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Abstract—Motivated by the numerous healthcare applications
of molecular communication inside blood vessels of the human
body, this work considers multiple relay/ cooperative nanoma-
chine (CN)-assisted molecular communication between a source
nanomachine (SN) and a destination nanomachine (DN) where
each nanomachine is mobile in a diffusion-advection flow channel.
Using the first hitting time model, the impact of the intermediate
CNs on the performance of the aforementioned system with
fully absorbing receivers is comprehensively analyzed taking into
account the presence of various degrading factors such as inter-
symbol interference, multi-source interference, and counting
errors. For this purpose, the optimal decision rules are derived
for symbol detection at each of the CNs as well as the DN.
Further, closed-form expressions are derived for the probabilities
of detection and false alarm at each CN and DN, along with the
overall end-to-end probability of error and channel achievable
rate for communication between the SN and DN. Simulation
results are presented to corroborate the theoretical results derived
and also, to yield insights into the system performance under
various mobility conditions.

Index Terms—Cooperative nanomachines, diffusion, fully ab-
sorbing receivers, Likelihood Ratio Test (LRT), mobile molecular
communication, optimal detection.

I. INTRODUCTION

NANOSCALE molecular communication (MC), where the
information exchange is done using chemical signals, has

garnered significant interest in recent times towards addressing
challenging problems in biomedical, industrial, and surveil-
lance applications [2], [3]. Currently, MC research can be cat-
egorized into three major areas: 1) Living system modelling,
which is aimed at gaining more insights into MC processes
occurring in live biological systems leveraging techniques
originating from communications engineering. For example, in
[4], information theoretic concepts were used to quantify the
information exchange in protein structures. 2) Living system
interface, which targets controlling the behavior of biological
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systems. As an example, in the work in [5], the redox modality
has been used to connect synthetic biology to electronics for
bio-device communication. 3) Artificial MC that is aimed
at the design, fabrication and testing of human-made MC
systems, which forms the focus of this work. A salient example
of such research is the inexpensive experimental platform that
was presented in [6], which can be used to simulate MC in
different environments, such as in cardiovascular systems and
others. Moreover, a paradigm for chemical communication
between gated nanoparticles was recently demonstrated in [7].

A. Motivation

Artificial MC has led to the development of novel applica-
tions [8]–[10] such as efficient chrono drug-delivery [11] and
human body monitoring using communicating nano-robots or
nanomachines, which has been used for detection and mon-
itoring of cholesterol or disease precursors in blood vessels
[12]. To realize an efficient chrono drug-delivery mechanism,
a nanomachine in one part of the body can sense an event and
communicate this information to a drug-delivery nanomachine
in another part of the body using molecular signaling via
the circulation system with advection flow [11]. However, in
such scenarios, the molecular concentration decays inversely
as the cube of the distance between the mobile transmitter
and mobile receiver nanomachines [13], which severely limits
the performance of such systems. This impediment can be
successfully overcome by relay or cooperative nanomachine
(CN)-assisted communication, where one or multiple mobile
CNs cooperate with a mobile source nanomachine (SN) in
forwarding information to a mobile destination nanomachine
(DN). This paradigm has been shown to significantly enhance
the communication range, thus making it a very promising
technology for such systems [14]. However, the decoding
accuracy at the DN in a multiple CN-assisted MC system relies
considerably on the detection performance of the intermediate
CNs that act as relays. The end-to-end performance can further
deteriorate due to other degrading effects such as mobil-
ity, inter-symbol interference (ISI), multi-source interference
(MSI), and counting errors at the intermediate CNs as well as
at the DN [15]. This motivates us to analyze the impact of
the detection performance of the intermediate mobile CNs on
the end-to-end performance of the multiple CN-assisted MC
system, along with the presence of ISI, MSI, and counting
errors, for a diffusion-advection blood flow channel. A detailed



overview and a comparative survey of related works in the
literature on CN-assisted MC is presented next.

B. Related Work and Contributions

In [16], a sense-and-forward (SF) relaying strategy has been
proposed for diffusive MC between two synthetic bacteria
nodes. The analysis therein has been extended in [17] to
MC with decode-and-forward (DF) relaying where it was
demonstrated that optimal combining of the direct and relayed
outputs led to an improvement in the reliability of communi-
cation. Authors in [18] derived an expression to characterize
the average probability of error for a two-hop DF molecular
network and subsequently proposed techniques to mitigate the
self-interference arising due to the reception and emission of
the same type of molecules at the relay. The analysis has
been further extended to amplify-and-forward (AF) relaying-
based MC with fixed and variable amplification factors in
[19]. The optimal amplification factor at the relay node that
minimizes the approximate average error probability of the
network is also derived therein. The authors in [20], [21]
proposed an energy efficient scheme for information molecule
synthesis employing simultaneous molecular information and
energy transfer (SMIET) relaying. Performance analysis was
presented in [21] for the resulting bit error probability and
cost of synthesis. In [22], the performance of a dual-hop
MC system with estimate-and-forward (EF) relaying has been
analyzed in terms of the resulting molecular throughput and
probability of error considering the effect of residual and
counting noises. The work in [23] analyzed the error rate
performance of a diffusion-based DF dual-hop MC system
inside a blood vessel of the human body, assuming pure
diffusion based MC with static nanomachines, which is not
practically feasible in diffusion-advection blood flow channels.
Moreover, the analysis therein formulates an optimization
problem to find the optimal threshold that minimizes the bit
error probability (BEP) at the DN. However, a closed-form
analytical expression has not been presented for the optimal
threshold. The work in [24] analyzed the bit error rate (BER)
performance of a dual-hop DF MC system in which the
time-dependent molecular concentrations are influenced by the
noise and ISI resulting from the channel. In the context of
multi-hop communication, the design and analysis of repeater
cells for Calcium junction channels was investigated in [25],
where signal molecules released by the transmitter are ampli-
fied by the intermediate repeaters to reach the receiver. The
probability of error analysis for a dual hop system presented
in [18] was extended to a multi-hop scenario in [26]. The
work in [27] analyzed diffusion based multi-hop MC between
bacteria colonies with several bacteria agents combining to act
as a single node. Further, a multi-hop system that uses bacteria
and virus particles as information carriers was proposed and
analyzed in [28] and [29], respectively. However, none of the
above works and the references therein consider nanomachine
mobility while analyzing the performance of the multiple CN-
assisted MC system in diffusion-advection blood flow channels
with practical/ realistic effects such as MSI, ISI and counting
errors. Moreover, the impact of the detection performance of
the intermediate CNs on the end-to-end performance of MC

for the aforementioned system has not been analyzed in any
of the existing works.

Therefore, this work comprehensively analyzes the impact
of intermediate CNs on the performance of a multiple CN-
assisted mobile MC system with fully absorbing receivers,
with the DF relaying protocol employed at each mobile CN.
For this purpose, the LRT-based optimal decision rules and
optimal thresholds are determined at each of the mobile CNs
and mobile DN in the presence of ISI, MSI, and counting
errors, incorporating also the detection performance at each of
the previous CNs. Closed-form expressions are subsequently
derived for the probabilities of detection and false alarm
to analytically characterize the detection performance of the
mobile CNs and DN. Finally, the analysis for the end-to-
end probability of error and the channel achievable rate is
presented for multiple mobile CN-assisted MC between the
mobile SN and DN nodes. It is worth mentioning that the
results in [1] considering the presence of a single cooperative
nanomachine (CN) can be obtained as a special case of the
results presented in this paper.

C. Organization

The organization of the rest of the paper is as follows. The
system model for the multiple mobile CN-assisted diffusive
molecular communication between the mobile SN and mobile
DN is presented in Section II. The optimal detection schemes
at the mobile CNs and mobile DN are given in Section III.
Comprehensive analyses for the probabilities of detection,
false alarm at the individual CN, DN, along with the end-
to-end probability of error and achievable rate are presented
in Section IV, Section V, and Section VI respectively. Sim-
ulation results are presented in Section VII, followed by the
conclusion in Section VIII.

