max
θ

Q
(
θ|θ̂[m]

)

= arg min
θ

NT∑
l=1

‖ẑ[m]
k,l − (sl � ek,l)hk,l‖2. (25)

We can easily see from (25) that the updating process of
θ can be decoupled into NT updating processes of θl for
l = 1, 2, · · · , NT . Hence, we have the equation to determine
θ̂

[m+1]
l as

θ̂
[m+1]
l = arg min

θl

‖ẑ[m]
k,l − (sl � ek,l)hk,l‖2. (26)

In contrast to the EM algorithm, where the updating process
of parameters is taken place simultaneously, the ECM algo-
rithm minimizes (26) in two steps. In the first step, (26) is
minimized with respect to (w.r.t.) one of (wk,l, hk,l) while
the others are kept at their most updated values. We denote
θ̂

[m+c/2]
l as the estimate of θl at cth step of mth iteration of

the ECM algorithm, c = 1, 2. Then, the M-step of the ECM
algorithm consists of the following two smaller steps.

a) Step 1: In this step, we determine the updated value of
wk,l while hk,l is fixed at ĥ

[m]
k,l , i.e., we determine θ̂

[m+1/2]
l =[

ŵ
[m+1]
k,l ĥ

[m]
k,l

]T
where

ŵ
[m+1]
k,l = arg min

wk,l

‖ẑ[m]
k,l − (sl � ek,l)hk,l‖2

∣∣
hk,l=ĥ

[m]
k,l

= arg min
wk,l

N∑
t=1

|ẑ[m]
k,l (t) − sl(t)ejwk,ltĥ

[m]
k,l |2

= arg max
wk,l

N∑
t=1

�
{(

ẑ
[m]
k,l (t)

)∗
sl(t)ĥ

[m]
k,l ejwk,lt

}
.

(27)

where ẑ
[m]
k,l (t) is the tth element of ẑ[m], t = 1, 2, · · · , N .

To handle the nonlinearity of (27), we can resort to Taylor’s
series expansion of ejwk,lt around ŵ

[m]
k,l to the second-order

term as:

ejwk,lt ≈ ejŵ
[m]
k,l t + (wk,l − ŵ

[m]
k,l )(jt)ejŵ

[m]
k,l t

+
1
2
(wk,l − ŵ

[m]
k,l )2(jt)2ejŵ

[m]
k,l t. (28)

Therefore, (27) can be written after dropping some terms
that do not relate to wk,l as in (29) on the top of next page.

Differentiating the function inside {·} of (29) w.r.t. wk,l and
equating the result to zero we get the updated value ŵ

[m+1]
k,l

as

ŵ
[m+1]
k,l = ŵ

[m]
k,l

TABLE I

SUMMARY OF ALGORITHM 1 FOR THE kth RECEIVE ANTENNA

1. Initialization
Obtain ŵ

[0]
k,l and ĥ

[0]
k,l for l = 1, 2, · · · , NT .

2. ECM
For m = 0, 1, · · ·

• For l = 1, 2, · · · , NT

Compute:
ẑ

[m]
k,l = (sl � ê

[m]
k,l )ĥ

[m]
k,l + βl

�
yk −�NT

v=1(sv � ê
[m]
k,v )ĥ

[m]
k,v

�
.

• For l = 1, 2, · · · , NT

Compute:

ŵ
[m+1]
k,l = ŵ

[m]
k,l −

�N
t=1 t�

��
ẑ
[m]
k,l

(t)
�∗

sl(t)ĥ
[m]
k,l

e
jŵ

[m]
k,l

t
�

�N
t=1 t2�

��
ẑ
[m]
k,l

(t)
�∗

sl(t)ĥ
[m]
k,l

e
jŵ

[m]
k,l

t
� .

Compute:

ĥ
[m+1]
k,l = 1�N

t=1|sl(t)|2
�N

t=1

ẑ
[m]
k,l

(t)s∗l (t)

e
jŵ

[m+1]
k,l

t
.

