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Abstract—In this letter, we consider the problem of joint chan-
nel estimation and data detection for single-input multi-output
(SIMO) systems under fast-fading environment with unknown
spatially correlated noise. We present a computationally efficient
iterative receiver based on the expectation conditional maxi-
mization (ECM) algorithm. Bit error rate (BER) performance
of the proposed iterative receiver is simulated and compared
with that of the maximum likelihood (ML) receiver with perfect
channel state information (CSI). Simulation results show that the
proposed iterative receiver achieves nearly the performance of
ML receiver with perfect CSI and requires only a few iterations.

Index Terms—Channel estimation, data detection, Expectation
Maximization (EM) algorithm, Expectation Conditional Maxi-
mization (ECM) algorithm, single input multiple output (SIMO)
system.

I. INTRODUCTION

THE single-input multi-output (SIMO) channel model has
been widely used in data transmission systems with

antenna diversity. In practice, the channel state information
(CSI) must be estimated so that coherent data detection can
be carried out. One general approach to obtain the CSI is to
use pilot symbols. Another approach is, besides a portion of
pilot symbols, to iteratively estimate the channel and detect the
data where detected data is used to refine the CSI estimate. For
example, in [1, 2], authors use the expectation maximization
(EM) [3] algorithm to follow this approach. All these methods
assume that the additive noise is white in both spatial and
temporal domains. However, in practice, the noise could be
spatially correlated when co-channel interference (CCI) exists.

Recently, the EM algorithm has been used in [4] to estimate
the channel coefficients and noise covariance matrix iteratively
in a SIMO system under the framework of generalized multi-
variate analysis [5], considering the unknown symbols as the
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missing data. This method is derived for the case that the
channel coefficients are static for some symbol periods (quasi-
static fading). In this method, the prior probability density
function (pdf) of the channel is not taken into account.

In [6], the author considers a SIMO system under quasi-
static fading channels with spatially correlated noise. In that
work, to tackle the complex problem of estimating more than
one parameter, the author takes the advantage of the space-
alternating generalized expectation-maximization (SAGE) al-
gorithm [7], in which the parameters (unknown symbols and
noise covariance matrix) are divided into two groups and are
updated sequentially. In the process of updating each group,
the channel coefficients are considered as missing data as
opposed to [4]. Basically, the SAGE algorithm is designed
to improve the convergence rate and reduce the complexity
of the maximization step of the EM algorithm by dividing the
parameters to be estimated into smaller groups and associating
each smaller group with a smaller hidden data space [7].
However, in [6], the author only takes the advantage of the
idea of the SAGE algorithm but does not reduce the hidden
data spaces for each parameter. Hence, the hidden data space
for each smaller group is still big; thus, the computational
complexity is still very high.

In this letter, we study the problem of joint channel estima-
tion and data detection for SIMO systems under the cases that
the CSI is time varying and the additive noises are spatially
correlated. The noise covariance matrix is also unknown. We
treat the channel coefficients as the missing data and propose
an expectation conditional maximization (ECM) [8] based
algorithm for maximum likelihood (ML) estimation of both
the unknown symbols and the spatial noise covariance matrix
in a SIMO system under fast fading channels. The ECM
algorithm is designed to directly overcome the complicated
M-step of the EM algorithm while having the advantage of
sequential updating approach as the SAGE algorithm. We also
sketch the approach that considers signal as the missing data
[4] for the fast fading channels using the pdf of channel. This
is Bayesian in a sense that it takes into account the knowledge
of the prior pdf of the channel coefficients. We show that the
proposed algorithm maintains the same performance as the
SAGE method and the approach extended from [4]. However,
the proposed algorithm saves around 50% of computational
resources compared with the SAGE algorithm and 9% of
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computational resources compared with the approach extended
from [4].

The rest of the letter is organized as follows. Section II
presents the system model. Section III describes the proposed
iterative receiver. Computational complexity is compared in
Section IV. Simulation results are presented in Section V.
Finally, conclusions are drawn in Section VI.