II. SYSTEM MODEL

Consider a multiple CN-assisted MC system inside a blood
vessel, i.e., semi-infinite one-dimensional1 flow-induced fluid
medium with constant temperature and viscosity, where the
length of the propagation medium is large in comparison to
its width. Due to blood flow inside the vessel, the SN, all
the CNs and the DN drift with the flow, with vsn = vrn,k =
vdn = v, where vsn, vrn,k and vdn denote the velocities of
the SN, kth CN and DN, respectively, and v denotes the
drift velocity of the medium. The diffusion coefficients of the
mobile SN, kth mobile CN and the mobile DN are denoted
by Dsn, Drn,k and Ddn, respectively. As described in [40]–
[42], the movement of each nanomachine can be modeled as a
one dimensional Gaussian random walk where the movement
of each nanomachine does not disrupt the propagation of the

1Many biological channels such as capillaries, blood vessels and active
transportation channels can be modeled by a 1-D drift channel (e.g., [30]–
[32]). In particular, they can be modeled as 1-D semi-infinite channels, where
the length dimension is significantly larger than the width and height. Also the
molecular channels for communication on bio-chips can be approximated by a
1-D environment, since the microfluidic links connecting various components
within the chip are very narrow (e.g., [33]). Finally, it is important to note that
the 1-D diffusion channel has been frequently applied to investigate several
aspects of molecular communications [23], [32], [34]–[39].



information molecules. Moreover, due to the mobility with
different diffusion coefficients, the SN, CNs and the DN
may pass each other, resulting in different locations of the
nanomachines [42].

The communication between the SN and DN occurs in a
multiple hop fashion, where the SN and each of the CNs or
relays, i.e., R1, R2, · · · , RN , use different types of molecules
for transmission. The molecules transmitted by the SN and kth
CN propagate via Brownian motion with diffusion coefficient
Dp,sn and Dp,rn,k, respectively, in the diffusion-advection
blood flow channel. As described in [9], nanomachines such as
eukaryotic cells can be genetically modified to emit different
types of molecules for transmitting information, thus enabling
the intermediate CNs to operate in full duplex mode with
simultaneous transmission and reception. The communication
takes place over time-slots of duration τ as shown in Fig. 1,
where the jth slot is defined as the time interval [(j−1)τ, jτ ]
with j ∈ {1, 2, · · · }. At the beginning of the jth time-slot, the
SN emits either Q0 molecules of type-0 or remains silent, for
the transmission of information symbols 1 or 0, respectively,
with probabilities β and 1 − β. In the subsequent time-slots,
the intermediate DF-based CNs first decode the information
symbols using the number of molecules received from the
previous nanomachine, followed by retransmission to the next
nanomachine. The DN finally decodes the information symbol
using the number of type-N molecules received from the N th
CN RN at the end of the (j+N)th time-slot. Further, similar to
several existing works [15], [23], [43]–[45] and the references
therein, this work assumes the nanomachines to be synchro-
nized in time and the transmitted molecules do not interfere or
collide with each other. Moreover, once these molecules reach
the receiver, they are assumed to be absorbed immediately
and not propagate further in the medium. Although, several
works on synchronization between static transmitter (TX) and
receiver (RX) exist (e.g., [46]), synchronization for the mobile
scenario is still not well investigated in the literature. To the
best of our knowledge, only the work in [47] considered a
synchronization scheme with nanomachine mobility which is
applicable only for a fixed TX and mobile RX. Therefore,
an interesting future research direction would be to develop
new synchronization schemes for molecular communication
systems with mobile TX and mobile RX in pure and flow-
induced diffusive channels.

Due to the stochastic nature of the diffusive channel, the
times of arrival of the molecules emitted by a transmitter
nanomachine x, at a receiver nanomachine y, are random in
nature, which can span multiple time slots. Let fxy(t; i) denote
the probability density function (PDF) of the first hitting time,
i.e., the time required for a molecule to reach the nanomachine
y. The probability qxyj−i, of a molecule emitted by nanomachine
x during slot i ∈ {1, 2, · · · , j}, arriving at nanomachine y
during time-slot j, is obtained as [43, Eq. (1)]

qxyj−i =

∫ (j−i+1)τ

(j−i)τ

fxy(t; i)dt. (1)

Fig. 1. Time-slotted diffusive MC between two nanomachines x and y.

In a diffusion-advection flow2 channel, the PDF fxy(t; i), for
mobile nanomachines x and y with diffusive coefficients Dx,
Dy and vx = vy = v, is given by [42, Eq. (16)]

fxy(t; i) =

√
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π
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2
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)
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(
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2

√
tDp,eff

iτDtot(iτDtot + tDp,eff)

)
, (2)

where d0xy is the initial Euclidean distance between the
nanomachines x and y at time instant t = 0, erf(·) denotes the
standard error function [48] and the quantities Dtot and Dp,eff
are defined as, Dtot = Dx + Dy and Dp,eff = Dy + Dp,x,
respectively, where Dp,x is the diffusion coefficient of the
molecules emitted by the mobile nanomachine x. It is worth
noting that the PDF of the first hitting time given in (2)
is identical to the PDF of the first hitting time for mobile
nanomachines x and y in pure diffusion channels without flow
[40, Eq. (6)]. This is due to the fact that the effective flow
velocity veff = v − vy = 0 since nanomachine y is moving
with the flow, i.e., vy = v. A more detailed derivation for the
PDF of the first hitting time is given in [42].

The number of type-0 molecules received at R1 during the
jth time-slot [(j − 1)τ, jτ ], corresponding to transmission of
the symbol x[j] ∈ {0, 1} by the SN, can be expressed as

Rsr[j] = Ssr[j] +Nsr[j] + Csr[j] + Isr[j], (3)

with the various quantities are described as follows. The
quantity Ssr[j] denotes the number of received molecules
corresponding to the transmission in the current slot [(j −
1)τ, jτ ]. This follows the Binomial distribution [32], [49] with
parameters Q0[j]x[j] and qsr0 , i.e., B(Q0[j]x[j], q

sr
0 ), where

qsr0 denotes the probability that a transmitted molecule in a

2Similar to several existing works [23], [32], [34]–[39], [45] and the
references therein, this work also assumes that neither nanomachines nor
molecules have any impact on the flow. This assumption can be justified as
follows. First, we assume that the concentration of the information molecules
is very low compared to the fluid molecules and hence the transmission of
information molecules does not affect the flow profile of the fluidic medium.
Second, we also assume that the RX perfectly absorbs the information
molecules, but does not influence the fluid molecules, i.e., the flow profile
remains constant. This can be accomplished by making the RX sufficiently
small. Also, transmitter (TX) is assumed to be a point source. It is worth
mentioning that these TX and RX models with constant advection velocity
have been frequently considered in 1-D diffusive molecular communication
literature, e.g., [23], [32], [34]–[39], [45].



particular slot reaches R1 within the same slot. The quantity
Nsr[j] denotes the MSI3 and follows a Gaussian distribution
with mean µo and variance σ2

o when the number of interfering
sources is sufficiently large [50]. The term Csr[j] denotes the
counting error pertaining to the molecules received at the CN
and can be modeled as a Gaussian distributed random variable
with zero mean and variance σ2

c [j]. The latter quantity depends
on the average number of molecules received at the CN, and
is given as σ2

c [j] = E{Rsr[j]} [15], [51]. The quantity Isr[j]
is the ISI4 arising in slot j due to transmissions in the previous
j − 1 slots, which is determined as

Isr[j] = Isr[1] + Isr[2] + · · ·+ Isr[j − 1], (4)

where Isr[i] ∼ B(Q0[j − i]x[j − i], qsri ), 1 ≤ i ≤ j − 1,
denotes the number of stray molecules received from the
transmission of the symbol in the previous (j − i)th slot.
The parameter qsri denotes the probability that a molecule
transmitted in (j − i)th slot reaches R1 in the current jth
slot. Also, note that the noise Nsr[j], the number of molecules
received in the current slot Ssr[j], and Isr[j] are independent
[15]. The Binomial distribution for Ssr[j] can be approximated
by the Gaussian distribution5 with mean µsr[j] = Q0[j]x[j]q

sr
0

and variance σ2
sr[j] = Q0[j]x[j]q

sr
0 (1 − qsr0 ), i.e., Ssr[j] ∼

N (µsr[j], σ
2
sr[j]) [52] when the number of molecules released

by the SN is sufficiently large. Similarly, the binomial distri-
bution of Isr[i], 1 ≤ i ≤ j − 1 can be approximated as

Isr[i] ∼ N (Q0[j − i]x[j − i]qsri ,

Q0[j − i]x[j − i]qsri (1− qsri )).