−
∑N

t=1 t�
{(

ẑ
[m]
k,l (t)

)∗
sl(t)ĥ

[m]
k,l ejŵ

[m]
k,l t

}
∑N

t=1 t2�
{(

ẑ
[m]
k,l (t)

)∗
sl(t)ĥ

[m]
k,l ejŵ

[m]
k,l t

} . (30)

Equation (30) is valid only when the function inside {·}
in (29) is convex. It is hard to prove this property analyti-
cally from (29) because it consists of estimated parameters
which change from iteration to iteration. However, from our
simulations, we observe that the function is always convex;
hence, (30) provides satisfied results as will be illustrated in
the Section V.

b) Step 2: In this step, the updated value of hk,l, ĥ
[m+1]
k,l

is determined, where wk,l is set at its newest value of ŵ
[m+1]
k,l .

Hence, we have θ̂
[m+1]
l =

[
ŵ

[m+1]
k,l ĥ

[m+1]
k,l

]T
where

ĥ
[m+1]
k,l = arg min

hk,l

‖ẑ[m]
k,l − (sl � ek,l)hk,l‖2

∣∣
wk,l=ŵ

[m+1]
k,l

= arg min
hk,l

N∑
t=1

|ẑ[m]
k,l (t) − sl(t)ejŵ

[m+1]
k,l thk,l|2 (31)

which can be solved by

ĥ
[m+1]
k,l =

1∑N
t=1|sl(t)|2

N∑
t=1

ẑ
[m]
k,l (t)s∗l (t)

ejŵ
[m+1]
k,l t

. (32)

Algorithm 1 for the kth receive antenna is summarized in
the Table 1. By changing k from 1 to NR (or equivalently, by
repeating the Algorithm 1 NR times), we obtain the channel
coefficients and frequency offsets for the MIMO system.

B. Algorithm 2: SAGE-ECM Based Approach

In EM-type algorithm, the convergence rate is inversely
proportional to the Fisher information of its complete data
[19]. In the above algorithm, the noise variance is distributed
over zk,l for all value of l. Therefore the Fisher information
of zk,l is relatively large. To improve the convergence rate,
we use SAGE algorithm in which the parameter θ is divided
into NT groups of θl, l = 1, 2, · · · , NT . For each group, a
hidden data space must be chosen [19]. The update process
of any group is taken place while the others are fixed at their
latest updated values.
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ŵ
[m+1]
k,l = arg max

wk,l

{
− (wk,l − ŵ

[m]
k,l )

N∑
t=1

t�
{(

ẑ
[m]
k,l (t)

)∗
sl(t)ĥ

[m]
k,l ejŵ

[m]
k,l t

}

−1
2
(wk,l − ŵ

[m]
k,l )2

N∑
t=1

t2�
{(

ẑ
[m]
k,l (t)

)∗
sl(t)ĥ

[m]
k,l ejŵ

[m]
k,l t

}}
. (29)

Specifically, for the group of θl, l belongs to the set
{1, 2, · · · , NT }. The hidden data space is defined as

xk,l � (sl � ek,l)hk,l + n. (33)

Note that we associate all the noise to the hidden data space of
θl to reduce its Fisher information to increase the convergence
rate.

Following is the update process of θl at the mth iteration
which also consists of E-step and M-step. Note that there is
a total of NT times of these two steps at the mth iteration to
update all θl, l = 1, 2, · · · , NT .

1) E-step: In this step, we determine the expectation of the
hidden data space log-likelihood function given the parameter
θl while θv’s, v �= , are kept at θ̂[m]

v and conditioned upon
the observed vector yk as well as current estimate of θ̂[m] as:

Q(θl|θ̂[m]) = E
{

log f
(
xk,l|θl, {θ̂[m]

v }v �=l

)∣∣yk, θ̂[m]
}

.