Notations: The capital bold italic letters denote matrices
and the small bold italic letters denote row/column vectors;
δ(t) is the Kronecker delta function; ⊗ is the Kronecker
product; IT is the identity matrix of size T ; 0n×m is the
n × m zero matrix; transpose, Hermitian transpose, inverse
and determinant of matrix A are denoted by AT , AH, A−1

and |A|, respectively; tr[A] stands for the trace operation;
diag(a) denotes the diagonal matrix with the diagonal element
constructed from vector a; diagM (a) denotes the diagonal
matrix of size M where all elements of the main diagonal
is a; A(n : m, p : q) is a matrix formed by rows n to m and
columns p to q of A; sign[·] denotes the sign function; �(·) is
the real part of a complex vector/matrix; a∗ is the conjugate
of a complex number a.

II. SYSTEM MODEL

Consider a SIMO system comprising a single transmit and
M receive antennas operating in a Rayleigh fading environ-
ment. The additive noise is spatially correlated among M
receive antennas but are independent from one symbol to
another. The transmitted symbol at time t, st, belongs to an
M-ary constant modulus constellation C = {c1, c2, · · · , c|C|}
with |cu|2 = 1, u = 1, 2, · · · , |C|. Let s = [s1 s2 · · · sT ] ∈
C1×T be a block of transmitted symbols. To facilitate the
derivations that follow, we also define

¯
S = diag(s) and

St = diagM (st) of size M × M . Let the T × 1 vector
h(m) =

[
h

(m)
1 · · · h

(m)
t · · · h

(m)
T

]T ∈ CT×1 be the channel
coefficients between the transmit antenna and the mth receive
antenna, where m = 1, 2, · · · , M and the subscript t denotes
time index. We assume that M channels from the transmit
antenna to M receive antennas are independent. We also
define the M × 1 vector of channel coefficients at time
t from the transmit antenna to all M receive antennas as
ht =

[
h

(1)
t h

(2)
t · · · h

(M)
t

]T ∈ CM×1.
At any time t, the received signal at the mth receive

antenna, y
(m)
t , m = 1, 2, · · · , M , can be expressed as

y
(m)
t = h

(m)
t st + n

(m)
t , (1)

where n
(m)
t is the noise at the mth receive antenna at time t.

If we collect M received signals at time t from all M receive
antennas to form a vector, yt =

[
y
(1)
t y

(2)
t · · · y

(M)
t

]T ∈
CM×1, it can be written as

yt = htst + nt, t = 1, 2, · · · , T, (2)

where nt = [n(1)
t n

(2)
t · · · n

(M)
t ]T . The noise is assumed to be

temporally white, i.e., E
{
nt1n

H
t2

}
= Σδ(t1 − t2) where nt1

and nt2 are the noise vectors at time t1 and t2, respectively.
If we collect T received signal vectors to form a matrix Y =[
y1 y2 · · ·yT

] ∈ CM×T , it can be expressed as

Y = H
¯
S + N (3)

where H =
[
h1 h2 · · ·hT

] ∈ CM×T , N =
[n1 n2 · · · nT ] ∈ CM×T is an additive noise matrix.

We assume that the vector h(m) can be modeled as a zero-
mean complex Gaussian random vector with covariance matrix
R = E

{
h(m)(h(m))H

}
of size T × T . Here, we adopt the

Jakes’ model [9], i.e., the (i, j)th element of R is given by

R(i, j) = J0(2πfdTs(i − j)) ≡ ri−j , (4)

where J0(·) is the first kind Bessel function of zero order, fd

is the maximum Doppler shift and Ts is the symbol period.
Note that ri−j = rj−i, thus R is a symmetric Toeplitz matrix
with the first row of r = [r0 r1 · · · rT−1]. We assume that
the value of fdTs is known at the receiver.

III. PROPOSED ITERATIVE RECEIVER

In this section, we present the joint estimation of channel
coefficients ht, t = 1, 2, · · · , T , noise covariance Σ and data
symbols s based on the received signal matrix Y and some
pilot symbols to kick start the algorithm.

We define y = [yT
1 yT

2 · · · yT
T ]T ∈ CMT×1, S =

diag(S1, S2, · · · , ST ), h = [hT
1 hT

2 · · · hT
T ]T ∈ CMT×1

and n = [nT
1 nT

2 · · · nT
T ]T ∈ CMT×1. Without loss of

information, (3) can be written as

y = Sh + n. (5)

The covariance matrix of h, Kh = E{hhH}, is a MT ×
MT symmetric Toeplitz matrix with the first row being
[r0 01×(M−1) r1 01×(M−1) · · · rT−1 01×(M−1)] and the
covariance matrix of n is Kn = E{nnH} = IT ⊗ Σ.