Further, note that the terms Ssr[j] and Isr[i], i = 1, 2, · · · , j−1
are independent since the molecules transmitted in different
time-slots do not interfere with each other [15], [23].

Consider now any intermediate CN Rn+1 corresponding to
n = 1, 2, · · · , N − 1. The number of molecules received at
Rn+1 corresponding to the transmission of x̂[j + n − 1] ∈
{0, 1} by the previous hop CN Rn, emitting Qn[j + n]
molecules, during the time-slot [(j + n − 1)τ, (j + n)τ ] can
be expressed as

Rrr[j + n] =Srr[j + n] +Nrr[j + n] + Crr[j + n]

+ Irr[j + n], (5)

where Srr[j+n] ∼ N (Qn[j+n]x̂[j+n−1]qrr0 ,Qn[j+n]x̂[j+
n−1]qrr0 (1−qrr0 )) is the number of type-n molecules that are
received by Rn+1 in the current slot [(j + n− 1)τ, (j + n)τ ]
which is transmitted by Rn in the same slot. The quantity
Nrr[j + n] ∼ N (µo, σ

2
o) is the MSI at Rn+1 arising due

to molecules received from the other sources. The term
Crr[j + n] ∼ N (0,E{Rrr[j + n]}) denotes the counting
errors, while Irr[j + n] represents the ISI at Rn+1 that is

3Multi-source interference (MSI) arises from the transmissions of other
sources that use the same type of molecules. Also, note that this work
considers a worst case scenario where each of the CNs and the DN experience
the interference from other sources existing in the same medium.

4Inter-symbol interference (ISI) at the receiving nanomachine arises due
to Brownian motion, which results in a fraction of the molecules emitted by
the transmitting nanomachine at the beginning of a given time-slot, arriving
randomly in later time-slots.

5This approximation is reasonable when Q0[j]qsr0 > 5 and Q0[j](1 −
qsr0 ) > 5 [15].

given as Irr[j + n] =
∑j+n−1

i=n+1 Irr[i], with Irr[i] distributed
as Irr[i] ∼ N (Qn[j+2n−i]x̂[j+2n−i−1]qrri−n,Qn[j+2n−
i]x̂[j+2n−i−1]qrri−n(1−qrri−n)), n+1 ≤ i ≤ j+n−1. Note
that Irr[i] denotes the number of stray molecules received
due to transmission in the previous (j + 2n − i)th slot. The
number of molecules received at the DN, corresponding to the
transmission by the last CN RN using QN [j+N ], during the
time slot [(j +N − 1)τ, (j +N)τ ], can be expressed as

Rrd[j +N ] =Srd[j +N ] + Ird[j +N ] +Nrd[j +N ]

+ Crd[j +N ], (6)

where Srd[j +N ] follows the distribution

Srd[j +N ] ∼ N (QN [j +N ]x̂[j +N − 1]qrd0 ,

QN [j +N ]x̂[j +N − 1]qrd0 (1− qrd0 )).

The quantities Nrd[j + N ] ∼ N (µo, σ
2
o) and Crd[j +

N ] ∼ N (0,E{Rrd[j + N ]}) denote the MSI and counting
errors, respectively, at the DN. Similarly, the ISI component
Ird[j +N ] at the DN is Ird[j +N ] =

∑j+N−1
i=N+1 Ird[i], where

Ird[i], N + 1 ≤ i ≤ j +N − 1 is distributed as

Ird[i]∼N (QN [j + 2N − i]x̂[j + 2N − i− 1]qrdi−N ,

QN [j + 2N − i]x̂[j + 2N − i− 1]qrdi−N (1−qrdi−N )).

The optimal decision rules at each of the receiving nanoma-
chines, i.e., all the CNs and the DN, are derived in the next
section followed by a comprehensive analysis of the resulting
probabilities of detection and false alarm, probability of error,
and end-to-end achievable rate.

III. DETECTION SCHEMES AT THE DN AND EACH CN
A. Optimal Decision Rule at the First CN

Using the model in (3), the problem for symbol detection at
R1 can be formulated as the binary hypothesis testing problem

H0 : Rsr[j] =Isr[j] +Nsr[j] + Csr[j]

H1 : Rsr[j] =Ssr[j] + Isr[j] +Nsr[j] + Csr[j],
(7)

where the hypotheses H0 and H1 above correspond to the
transmission of binary symbols 0 and 1, respectively, by the
SN, during the jth time-slot. The number of molecules Rsr[j]
received at R1, corresponding to the individual hypotheses,
are distributed as

H0 : Rsr[j] ∼ N (µsr,0[j], σ
2
sr,0[j])

H1 : Rsr[j] ∼ N (µsr,1[j], σ
2
sr,1[j]),

(8)

where the means µsr,0[j], µsr,1[j] and variances σ2
sr,0[j],

σ2
sr,1[j] corresponding to hypotheses H0, H1, respectively,

can be obtained starting with the expression in (3) and are
determined as given below

µsr,0[j] =β

j−1∑
i=1

Q0[j − i]qsri + µo, (9)

µsr,1[j] =Q0[j]q
sr
0 + µsr,0[j], (10)

σ2
sr,0[j] =

j−1∑
i=1

{βQ0[j − i]qsri (1− qsri ) + β(1− β)

×(Q0[j − i]qsri )2
}
+ σ2

o + µsr,0[j], (11)

σ2
sr,1[j] =Q0[j]q

sr
0 (2− qsr0 ) + σ2

sr,0[j]. (12)



Using the PDFs for p(Rsr[j]|H0) and p(Rsr[j]|H1) stated
in (8), the following result presents the LRT-based optimal
decision rule at R1 for symbol detection.

Theorem 1: The LRT-based optimal decision rule at R1

corresponding to transmission by the SN, during the jth time-
slot [(j − 1)τ, jτ ], is obtained as

T (Rsr[j]) = Rsr[j]
H1

≷
H0

γ′
sr[j], (13)

where γ′
sr[j] is the optimal decision threshold defined as

γ′
sr[j] =

√
γsr[j]−αsr[j] with the quantities γsr[j] and αsr[j]

given as

αsr[j] =
µsr,1[j]σ

2
sr,0[j]− µsr,0[j]σ

2
sr,1[j]

σ2
sr,1[j]− σ2

sr,0[j]
. (14)

γsr[j] =
2σ2

sr,1[j]σ
2
sr,0[j]

σ2
sr,1[j]− σ2

sr,0[j]
ln

[
(1− β)

β

√
σ2
sr,1[j]

σ2
sr,0[j]

]
+(αsr[j])

2

+
µ2
sr,1[j]σ

2
sr,0[j]− µ2

sr,0[j]σ
2
sr,1[j]

σ2
sr,1[j]− σ2

sr,0[j]
. (15)

Proof: The log likelihood ratio test (LLRT) at R1 is
obtained as

Λ(Rsr[j]) = ln

[
p(Rsr[j]|H1)

p(Rsr[j]|H0)

]
H1

≷
H0

ln

[
1− β

β

]
. (16)

On substituting the expressions for the PDFs p(Rsr[j]|H1) and
p(Rsr[j]|H0) obtained in (8) in the above equation, followed
by simplification, the test statistic Λ(Rsr[j]) reduces to

Λ(Rsr[j]) = ln

√
σ2
sr,0[j]

σ2
sr,1[j]