(34)

We have

f
(
xk,l|θl, {θ̂[m]

v }v �=l

)
= f(xk,l|θl)

=
1

(πσ2)N
exp

{
− 1

σ2
‖xk,l − (sl � ek,l)hk,l‖2

}
. (35)

After replacing (35) into (34), we obtain

Q(θl|θ̂[m]) = C3 −
1
σ2

E
{
‖xk,l − (sl � ek,l)hk,l‖2

∣∣yk, θ̂[m]
}

= C4 − 1
σ2

‖x̂[m]
k,l − (sl � ek,l)hk,l‖2, (36)

where

x̂
[m]
k,l � E

{
xk,l|yk, θ̂[m]

}

=
(
sl � ê

[m]
k,l

)
ĥ

[m]
k,l +

(
yk −

NT∑
v=1

(
sv � ê

[m]
k,v

)
ĥ

[m]
k,v

)

= yk −
NT∑

v=1,v �=l

(
sv � ê

[m]
k,v

)
ĥ

[m]
k,v . (37)

and C3 and C4 are two constants independent of θl.
2) M-step: In this step, the updated value of θl, θ̂

[m+1]
l , is

determined by

θ̂
[m+1]
l = arg max

θl

Q(θl|θ̂[m]
l )

= arg min
θl

‖x̂[m]
k,l − (sl � ek,l)hk,l‖2. (38)

This equation can be solved like the M-step of the previous
algorithm where ECM is deployed, i.e., it consists of two
small steps and elements of θl = [wk,l hk,l]T are updated
sequentially. Here, we only state the results.

TABLE II

SUMMARY OF ALGORITHM 2 FOR THE kth RECEIVE ANTENNA

1. Initialization
Obtain ŵ

[0]
k,l and ĥ

[0]
k,l for l = 1, 2, · · · , NT .

2. SAGE-ECM
For m = 0, 1, · · ·

• For l = 1, 2, · · · , NT

Compute:
x̂

[m]
k,l = (sl � ê

[m]
k,l )ĥ

[m]
k,l +

�
yk −�NT

v=1(sv � ê
[m]
k,v )ĥ

[m]
k,v

�
.

Compute:

ŵ
[m+1]
k,l = ŵ

[m]
k,l −

�N
t=1 t�

��
x̂
[m]
k,l

(t)
�∗

sl(t)ĥ
[m]
k,l

e
jŵ

[m]
k,l

t
�

�N
t=1 t2�

��
x̂
[m]
k,l

(t)
�∗

sl(t)ĥ
[m]
k,l

e
jŵ

[m]
k,l

t
� .

Compute:

ĥ
[m+1]
k,l = 1�N

t=1|sl(t)|2
�N

t=1

x̂
[m]
k,l

(t)s∗l (t)

e
jŵ

[m+1]
k,l

t
.

Update : ŵ
[m]
k,l = ŵ

[m+1]
k,l , ĥ

[m]
k,l = ĥ

[m+1]
k,l .

a) Step 1: In this step, ŵ
[m+1]
k,l is determined by:

ŵ
[m+1]
k,l = ŵ

[m]
k,l

−
∑N

t=1 t�
{(

x̂
[m]
k,l (t)

)∗
sl(t)ĥ

[m]
k,l ejŵ

[m]
k,l t

}
∑N

t=1 t2�
{(

x̂
[m]
k,l (t)

)∗
sl(t)ĥ

[m]
k,l ejŵ

[m]
k,l t

} . (39)

where x̂
[m]
k,l (t) is the tth element of x̂

[m]
k,l in (37), t =

1, 2, · · · , N .
b) Step 2: Here, the updated value ĥ

[m+1]
k,l is calculated

as:

ĥ
[m+1]
k,l =

1∑N
t=1|sl(t)|2

N∑
t=1

x̂
[m]
k,l (t)s∗l (t)

ejŵ
[m+1]
k,l t

. (40)

Algorithm 2 is named as SAGE-ECM since it is derived by
combining ECM and SAGE. The algorithm is summarized in
the Table II. By repeating it NR times (by changing k from 1
to NR), we obtain the desired parameters for MIMO system.