We denote θ � (S,Σ) as the parameters to be estimated
and call θ̂[k] = (Ŝ[k], Σ̂[k]) be the estimate of θ after the
kth iteration of the proposed algorithm. In EM terminology,
y is the incomplete data, and we define X = (y, h) as the
complete data for the parameter we want to estimate. The
proposed ECM based algorithm contains E-step and CM-step
as follows.

A. E-step

In this step, we compute

Q(θ|θ̂[k]) = E
{
log f(X|S,Σ)|y, Ŝ[k], Σ̂[k]

}
. (6)

The pdf of X as a function of S and Σ is

f(X|S,Σ) = f(y|h, S,Σ)f(h|S,Σ), (7)

in which

f(y|h, S,Σ) =
1

|πKn| ×
exp

{−(y − Sh)HK−1
n (y − Sh)

}
, (8)

and f(h|S,Σ) = f(h) = 1
|πKh| exp

{−hHK−1
h h

}
because

of the independence among h, S and Σ.
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Substituting (7) into (6), after dropping some constant terms
that do not relate to θ, we have

Q(θ|θ̂[k]) = − T log|Σ|
− E

{
(y − Sh)HK−1

n (y − Sh)
∣∣y, Ŝ[k], Σ̂[k]

}
= − T log|Σ| − tr

[
K−1

n SK̂
[k]
h SH]

− (
y − Sĥ[k]

)H
K−1

n

(
y − Sĥ[k]

)
= − T log|Σ| − tr

[
SHK−1

n SK̂
[k]
h

]
− (

y − Sĥ[k]
)H

K−1
n

(
y − Sĥ[k]

)
= − T log|Σ| − tr

[
K−1

n K̂
[k]
h

]
− (

y − Sĥ[k]
)H

K−1
n

(
y − Sĥ[k]

)
, (9)

where

ĥ[k] � E
{
h|y, Ŝ[k], Σ̂[k]

}
= Kh

(
Ŝ[k]

)H(
Ŝ[k]Kh(Ŝ[k])H + K̂ [k]

n

)−1
y (10a)

=
(
K−1

h + (Ŝ[k])H
(
K̂ [k]

n

)−1
Ŝ[k]

)−1(
Ŝ[k]

)H(
K̂[k]

n

)−1
y

(10b)

=
(
K−1

h +
(
K̂ [k]

n

)−1)−1(
Ŝ[k]

)H(
K̂ [k]

n

)−1
y (10c)

=
(
Kh − Kh

(
Kh + K̂ [k]

n )−1Kh

)(
Ŝ[k]

)H(
K̂[k]

n

)−1
y,

(10d)

and

K̂
[k]
h � E

{(
h − ĥ[k]

)(
h − ĥ[k]

)H∣∣y, Ŝ[k], Σ̂[k]
}

= Kh − Kh

(
Ŝ[k]

)H(
Ŝ[k]Kh(Ŝ[k])H + K̂[k]

n

)−1
Ŝ[k]Kh

=
(
K−1

h + (Ŝ[k])H
(
K̂[k]

n

)−1
Ŝ[k]

)−1

= Kh − Kh

(
Kh + K̂[k]

n )−1Kh, (11)

and K̂[k]
n = IT ⊗ Σ̂[k]. To have (10b) from (10a), we resort

to the Matrix Inversion Lemma. The modulus constellation
property is used to simplify (10b) to (10c). The reason why
we expand (10c) to (10d) is that the matrix Kh is ill-
conditioned so its inversion suffers from the numerical error
which produces unreliable results.

B. CM-step

In this step, the updated value of θ, θ̂[k+1], is determined
as

θ̂[k+1] = arg max
θ

Q(θ|θ̂[k]). (12)

In contrast to the conventional EM algorithm, where the
updating process of parameters are taken place simultaneously,
the ECM algorithm maximizes the function Q(θ|θ̂[k]) in two
steps. In the first step, Q(θ|θ̂[k]) is maximized with respect
to (w.r.t.) one of (S,Σ) while the other is kept at its most
updated value. We denote θ̂[k+c/2] be the estimate of θ at cth

step of kth iteration of the ECM algorithm, c = 1, 2. Then,
the CM-step of the ECM algorithm consists of two following
steps.