+
1

2σ2
sr,0[j]σ

2
sr,1[j]

f(Rsr[j]), (17)

where the quantity f(Rsr[j]) above is defined in (18) and can
be further simplified as shown below

f(Rsr[j])

,(Rsr[j]−µsr,0[j])
2σ2

sr,1[j]−(Rsr[j]−µsr,1[j])
2σ2

sr,0[j]
(18)

=R2
sr[j](σ

2
sr,1[j]−σ2

sr,0[j])+µ2
sr,0[j]σ

2
sr,1[j]−µ2

sr,1[j]σ
2
sr,0[j]

+ 2Rsr[j](µsr,1[j]σ
2
sr,0[j]− µsr,0[j]σ

2
sr,1[j])

=(σ2
sr,1[j]− σ2

sr,0[j])(Rsr[j] + αsr[j])
2 + µ2

sr,0[j]σ
2
sr,1[j]

−µ2
sr,1[j]σ

2
sr,0[j]−(µsr,1[j]σ

2
sr,0[j]−µsr,0[j]σ

2
sr,1[j])αsr[j],

with the quantity αsr[j] as given in (14). Substituting the
above expression for f(Rsr[j]) in (17) followed by merging
the terms independent of the received molecules Rsr[j] with
the threshold on the right hand side of the test, the LLRT
reduces to

(Rsr[j] + αsr[j])
2

H1

≷
H0

γsr[j], (19)

where the decision threshold γsr[j] is as stated in (15) in
Theorem 1. It can be readily observed from (10) and (12)
that αsr[j] ≥ 0 and γsr[j] ≥ 0 are non-negative, which arises
due to the fact that µsr,1[j] > µsr,0[j] and σ2

sr,1[j] > σ2
sr,0[j].

Hence, considering the square root of the test statistic in (19)
yields the optimal test given in (13) of Theorem 1.

B. Optimal Decision Rule at the DN

The symbol detection problem at the DN corresponding to
the transmission by RN in the (j + N)th time-slot can be
formulated as the binary hypothesis testing problem

H0 : Rrd[j +N ] =Ird[j +N ] +Nrd[j +N ]

+ Crd[j +N ]

H1 : Rrd[j +N ] =Srd[j +N ] + Ird[j +N ]

+Nrd[j +N ] + Crd[j +N ],

(20)

where H0 and H1 denote the null and alternative hypotheses
corresponding to the transmission of the decoded symbols
x̂[j +N − 1] = 0 and x̂[j +N − 1] = 1, respectively, by the
RN in the (j+N)th time slot. The distributions of Rrd[j+N ]
corresponding to the two hypotheses in (20) can be determined
as

H0 : Rrd[j +N ] ∼ N (µrd,0[j +N ], σ2
rd,0[j +N ])

H1 : Rrd[j +N ] ∼ N (µrd,1[j +N ], σ2
rd,1[j +N ]),

(21)

where the mean µrd,0[j+N ] and variance σ2
rd,0[j+N ] under

the null hypothesis H0 are [41, Appendix A]

µrd,0[j +N ] =β

j+N−1∑
i=N+1

QN [j+2N−i]qrdi−N + µo, (22)

σ2
rd,0[j +N ] =

j+N−1∑
i=N+1

[βQN [j+2N−i]qrdi−N (1− qrdi−N ) + β

× (1− β)(QN [j+2N−i]qrdi−N )2]

+ σ2
o + µrd,0[j +N ]. (23)

Similarly, the mean µrd,1[j+1] and variance σ2
rd,1[j+1] cor-

responding to the alternative hypothesis H1 are [41, Appendix
B]

µrd,1[j +N ] =QN [j+N ]qrd0 + µrd,0[j +N ], (24)

σ2
rd,1[j +N ] =QN [j+N ]qrd0 (2− qrd0 ) + σ2

rd,0[j + 1]. (25)

Using the PDFs obtained in (21), the optimal test at the DN
is given below.

Theorem 2: The optimal detector at the DN, for the multiple
CN-assisted diffusive mobile molecular communication sys-
tem, corresponding to the transmission by RN in the (j+N)th
time-slot, is given by

T (Rrd[j +N ]) = Rrd[j +N ]
H1

≷
H0

γ′
rd[j +N ], (26)

where the optimal decision threshold γ′
rd[j +N ] is given as,

γ′
rd[j +N ] =

√
γrd[j +N ]− αrd[j +N ], (27)

with the quantity αrd[j +N ] defined as

αrd[j +N ]

=
µrd,1[j+N ]σ2

rd,0[j+N ]−µrd,0[j+N ]σ2
rd,1[j+N ]

σ2
rd,1[j+N ]−σ2

rd,0[j+N ]
.

(28)

The expression for γrd[j + N ] is given in (29), where the



γrd[j +N ] = ln

[√
σ2
rd,1[j+N ]

σ2
rd,0[j+N ]

βrd

]
2σ2

rd,1[j +N ]σ2
rd,0[j +N ]

σ2
rd,1[j +N ]−σ2

rd,0[j +N ]
+(αrd[j +N ])2

+
µ2
rd,1[j +N ]σ2

rd,0[j +N ]− µ2
rd,0[j +N ]σ2

rd,1[j +N ]

σ2
rd,1[j +N ]− σ2

rd,0[j +N ]
, (29)

quantity βrd is defined as

βrd=
(1−β)(1−P

(N)
FA [j+N−1])−β(1−P

(N)
D [j+N−1])

βP
(N)
D [j+N−1]−(1−β)P

(N)
FA [j+N−1]

. (30)

Proof: Given in Appendix A.
It is worth noticing that the optimal decision threshold in (27)
of Theorem 2 additionally depends on the detection perfor-
mance of RN , i.e., probability of detection P

(N)
D [j +N − 1]

and probability of false alarm P
(N)
FA [j+N − 1]. In contrast to

the results obtained above for the DN, the decision rule at R1

in Theorem 1 does not depend on the detection performance
of any other CNs as it directly communicates with the SN.
Further, on the similar lines given in Appendix A, one can
also readily derive the optimal decision rules for symbol
detection at the intermediate CNs Rn+1, n = 1, 2, · · · , N −1,
corresponding to the transmission by Rn in (j+n−1)th time
slot.

IV. DETECTION PERFORMANCE ANALYSIS

This section characterizes the detection performance at the
various nodes in the multiple CN-assisted diffusive mobile
molecular communication system. Result below gives the
expressions for the resulting probabilities of detection and false
alarm at the DN.

Theorem 3: The average probabilities of detection PD and
false alarm PFA at the DN corresponding to the transmission
by the SN in slots 1 to k, in the multiple CN-assisted diffusion-
advection flow molecular communication system with mobile
nanomachines, are given as

PD =
1

k

k∑
j=1

P d
D[j +N ], PFA =

1

k

k∑
j=1

P d
FA[j +N ], (31)

where the probabilities of detection P d
D[j+N ] and false alarm

P d
FA[j +N ] at the DN, in the (j +N)th slot, are given as

P d
D[j +N ]

=Q

(
γ′
rd[j+N ]−µrd,0[j+N ]

σrd,0[j +N ]

)(
1−P

(N)
D [j+N−1]

)
+Q

(
γ′
rd[j+N ]−µrd,1[j+N ]

σrd,1[j +N ]

)
P

(N)
D [j+N−1], (32)

P d
FA[j +N ]

=Q

(
γ′
rd[j+N ]−µrd,0[j+N ]

σrd,0[j +N ]

)(
1−P

(N)
FA [j+N−1]

)
+Q

(
γ′
rd[j+N ]−µrd,1[j+N ]

σrd,1[j +N ]

)
P

(N)
FA [j+N−1]. (33)

The threshold γ′
rd[j + N ] is as defined in (27) and the Q-

function Q(·) denotes the tail probability of the standard
Normal random variable.