V. SIMULATION RESULTS

Computer simulations have been carried out to evaluate the
performance of the proposed algorithms in some system set-
ups. The performance of the proposed algorithms in terms
of MSE and bit error rate (BER) is also compared with the
existing methods.

A. Example 1: 2 × 1 System With Fixed Channel and Fixed
Offset

In this subsection, we consider a system with NT = 2
transmit antennas and NR = 1 receive antenna. Follow-
ing [13], the frequency offsets between the receive antenna
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Fig. 1. Comparison of MSE performances of w1,2 of [15], [14], ECM and
SAGE-ECM algorithms.

and the two transmit antennas are w = [w1,1 w1,2]T =
2π[0.01 0.015]T . Note that these two frequency offsets are
quite close to each other and the ML estimation [13] should
encounter the numerical problems. A specific channel is used
for all simulations in this case [13]: h1 = [h1,1 h1,2]T =
[0.2929+0.5169i 0.1074− 0.9303i]T . During the evaluation,
the length of pilot sequences from the transmit antennas is
N = 32. Each training sequence is taken from a row of
a Hadamard matrix with appropriate size. Hence, we can
consider that it consists of P repetitive blocks, P is called
the correlator length in [15] and the length controls the range
of estimated frequency offsets. Correlator length is taken as
8. Our proposed algorithms stop when the difference between
log-likelihood function of the two consecutive iterations is less
than 0.001.

Firstly, we compare the performances of our proposed ECM
and SAGE-ECM based algorithms. We present the results
for the pair of the second transmit antenna and the receive
antenna. We use the method in [15] to have the initialization
values for frequency offsets. After having these values, (13)
is used to get the initial estimates for channel coefficients. In
Fig. 1 and Fig. 2, the MSE of w1,2 and h1,2 are illustrated,
respectively.

We can see that the performance of our proposed algorithms
reach the CRB. Readers are referred to [13] for detailed deriva-
tions and results of CRB. In order to have the above results,
the required average number of iterations for both algorithms
is presented in Fig. 3. We can see that the SAGE-ECM based
algorithm greatly reduces the complexity compared to the
ECM based algorithm. Note that, this is a fair comparison
because each iteration of both algorithms has roughly the
same complexity. It can be seen that the required average
number of iterations become high at low- and high-SNR
regions. This is because the performance of initialization is
far away from CRB for the above SNR regions than the mid-
SNR one. The comparisons our algorithms with [15] and [14]
are also presented in Fig. 1 and Fig. 2. Specifically, Fig. 1
presents the obtained MSE of w1,2 for different algorithms.
The algorithm of [14] overcomes the error floor of [15] at
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Fig. 2. Comparison of MSE performances of h1,2 of [14], ECM and SAGE-
ECM algorithms.
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Fig. 3. Average number of iterations of ECM and SAGE-ECM algorithms.

only high-SNR region. However, it is still around 1 dB worse
than our proposed algorithms. Fig. 2 illustrates the result for
h1,2. The same observations can be obtained.

Finally, we compare the performance of different algorithms
for different values of correlator length. Here, two values,
4 and 2, are examined. The method in [15] gives large
range of estimated frequency offsets with small value of P .
However, the estimation error increases. This phenomenon
is illustrated in Fig. 4 for w1,2. The method in [14] can
resolve the error floor but the performance becomes worse
with the decreasing value of P . This is because, basically, the
process of estimating frequency offsets is taken from [15].
In the mean time, our proposed algorithms still reach the
CRB from low SNR values. The same observation can be
found in Fig. 2 for the performance of h1,2. In Fig. 6, the
average number of iterations for SAGE-ECM based algorithm
for different values of P is illustrated. We can see that when
SNR is high, the required iterations for two cases become the
same. This is because when SNR is high, the performances
of [15] (initialization for our proposed algorithms) for P = 4
and P = 2 are approximately the same. It again proves the
importance of initialization for EM-type algorithms.
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Fig. 4. Comparison of MSE performances of w1,2 of [15], [14] and SAGE-
ECM algorithm for different values of P .
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Fig. 5. Comparison of MSE performances of h1,2 of [14] and SAGE-ECM
algorithm for different values of P .