1) Step 1: In this step, we have θ̂[k+1/2] = (Ŝ[k+1], Σ̂[k])
where

Ŝ[k+1] = arg max
S

Q(θ|θ̂[k])
∣∣
Σ=Σ̂[k]

= arg min
S

T∑
t=1

(yt − ĥ
[k]
t st)H(Σ̂[k])−1(yt − ĥ

[k]
t st). (13)

We can see that the process of updating Ŝ[k+1] can be
transformed to that of ŝ[k+1]. More explicitly, the updated
value of ŝ

[k+1]
t , t = 1, 2, · · · , T , is

ŝ
[k+1]
t = arg max

st

�(
yH

t (Σ̂[k])−1ĥ
[k]
t st

)
. (14)

If we use BPSK symbols, the decision on ŝ
[k+1]
t reduces to

ŝ
[k+1]
t = sign

[
�(

yH
t (Σ̂[k])−1ĥ

[k]
t

)]
. (15)

2) Step 2: In this step, we have θ̂[k+1] = (Ŝ[k+1], Σ̂[k+1])
where

Σ̂[k+1] = arg max
Σ

Q(θ|θ̂[k])
∣∣
S=Ŝ[k+1]

= arg max
Σ

{
− T log |Σ| − tr

[
K−1

n K̂
[k]
h

]

− (
y − Ŝ[k+1]ĥ[k]

)
K−1

n

(
y − Ŝ[k+1]ĥ[k]

)}
.(16)

If we define
[
K̂

[k]
h

]
t
= K̂

[k]
h

(
(t−1)M+1 : tM, (t−1)M+

1 : tM
)

with t = 1, 2, · · · , T then (16) can be written as

Σ̂[k+1] = arg max
Σ

{
− T log|Σ| − tr

[
Σ−1

( T∑
t=1

[
K̂

[k]
h

]
t

)]

− tr
[(

Y − Ĥ [k] ˆ
¯
S[k+1]

)H
Σ−1

(
Y − Ĥ [k] ˆ

¯
S[k+1]

)]}
, (17)

where Ĥ [k] =
[
ĥ

[k]
1 ĥ

[k]
2 · · · ĥ

[k]
T

]
.

If we differentiate (17) w.r.t. Σ and equating the result to
zero, we can obtain the updated value of Σ as

Σ̂[k+1] =
∑T

t=1[K̂
[k]
h ]t

T

+
(Y − Ĥ [k] ˆ

¯
S[k+1])(Y − Ĥ [k] ˆ

¯
S[k+1])H

T
.(18)

IV. COMPUTATIONAL COMPLEXITY

We now look at the computational complexity of the pro-
posed algorithm and compare it with the approach using the
SAGE algorithm. Since the transmitted and received signals
as well as the channel matrix are complex, all processing is
conducted in complex domain. Thus, throughout this section,
multiplications, divisions, and additions refer to complex op-
erations and are denoted by CMs, CDs, and CAs, respectively.

We consider the complexity of the kth iteration of our
proposed algorithm. The iteration consists of 4 steps and the
complexity of each step is addressed as follows:

• Step 1: Calculation of ĥ[k] =
(
Kh − Kh

(
Kh +

K̂ [k]
n )−1Kh

)(
Ŝ[k]

)H(
K̂[k]

n

)−1
y

In order to save computation cost, we calculate
(
Kh −

Kh

(
Kh + K̂ [k]

n )−1Kh

)
which cost us 3(MT )3 CMs,

(MT )3 CDs and 3(MT )3 − 2(MT )2 + MT CAs. The
remaining calculation requires 2(MT )3 + (MT )2 CMs
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TABLE I
ALGORITHM AND COMPLEXITY OF THE APPROACH THAT CONSIDERS SIGNAL AS THE MISSING DATA

Algorithm (kth iteration) Complexity

Step 1: Calculate s̄
[k]
t � E

{
st|{yt}T

t=1, {ĥ[k]
t }T

t=1, Σ̂
[k]

}
=

∑|C|
c=1 cuρ̂

[k]
u,t M3 + (M2 + M + 2|C|)T CMs

where ρ̂
[k]
u,t =

exp

{
2�

{
yH

t (Σ̂[k])−1ĥ
[k]
t cu

}}

∑U
l=1 exp

{
2�

{
yH

t (Σ̂[k])−1ĥ
[k]
t cl

}} M3 CDs

and form S̄[k] = diag
(
S̄

[k]
1 , · · · , S̄

[k]
T

)
, S̄

[k]
t = diagM (s̄

[k]
t ). M3 + (T − 2)M2 + (|C| − 1)T + M CAs

Calculate cov[k](st) � 1 − |s̄[k]
t |2.