Proof: The probability of detection P d
D[j+N ] at the DN,

corresponding to the transmission by RN in the (j+N)th slot,
can be derived using the test statistic T (Rrd[j +N ]) given in
(26) as

P d
D[j +N ]

=Pr(T (Rrd[j +N ]) > γ′
rd[j +N ]|H1)

=

2N−1∑
l=0

Pr(Rrd[j +N ] > γ′
rd[j +N ]|ξl)Pr(ξl|H1), (34)

where Pr(ξl|H1) is given in (64) and Pr(Rrd[j+N ] > γ′
rd[j+

N ]|ξl) can be obtained using (59) as

Pr(Rrd[j +N ] > γ′
rd[j +N ]|ξl)

=

Q
(

γ′
rd[j+N ]−µrd,0[j+N ]

σrd,0[j+N ]

)
if l = 0, 2, · · · , 2N−2

Q
(

γ′
rd[j+N ]−µrd,1[j+N ]

σrd,1[j+N ]

)
if l = 1, 3, · · · , 2N−1.

(35)

Finally, employing the results in (64) and (35) in (34), the
expression for P d

D[j +N ] is obtained as

P d
D[j +N ]

=
∑

l=0,2,··· ,2N−2

Q

(
γ′
rd[j +N ]− µrd,0[j +N ]

σrd,0[j +N ]

)

×

 ∏
n∈Ψ1

l

P
(n)
D [j+n−1]

∏
n∈Ψ̄1

l

(
1−P

(n)
D [j+n−1]

)
+

∑
l=1,3,··· ,2N−1

Q

(
γ′
rd[j +N ]− µrd,1[j +N ]

σrd,1[j +N ]

)

×

 ∏
n∈Ψ1

l

P
(n)
D [j+n−1]

∏
n∈Ψ̄1

l

(
1−P

(n)
D [j+n−1]

) . (36)

Considering the 2N possible states ξl for the N CNs and the
corresponding sets Ψ1

l , Ψ̄1
l , the above expression for P d

D[j+N ]
reduces to the one stated in (32), where the following results
have been used in the simplification process

∑
l=0,2,··· ,2N−2

 ∏
n∈Ψ1

l

P
(n)
D [j+n−1]

∏
n∈Ψ̄1

l

(
1−P

(n)
D [j+n−1]

)
=1− P

(N)
D [j +N − 1], (37)

and

∑
l=1,3,··· ,2N−1

 ∏
n∈Ψ1

l

P
(n)
D [j+n−1]

∏
n∈Ψ̄1

l

(
1−P

(n)
D [j+n−1]

)
=P

(N)
D [j +N − 1]. (38)



For instance, the above results can be readily verified for a
system with N = 2 CNs as follows

∑
l=0,2

 ∏
n∈Ψ1

l

P
(n)
D [j+n−1]

∏
n∈Ψ̄1

l

(
1−P

(n)
D [j+n−1]

)
=
(
1−P

(1)
D [j]

)(
1−P

(2)
D [j+1]

)
+ P

(1)
D [j]

(
1−P

(2)
D [j+1]

)
=1− P

(2)
D [j + 1],∑

l=1,3

 ∏
n∈Ψ1

l

P
(n)
D [j+n−1]

∏
n∈Ψ̄1

l

(
1−P

(n)
D [j+n−1]

)
=
(
1−P

(1)
D [j]

)
P

(2)
D [j+1] + P

(1)
D [j]P

(2)
D [j+1]

=P
(2)
D [j + 1].

Similarly, the probability of false alarm P d
FA[j + N ] at the

DN, in the (j +N)th slot, can be derived as

P d
FA[j +N ]

=Pr(T (Rrd[j +N ]) > γ′
rd[j +N ]|H0)

=

2N−1∑
l=0

Pr(Rrd[j+N ] > γ′
rd[j+N ]|ξl)Pr(ξl|H0). (39)

Further, substituting the expressions for Pr(ξl|H0) from (63)
and Pr(Rrd[j+N ] > γ′

rd[j+N ]|ξl) from (35) in (39), the
expression for P d

FA[j +N ] follows as

P d
FA[j +N ]

=
∑

l=0,2,··· ,2N−2

Q

(
γ′
rd[j +N ]− µrd,0[j +N ]

σrd,0[j +N ]

)

×

 ∏
n∈Ψ0

l

P
(n)
FA [j+n−1]

∏
n∈Ψ̄0

l

(
1−P

(n)
FA [j+n−1]

)
+

∑
l=1,3,··· ,2N−1

Q

(
γ′
rd[j +N ]− µrd,1[j +N ]

σrd,1[j +N ]

)

×

 ∏
n∈Ψ0

l

P
(n)
FA [j+n−1]

∏
n∈Ψ̄0

l

(
1−P

(n)
FA [j+n−1]

) . (40)

Considering the 2N possible states ξl similar to (37) and (38),
one can demonstrate the results below

∑
l=0,2,··· ,2N−2

 ∏
n∈Ψ0

l

P
(n)
FA [j+n−1]

∏
n∈Ψ̄0

l

(
1−P

(n)
FA [j+n−1]

)
=1− P

(N)
FA [j +N − 1], (41)

and

∑
l=1,3,··· ,2N−1

 ∏
n∈Ψ0

l

P
(n)
FA [j+n−1]

∏
n∈Ψ̄0

l

(
1−P

(n)
FA [j+n−1]

)
=P

(N)
FA [j +N − 1]. (42)

Substituting these results in equation (40) above yields the
desired result for P d

FA[j +N ] stated in (33).

A. Probabilities of Detection and False Alarm at CNs
The probabilities of detection P

(n+1)
D [j+n] and false alarm

P
(n+1)
FA [j + n] at Rn+1, corresponding to the transmission by

Rn in the (j+n)th slot, can be described in terms of the test

statistic T (Rrr[j + n]) = Rrr[j + n]
H1

≷
H0

γ′
rr[j + n] as

P
(n+1)
D [j + n]

=Pr(T (Rrr[j + n]) > γ′
rr[j + n]|H1)

=

2n−1∑
l=0

Pr(Rrr[j+n] > γ′
rr[j+n]|ξl)Pr(ξl|H1), (43)

P
(n+1)
FA [j + n]

=Pr(T (Rrr[j + n]) > γ′
rr[j + n]|H0)

=

2n−1∑
l=0

Pr(Rrr[j+n] > γ′
rr[j+n]|ξl)Pr(ξl|H0), (44)

where γ′
rr[j+n] is the optimal decision threshold at Rn+1. The

above expressions for P
(n+1)
D [j+n] and P

(n+1)
FA [j+n] can be

simplified along lines similar to the proof of Theorem 3 to
yield

P
(n+1)
D [j + n]

=
∑

l=0,2,··· ,2n−2

Q

(
γ′
rr[j + n]− µrr,0[j + n]

σrr,0[j + n]

)

×

 ∏
n∈Ψ1

l

P
(n)
D [j+n−1]

∏
n∈Ψ̄1

l

(
1−P

(n)
D [j+n−1]

)
+

∑
l=1,3,··· ,2n−1

Q

(
γ′
rr[j + n]− µrr,1[j + n]

σrr,1[j + n]

)

×

 ∏
n∈Ψ1

l

P
(n)
D [j+n−1]

∏
n∈Ψ̄1

l

(
1−P

(n)
D [j+n−1]

)
=Q

(
γ′
rr[j+n]−µrr,0[j+n]

σrr,0[j+n]

)(
1−P

(n)
D [j+n−1]

)
+Q

(
γ′
rr[j+n]−µrr,1[j+n]

σrr,1[j+n]

)
P

(n)
D [j+n−1]. (45)

P
(n+1)
FA [j + n]

=
∑

l=0,2,··· ,2n−2

Q

(
γ′
rr[j + n]− µrr,0[j + n]

σrr,0[j + n]

)

×

 ∏
n∈Ψ0

l

P
(n)
FA [j+n−1]

∏
n∈Ψ̄0

l

(
1−P

(n)
FA [j+n−1]

)
+

∑
l=1,3,··· ,2n−1

Q

(
γ′
rr[j + n]− µrr,1[j + n]

σrr,1[j + n]

)

×

 ∏
n∈Ψ0

l

P
(n)
FA [j+n−1]

∏
n∈Ψ̄0

l

(
1−P

(n)
FA [j+n−1]

)
=Q

(
γ′
rr[j+n]−µrr,0[j+n]

σrr,0[j+n]

)(
1−P

(n)
FA [j+n−1]

)
+Q

(
γ′
rr[j+n]−µrr,1[j+n]

σrr,1[j+n]

)
P

(n)
FA [j+n−1]. (46)



V. BIT-ERROR PROBABILITY ANALYSIS

The end-to-end probability of bit-error for the multiple CN-
assisted MC process between the SN and DN is given by the
result below.