B. Example 2: 4×1 System, Fading Channel and Fixed Offset

For the next case we consider a system with NT = 4
transmit antennas and NR = 1 receive antenna. The frequency
offset values from the transmit antennas to the receive antenna
are w = 2π[0.01 0.015 0.02 0.025]T as in [15]. Fig. 7 and
Fig. 8 present the MSE performance of w1,2 and h1,2 in the
Rayleigh fading channels, respectively.

Here, the pilot length is N = 32 and we use the correlator
length P of 4 and 8. We can see that the proposed SAGE-ECM
can reach the CRB when SNR is large enough; however, the
frequency offset estimation performance of methods in [15]
and [14] and channel estimation performance of method in
[14] are worse.

C. Example 3: Fading Channel and Random Offset

In this subsection, we assume that the frequency offset
from any transmit antenna to the/any receive antenna in any
evaluation is a realization of a uniform random variable over
the interval of 2π(−0.1 0.1]. Moreover, the system is operating
under the Rayleigh fading environment.
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Fig. 6. Comparison of average number of iterations of SAGE-ECM algorithm
for different values of P .
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Fig. 7. Comparison of MSE performances of w1,2 of [15], [14], and SAGE-
ECM algorithms for 4 transmit antennas system.

1) 2 × 1 System, MSE Performance: We come back to
the case of NT = 2 transmit antennas and NR = 1 receive
antenna. We consider the pilot length of N = 32 and correlator
length P of 2 and 4. The MSE of w1,2 and h1,2 are illustrated
in Fig. 9 and Fig. 10, respectively. Once again, the proposed
SAGE-ECM reaches the CRB while the other methods are
worse.

2) 2×2 System, BER Performance: To see the impact of the
estimated parameters on the BER performance of the system,
we present in Fig. 11 the BER using parameters derived from
different algorithms. We consider the system having NT = 2
transmit antennas and NR = 2 receive antennas. Each frame
from each transmit antenna consists of two portions: the pilot
portion and data portion. The pilot portion is with length of
N = 32, which constitutes 10% of total frame length. The
BPSK constellation is used and the coherent detection method
is used at the receiver to detect the signal. We observe that
at the level of BER = 10−3, the receiver using SAGE-ECM
can obtain a 3 dB gain as compared with [14], for the case of
P = 4. When P = 2, this gain increases to around 5 dB.
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Fig. 8. Comparison of MSE performances of h1,2 of [14] and SAGE-ECM
algorithms for 4 transmit antennas system.
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Fig. 9. Comparison of MSE performances of w1,2 of [15], [14], and SAGE-
ECM algorithms for 2 transmit antennas system.

VI. CONCLUSIONS

In this paper, we investigated the problem of estimating the
channel coefficients and frequency offsets based on training
sequences for a MIMO system operating under a flat-fading
environment. We proposed two iterative algorithms to the
above estimation problem. The first algorithm is based on
ECM algorithm. The performance of this algorithm achieves
the CRB for both channel and frequency offsets estimations.
It overcomes the error floor in MSE performance of frequency
offsets estimation in [15] and also outperforms [14]. This
algorithm requires no special design on training sequences.
However, the complexity in terms of required number of iter-
ations is still high. Hence, we proposed the second algorithm
based on SAGE and ECM algorithms.

Finally, we point out that the proposed algorithms can also
be extended to frequency selective fading channels. In this
scenario, the transmit-receive channel model (6) needs to be
modified to take care of the multiple delayed paths for each
transmit-receive antenna pair, and the proposed algorithms
need to estimate a larger number of unknown parameters in
each step.
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Fig. 10. Comparison of MSE performances of h1,2 of [14] and SAGE-ECM
algorithms for 2 transmit antennas system.
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Fig. 11. Comparison of BER performances of [14] and SAGE-ECM
algorithms for 2 × 2 system.
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