Step 2: Update h as 5(MT )3 + (MT )2 CMs

ĥ[k+1] =
(
Kh − Kh

(
Kh + K̂

[k]
n )−1Kh

)
(S̄[k])H

(
K̂

[k]
n

)−1
y (MT )3 CDs

5(MT )3 − 3(MT )2 CAs
Step 3: Update Σ as MT 2 + 3TM2 CMs

Σ̂[k+1] =

(
Y −Ĥ [k+1] ¯

¯
S [k]

)(
Y −Ĥ [k+1] ¯

¯
S [k]

)H

T
M2 CDs

+ 1
T

∑T
t=1 cov[k](st)ĥ

[k+1]
t (ĥ

[k+1]
t )H MT 2 + 2M2T − 2M2 CAs

where ¯
¯
S[k] = diag(s̄

[k]
t , · · · , s̄

[k]
T )

and 2(MT )3 − (MT )2 − MT CAs. Hence, we need
5(MT )3 + (MT )2 CMs, (MT )3 CDs and 5(MT )3 −
3(MT )2 CAs.

• Step 2: Calculation of K̂
[k]
h = Kh − Kh

(
Kh +

K̂[k]
n )−1Kh

This quantity is computed in the previous step. Therefore,
we do not need any calculation here.

• Step 3: Updating signal: ŝ
[k+1]
t =

arg maxst �(
yH

t (Σ̂[k])−1ĥ
[k]
t st

)
for t = 1, 2, · · · , T .

We calculate (Σ̂[k])−1 which costs M3 CMs/CDs and
(M3 − 2M2 + M) CAs and it is used for all t’s. For
each value of t, the determination of yH

t (Σ̂[k])−1ĥ
[k]
t

requires (M2 + M) CMs and (M2 − 1) CAs. If
we use BPSK modulation at the transmit antenna,
the above update equation of ŝ

[k+1]
t reduces to (15)

which requires no more calculation. Therefore, this
step requires M3 + (M2 + M)T CMs, M3 CDs and
M3 + (T − 2)M2 + M − T CAs.

• Step 4: Updating Σ: Σ̂[k+1] =
∑T

t=1[K̂
[k]
h ]t

T +
(Y −Ĥ[k]Ŝ

[k+1]
T )(Y −Ĥ[k]Ŝ

[k+1]
T )H

T

The calculation of (Y −Ĥ [k] ˆ
¯
S[k+1])(Y −Ĥ[k] ˆ

¯
S[k+1])H

requires (MT 2 + M2T ) CMs and (MT 2 + M2T −
M2) CAs. It requires (M2T − M2) CAs to calculate∑T

t=1[K̂
[k]
h ]t and another M2 CDs to complete the

determination of Σ̂[k+1].

If the problem is solved by using the SAGE algorithm, then
θ = (S,Σ) should be divided into two groups of S and Σ
and they are updated in sequential manner. For each group,
the admissible hidden-data space [7] is defined as (y, h). In
updating S, the channel estimation in Step 1 and updating
signal in Step 3 are performed. The updating of Σ requires
the re-calculation of channel estimation in Step 1, as well as
Step 2 and Step 4. Therefore, in each iteration (i.e., updating
both S and Σ), the SAGE algorithm requires one more time
of calculating channel estimation in Step 1 than our proposed
algorithm. This makes our proposed ECM based algorithm
less complex than the SAGE based algorithm, and it will be
further shown by simulations presented in the next section.

V. SIMULATION RESULTS

We consider a SIMO system with M = 2 receive antennas.
The signal is corrupted by additive complex noise with two
kinds, the first one has the noise covariance matrix of Σ =
σ2IM (white noise) and the other has noise covariance matrix
Σ whose (m, n)th element is [4]

Σ(m, n) = σ2.(0.9)|m−n|. exp
[
j
(π

2

)
(m − n)

]
(19)

i.e., correlated noise. The fading coefficients between the
transmitter and each receive antenna are generated according
to the Jakes’ model. The data is grouped into a block of
T = 20 symbols which are drawn from BPSK constellation,
preceded by a pilot symbol. The receiver operates on frames
comprising F = 5 successive blocks and the adjacent pilots.