Theorem 4: The average probability of error (Pe) at the
DN corresponding to transmission by the SN in slots 1 to k
is given as

Pe=
1

k

k∑
j=1

{(
1− P d

D[j +N ]
)
β +P d

FA[j +N ](1−β)
}
, (47)

where β denotes the prior probability of the hypothesis H1 and
the expressions for the probabilities P d

D[j+N ] and P d
F [j+N ]

are determined in (32) and (33).
Proof: The average probability of error Pe for slots 1 to

k can be expressed as

Pe=
1

k

k∑
j=1

P d
e [j +N ], (48)

where P d
e [j + N ] denotes the probability of error at the DN

in slot j+N , corresponding to the transmission by the SN in
slot j. The quantity P d

e [j +N ] can be derived as [41], [53]

P d
e [j +N ]

=Pr(decide H0,H1 true) + Pr(decide H1,H0 true)

=(1− P d
D[j +N ])Pr(H1) + P d

FA[j +N ]Pr(H0)

=(1− P d
D[j +N ])β + P d

FA[j +N ](1− β). (49)

Substituting the above expression for P d
e [j+N ] in (48) yields

the desired result for Pe as stated in (47).
Remark: The average probability of error (Pe) for a single CN-
assisted dual-hop system considered in [1] can now be readily
obtained by substituting N = 1 in the above result as

Pe=
1

k

k∑
j=1

{(
1− P d

D[j + 1]
)
β + P d

FA[j + 1](1− β)
}
,

(50)

where the expressions for the probabilities P d
D[j + 1] and

P d
F [j + 1] for the CN N = 1 can be obtained using (32)

and (33) as

P d
D[j + 1]=Q

(
γ′
rd[j + 1]− µrd,0[j + 1]

σrd,0[j + 1]

)
(1− P

(1)
D [j])

+Q

(
γ′
rd[j + 1]− µrd,1[j + 1]

σrd,1[j + 1]

)
P

(1)
D [j], (51)

P d
FA[j + 1]=Q

(
γ′
rd[j + 1]− µrd,0[j + 1]

σrd,0[j + 1]

)
(1− P

(1)
FA[j])

+Q

(
γ′
rd[j + 1]− µrd,1[j + 1]

σrd,1[j + 1]

)
P

(1)
FA[j], (52)

where the probabilities of detection (P
(1)
D [j]) and false alarm

(P
(1)
FA[j]) at the intermediate CN are obtained using the test

in (13) as

P
(1)
D [j] = Q

(
γsr[j]− µsr,1[j]

σsr,1[j]

)
, (53)

P
(1)
FA[j] = Q

(
γsr[j]− µsr,0[j]

σsr,0[j]

)
. (54)

TABLE I
SIMULATION PARAMETERS

Parameter Value
Diffusion coefficient Dp [40] 5× 10−10 m2/s

Drift velocity v [54], [55] 1× 10−3 m/s
Slot duration τ [3] 10 ms

Number of molecules emitted for symbol 1 30, 60, 100
MSI noise mean µo and variance σ2

o [1] 10
Prior probability β 0.5

Further, note that the above expressions (53) and (54) can also
be used along with (32), (33) , (45), (46) in (31) to analyze
the end-to-end error performance of the systems with N ≥ 2
CNs.

VI. ACHIEVABLE RATE ANALYSIS

Let the discrete random variables X[j] and Y [j + N ]
represent the transmitted and received symbol in the jth
and (j + N)th slots, respectively. The mutual information
I(X[j], Y [j+N ]) between X[j] and Y [j+N ] for the multiple
CN-assisted link can be expressed as

I(X[j], Y [j +N ])

=Pr(y[j +N ] = 0|x[j] = 0)Pr(x[j] = 0)

× log2
Pr(y[j +N ] = 0|x[j] = 0)∑

x[j]∈{0,1}
Pr(y[j +N ] = 0|x[j])Pr(x[j])

+ Pr(y[j +N ] = 0|x[j] = 1)Pr(x[j] = 1)

× log2
Pr(y[j +N ] = 0|x[j] = 1)∑

x[j]∈{0,1}
Pr(y[j +N ] = 0|x[j])Pr(x[j])

+ Pr(y[j +N ] = 1|x[j] = 0)Pr(x[j] = 0)

× log2
Pr(y[j +N ] = 1|x[j] = 0)∑

x[j]∈{0,1}
Pr(y[j +N ] = 1|x[j])Pr(x[j])

+ Pr(y[j +N ] = 1|x[j] = 1)Pr(x[j] = 1)

× log2
Pr(y[j +N ] = 1|x[j] = 1)∑

x[j]∈{0,1}
Pr(y[j +N ] = 1|x[j])Pr(x[j])

, (55)

where Pr(x[j] = 1) = β, Pr(x[j] = 0) = 1 − β, and
Pr(y[j+N ] ∈ {0, 1}|x[j] ∈ {0, 1}) can be expressed in terms
of (P d

D[j +N ]) and (P d
F [j +N ]) as

Pr(y[j +N ] = 0|x[j] = 0) = 1− P d
F [j +N ],

Pr(y[j +N ] = 1|x[j] = 0) = P d
F [j +N ],

Pr(y[j +N ] = 0|x[j] = 1) = 1− P d
D[j +N ],

Pr(y[j +N ] = 1|x[j] = 1) = P d
D[j +N ].

The channel achievable rate C[k] of the CN-assisted diffu-
sive channel with mobile nanomachines, as k approaches ∞
[43], is now obtained by maximizing the mutual information
I(X[j], Y [j + N ]) over the slots 1 ≤ j ≤ k with respect to
the input distribution parameter β as

C[k] = max
β

1

(k +N)

k∑
j=1

I(X[j], Y [j +N ]) bits/slot. (56)
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Fig. 2. Multiple CN-assisted diffusive mobile molecular system with N = 2
CNs where (a) demonstrates the detection performance at the DN with µo =
σ2
o = 10 and (b) demonstrates the error rate performance at the DN versus

MSI noise variance σ2
o with µo = 10.

The factor 1
k+N arises in the above expression due to the fact

that k+N time-slots are required to communicate k bits from
the SN to the DN in the multiple CN-assisted system.

VII. SIMULATION RESULTS

This section presents simulation results to demonstrate the
impact of intermediate CNs on the end-to-end performance of
the multiple CN-assisted diffusive mobile molecular system
under various mobility conditions. For simulation purposes,
the various parameters are set as mentioned in Table I unless
otherwise stated. The results are computed for a total of
k = 10 slots using Monte-Carlo simulations considering 105

iterations with Q0[j] = Q0 for x[j] = 1, Qn[j + n] = Qn

for x̂[j + n − 1] = 1, n = 1, 2 and the diffusion coefficients,
i.e., Dp,sn = Dp,rn,k = Dp,∀k are the same for different
types of molecules emitted by SN and CNs. Here, we would
like to emphasize that the above assumption is just to gain
important insights into the system performance. However, the
analysis presented in the paper considers different diffusion
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Fig. 3. Multiple CN-assisted diffusive mobile molecular system with N = 2
CNs, where (a) demonstrates the detection performance at the DN with µo =
σ2
o = 10 and (b) demonstrates the error rate performance at the DN versus

MSI noise variance (σ2
o) with µo = 10.

coefficients for different types of molecules. Further, the MSI
at each receiving nanomachine is modeled as a Gaussian
random variable with mean µo and variance σ2

o . The counting
error is also modeled as a Gaussian distributed random variable
with zero mean and variance σ2

c [j] that depends on the average
number of molecules received at the nanomachine.