Relying on the relations among channel coefficients by
the Jakes model, the Wiener theory in [10] interpolates
F + 1 successive pilot symbols to get the channel coeffi-
cients initialization. For each frame, the initialization of the
noise covariance matrix for the first block is determined by
Σ̂[0] = 1

FT+F+1

∑FT+F+1
t=1 yty

H
t . The obtained Σ when the

algorithm converges for the first block is transferred to the
second block as the initialization and so on.

In this section, we also present the performance of the
approach that considers signal as the missing data. Due to
the space limitation, we are not able to provide its detailed
derivation. However, the summary of the approach and its
complexity are given in the Table I.

In Fig. 1, we plot the BER as a function of SNR under white
and correlated noise environments at fading rate fdTs = 0.01.
In order to compare the performance of our algorithm, we
also plot the BER of ML detection with perfect CSI and the
noise covariance matrix Σ, as well as the BER of the proposed
algorithm when Σ is known (therefore, the step of updating Σ
is not required). We can observe that the obtained performance
with unknown Σ is near that of ML with perfect CSI and Σ.
The gaps between the proposed algorithm and the ML with
perfect CSI are 1.5dB and 2dB for white and correlated noise
environments, respectively. In this figure, we also include the
BER result of the approach that takes signal as the missing



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 11, NOVEMBER 2008 4045

SNR (in dB)

B
E
R

ECM - unknown Σ
ECM - known Σ
SAGE - unknown Σ
Signal as missing data
ML - perfect h and Σ
White noise
Correlated noise

0 1 2 3 4 5 6 7 8 9 10

10−3

10−2

10−1

Fig. 1. BER vs. SNR in white and correlated noise environments.
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Fig. 2. Average number of iterations: proposed ECM based, SAGE based
and the approach that considers signal as the missing data.

data and the SAGE based algorithm. Our approach has the
same performance in terms of BER with the others.

In Fig. 2, the required average number of iterations for
our proposed algorithm, the SAGE based algorithm and the
approach extended form [4] are presented. We can see that
the SAGE based algorithm has smaller average number of
iterations in low-SNR region for both noise cases. This is due
to the estimation of channel in each step of updating S and
Σ. This makes convergence faster. However, at high SNR,
our approach and the SAGE based algorithm have the same
average number of iterations. The approach extended from [4]
needs higher number of iterations for the whole considered
SNR region.

In Fig. 3, we show the higher computational cost (in terms
of needed total number of flops) of the SAGE based algorithm
compared to our proposed algorithm. Our proposed algorithm
is about 2 times faster than the SAGE based algorithm (or
equivalently, our proposed algorithm saves around 50% of
computational resources compared with the SAGE based al-
gorithm). Note that one complex multiplication/division takes
six floating-point operation (flops) and one complex addition
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Fig. 3. Total number of FLOPS: proposed ECM based, SAGE based and
the approach that considers signal as the missing data.
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Fig. 4. Effect of block length T in white noise environment.

needs two flops. Our approach is about 9% faster than the
approach extended from [4].

Finally, we consider the impact of block length T on
the performance of the proposed algorithm. T represents the
trade-off between consumed energy in pilot symbols and not
sampling the fading process fast enough to have good channel
initializations. Fig. 4 and Fig. 5 show the effect at fading rates
of fdTs = 0.03, fdTs = 0.01 and fdTs = 0.005 with white
and correlated noise environments, respectively. The BER goes
up steeply when the block size causes the sampling rate of
fading process to fall below the Nyquist rate of 1/(2fdTs)
[10].

VI. CONCLUSIONS

In this letter, we propose a computationally efficient itera-
tive receiver for SIMO systems under fast-fading environment
with unknown spatially correlated noise based on the ECM
algorithm. The obtained performance for the fading rate of
10−2 is around 1.5dB and 2dB away from the performance
of ML receiver with perfect CSI and noise covariance matrix
in the white and correlated noise environments, respectively.
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Fig. 5. Effect of block length T in correlated noise environment.

Furthermore, we also make a comparison in terms of BER
and computational complexity with the approach based on
the SAGE algorithm which is proposed in [6], the approach
considering signal as the missing data in [4] for quasi-static
fading channels. We outline these approaches applied for
fast fading channels and show that our proposed approach
is computationally efficient yet maintains the same BER
performance.
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