Fig. 2 demonstrates the performance at the DN considering
different detection performances at R1, where R1, R2, and
the DN are considered at initial distances 1µm, 2µm, and
3µm, respectively, from the SN at time instant t = 0.
For simulations, the received symbols corresponding to the
transmission by the mobile SN are decoded at R1 with the
probabilities of detection P

(1)
D [j] and false alarm P

(1)
FA[j]

mentioned in Figs. 2a and 2b. Further, the CNs R1, R2, and
the DN are assumed to be mobile with Drn,1 = 10−10 m2/s,
Drn,2 = 0.5 × 10−12 m2/s, Ddn = 0.5 × 10−12 m2/s,
respectively, with vrn,1 = vrn,2 = vdn = v = 10−3 m/s. Fig.
2a plots the probability of detection (PD) versus probability
of false alarm (PFA) for a range of thresholds from 1 to
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Fig. 4. Detection performance of the multiple CN-assisted diffusive molecular
system considering both fixed and mobile scenarios with Q1 = Q2 = 60
molecules at the CNs.

100 whereas Fig. 2b shows the error rate performance versus
MSI noise variance (σ2

o) with optimal thresholds derived in
Section III. First, it can be observed from Figs. 2a and 2b that
the analytical values derived in (31) and (47) coincide with
those obtained from simulations, thus validating the analytical
results. Further, both the detection and error performances at
the DN significantly improve with the improvement in perfor-
mance of the intermediate CN R1. However, the performance
at the DN saturates on further improvement in performance
of R1. This is due to the fact that the end-to-end performance
of the multiple CN-assisted system is dominated by the weak
R1 −R2 and R2−DN links, which severely suffer from both
ISI and MSI. It can also be observed in Fig. 2b that an increase
in σ2

o results in a higher probability of error at the DN.
Fig. 3 shows the end-to-end performance of the system for

a varying number of molecules at each CN under various
mobility conditions, where Q1 = Q2 = Q ∈ {30, 60},
Drn,2 = Ddn = D ∈ {0.5 × 10−12, 0.5 × 10−8} m2/s, and
other parameters are considered as, P (1)

D = 0.97, P (1)
FA = 0.01,

Drn,1 = 10−10 m2/s, and vrn,1 = vrn,2 = vdn = v = 10−3

m/s. One can observe that an increase in the number of
molecules Q emitted by the CNs for transmission of symbol
1 results in a higher probability of detection at the DN for a
fixed value of probability of false alarm and lower probability
of error for a fixed value of σ2

o . However, the performance
deteriorates as the diffusion coefficient D increases due to
higher mobility of the R2 and DN. This is due to the fact that
the probability of a molecule reaching the receiver nanoma-
chine within the current slot decreases while the ISI from
previous slots increases as diffusion coefficient D increases
due to higher mobility.

Fig. 4 shows that the detection performance at the DN
considering both fixed and mobile scenarios, where R1, R2,
and the DN are considered at initial distances 1µm, 5µm, and
10µm, respectively, from the SN at time instant t = 0. It
can be observed that the system with mobile nanomachines
performs identically in a fluidic medium with and without
drift. This is owing to the fact that the arrival probabilities
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Fig. 5. Achievable rate versus MSI variance (σ2
o) considering the presence of

(a) N = 1 CN, where R1 and the DN are considered at initial distances 1µm
and 2µm, respectively, from the SN at τ = 0 with Q1 = 60, Drn,1=10−10

m2/s, vrn,1 = vdn = v = 10−3 m/s and µo = 10 (b) N = 2 CNs, where
R1, R2 and the DN are considered at initial distances 1µm, 2µm and 3µm,
respectively, from the SN at τ = 0 with Q1 = 60, Drn,1=10−10 m2/s
Drn,1=0.5 × 10−12 m2/s, vrn,1 = vrn,2 = vdn = v = 10−3 m/s and
µo = 10.

in (1) are equivalent under both the scenarios. Further, one
can also observe that the system with fixed nanomachines i.e.,
Drn,1 = Drn,2 = Ddn = D = 0 and vrn,1 = vrn,2 =
vdn = v = 0 under diffusion-advection flow channel with
drift velocity v ∈ {1 × 10−3, 5 × 10−4} m/s outperforms
the scenario with mobile nanomachines. However, as the drift
velocity (v) reduces to 1× 10−4 m/s, the system with static
nanomachines achieves low values of probability of detection
in comparison to the one for the mobile scenario.

Fig. 5 shows the achievable rate performance of the CN-
assisted diffusion-advection mobile MC system under various
scenarios, where the maximum mutual information is achieved
for equiprobable information symbols, i.e., β = 0.5. As
depicted in Fig. 5, the achievable rate of MC decreases
significantly as the variance (σ2

o) of the MSI increases. Further,
one can also observe that the achievable rate of the CN-
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Fig. 6. Impact of number of CNs (N) or hops on the end-to-end probability
of error under two different conditions: (a) the initial distance between the
SN and DN is 3µm and the other parameters are considered as, P (1)

D [j] =

0.97, P
(1)
FA[j] = 0.01, Dp = 2.2 × 10−10 m/s, Drn,1 = 10−10 m2/s,

Drn,n = Ddn = 0.5× 10−10 m2/s, vrn,n = vdn = 1.5× 10−5m/s ∀n,
Q = 100 molecules for symbol 1, µo = σ2

o = 5, τ = 30ms, k = 5 slots; (b)
the initial distance between the SN and DN is 30µm and the other parameters
are considered as, P (1)

D [j] = 0.97, P
(1)
FA[j] = 0.01„ Dp = 5× 10−10 m/s

Drn,1 = 10−10 m2/s, Drn,n = Ddn = 0.5 × 10−8 m2/s, vrn,n =
vdn = 10−3m/s ∀n, Q = 60 molecules for symbol 1, µo = σ2

o = 5,
τ = 10ms, k = 5 slots.

assisted system depends substantially on the detection perfor-
mance of the intermediate CN R1. As the detection perfor-
mance (P

(1)
D [j], P

(1)
FA[j]) at R1 increases from (0.85, 0.1) to

(0.99, 0.01), a significant achievable rate gain can be achieved
at low as well as high MSI for both N = 1 and N = 2 CN-
based systems. However, similar to detection performance at
the DN, the channel achievable rate decreases as the diffusion
coefficient Ddn increases due to higher mobility of the DN.

Fig. 6 demonstrates the impact of number of CNs (N)
on the end-to-end probability of error under two different
conditions: (a) the initial distance between the SN and DN
is 3µm; (b) the initial distance between the SN and DN is
30µm. It is important to note that for comparison purposes,
we assumed that (i) the initial distance between the SN and
DN is fixed for each of the scenarios, i.e., N = 1, 2, . . . , 10
(ii) the initial distances between each of the nanomachines are
equal at time instant t = 0, and (iii) the diffusion coefficients,
i.e., Dp,sn = Dp,rn,k = Dp,∀k are the same for different
types of molecules emitted by SN and CNs. From Fig. 6a, one
can observe for the scenario when the initial distance between
the SN and DN is not significant, the system probability of
error increases as the number of CNs (N) increases. This
is due to the noise accumulation in the decode-and-forward
relaying protocol employed at each intermediate nanomachine.
On the other hand, for the scenario when the initial distance
between the SN and DN is significantly large as shown in
Fig. 6b, the end-to-end performance of the system improves
as N increases. Interestingly, after a certain number of CNs,
i.e., N = 7 in our case, the performance starts deteriorating
due to the retransmission of erroneously decoded symbols at
each intermediate CN. Further, based on these results, one can

also obtain the optimal number of CNs, i.e., 1 and 7 for the
scenarios (a) and (b) respectively.

VIII. CONCLUSION

This work comprehensively analyzed the impact of in-
termediate nanomachines on the performance of multiple
CN-assisted diffusive mobile MC for a diffusion-advection
flow channel, considering non-idealities such as ISI, MSI,
and counting errors. Closed-form analytical expressions were
derived for the optimal test statistics and optimal decision
thresholds at the intermediate CNs and DN, together with the
resulting probability of detection, probability of false alarm
as well as the end-to-end probability of error. In addition, the
achievable rate of the system was also determined. Simulation
results were presented to yield several interesting insights into
the system performance under various mobility conditions.
Finally, future research directions include the optimization of
the number of transmitted molecules in each time-slot for
multiple CN-assisted diffusive mobile MC.

APPENDIX A
PROOF OF THEOREM 2

Let ξl(n) denote the state of Rn with ξl(n) = 1 when Rn

decodes the source information symbol as 1 and ξl(n) = 0 oth-
erwise. Let ξl = [ξl(1), ξl(2), · · · , ξl(N)], 0 ≤ l ≤ 2N − 1 de-
note the set of 2N binary state vectors corresponding to all the
possible combinations of states of the CNs R1, R2, · · · , RN .
For instance, the special cases of ξ0 = [0, 0, · · · , 0, 0] and
ξ2K−1 = [1, 1, · · · , 1, 1] represent the state vectors corre-
sponding to scenarios when all the CNs decode the source
symbol as 0 and 1, respectively. Further, let the set Ψ0

l defined
as Ψ0

l = {n|ξl(n) = 1, n = 1, 2, · · · , N}, include all the CNs
that decode the symbol as 1 corresponding to the overall state
ξl given the null hypothesis H0. Similarly, Ψ1

l defines a set
that includes all the CNs, which decode the symbol as 1 given
the alternative hypothesis H1. Employing the Neyman-Pearson
(NP) criterion [53], the optimal LRT L(Rrd[j+N ]) at the DN
is given as

L(Rrd[j +N ]) =
p(T (Rrd[j +N ])|H1)

p(T (Rrd[j +N ])|H0)

H1

≷
H0

1− β

β
, (57)

where p(T (Rrd[j + N ])|H1), p(T (Rrd[j + N ])|H0) denote
the likelihoods corresponding to the hypotheses H1 and H0,
respectively. The test L(Rrd[j+N ]) above is further simplified
in (58) employing the PDF p(Rrd[j +N ]|ξl) of the received
molecules Rrd[j + N ] at the DN corresponding to the state
vector ξl, which can be derived using the result obtained in
(21) as

p(Rrd[j+N ]|ξl)

=

{
N (µrd,0[j+N ], σ2

rd,0[j+N ]) if l=0, 2, · · ·, 2N−2

N (µrd,1[j+N ], σ2
rd,1[j+N ]) if l=1, 3, · · ·, 2N−1.

(59)

Further, the quantity Pr(ξl|Hi), i∈{0, 1} in (58) represents
the conditional probability that the network is in state ξl
corresponding to hypothesis Hi. Since the source and each of
the CNs employ different types of molecules for transmission,



L(Rrd[j +N ]) =

2N−1∑
l=0

p(Rrd[j +N ]|ξl)Pr(ξl|H1)

2N−1∑
l=0

p(Rrd[j +N ]|ξl)Pr(ξl|H0)

=

∑
l=0,2,··· ,2N−2

p(Rrd[j +N ]|ξl)Pr(ξl|H1) +
∑

l=1,3,··· ,2N−1

p(Rrd[j +N ]|ξl)Pr(ξl|H1)∑
l=0,2,··· ,2N−2

p(Rrd[j +N ]|ξl)Pr(ξl|H0) +
∑

l=1,3,··· ,2N−1

p(Rrd[j +N ]|ξl)Pr(ξl|H0)
, (58)

the probability Pr(ξl|Hi) of the system being in state ξl under
hypothesis Hi follows as

Pr(ξl|Hi) =

N∏
n=1

Pr(ξl(n)|Hi), (60)

where the probabilities Pr(ξl(n)|H0) and Pr(ξl(n)|H1) of the
CN being in state ξl(n) under H0 and H1, respectively, can
be determined as

Pr(ξl(n)|H0) =

{
P

(n)
FA [j+n−1], if n ∈ Ψ0

l

1− P
(n)
FA [j+n−1], if n ∈ Ψ̄0

l ,
(61)

Pr(ξl(n)|H1) =

{
P

(n)
D [j+n−1], if n ∈ Ψ1

l

1− P
(n)
D [j+n−1], if n ∈ Ψ̄1

l .
(62)

The sets Ψ̄0
l and Ψ̄1

l above comprise of all the CNs that
decode the symbol as 0 corresponding to the network state
ξl given hypotheses H0 and H1, respectively. The quantities
P

(n)
D [j+n−1] and P

(n)
FA [j+n−1] are the probabilities of de-

tection and false alarm, respectively, of Rn. Employing the
expressions derived in (60) above, the probabilities of the
system being in the state ξl under the hypotheses H0 and
H1 can be obtained as

Pr(ξl|H0)=
∏

n∈Ψ0
l

P
(n)
FA [j+n−1]

∏
n∈Ψ̄0

l

(
1−P

(n)
FA [j+n−1]

)
, (63)

Pr(ξl|H1)=
∏

n∈Ψ1
l

P
(n)
D [j+n−1]

∏
n∈Ψ̄1

l

(
1−P

(n)
D [j+n−1]

)
. (64)

Further, substituting the Gaussian PDFs for p(Rrd[j+N ]|ξl)
determined in (59), in the test in (58), the resulting expression
can be further simplified to the form shown in (65), where the
quantity βrd is defined as

βrd =

∑
l=0,2,··· ,2N−2

[(1− β)Pr(ξl|H0)− βPr(ξl|H1)]∑
l=1,3,··· ,2N−1

[βPr(ξl|H1)− (1− β)Pr(ξl|H0)]

=
(1−β)(1−P

(N)
FA [j+N−1])−β(1−P

(N)
D [j+N−1])

βP
(N)
D [j+N−1]− (1− β)P

(N)
FA [j+N−1]

.(66)

The detailed derivations for the test in (65) and βrd above are
given in Appendix B. The expression for f(Rrd[j + N ]) in
(65) can be further simplified as shown in (67) by rearranging
the terms. Substituting this resulting expression for f(Rrd[j+
N ]) in (65) followed by merging the terms independent of the
received molecules Rrd[j+N ] with the threshold term in the
right hand side of the equation yields the simplified test

(Rrd[j +N ] + αrd[j +N ])
2

H1

≷
H0

γrd[j +N ], (68)

where αrd[j +N ] and γrd[j +N ] are as defined in (28) and
(29), respectively. Finally, since γrd[j +N ] ≥ 0 and αrd[j +
N ] ≥ 0, the above expression can be simplified by taking the
square root of both sides to yield the optimal test in (26).

APPENDIX B
DERIVATION OF EXPRESSION (65)

Substituting the expressions given below for p(Rrd[j +
N ]|ξl) and p(Rrd[j +N ]|ξl) in (58)

p(Rrd[j +N ]|ξl)

=



1√
2πσ2

rd,1[j+N ]

× exp
(
− (Rrd[j+N ]−µrd,1[j+N ])2

2σ2
rd,1[j+N ]

)
, l=1, · · · , 2N−1

1√
2πσ2

rd,0[j+N ]

× exp
(
− (Rrd[j+N ]−µrd,0[j+N ])2

2σ2
rd,0[j+N ]

)
, l=0, · · · , 2N−2,

(69)

and cross multiplying with the threshold 1−β
β , the resulting

expression can be simplified as shown in (70)-(72). Subse-
quently, taking the logarithm of both sides of (72), the resulting
expression can be further simplified to yield the expression
given in (65), where βrd is defined as

βrd=


∑

l=0,2,··· ,2N−2

[(1−β)Pr(ξl|H0)−βPr(ξl|H1)]∑
l=1,3,··· ,2N−1

[βPr(ξl|H1)−(1−β)Pr(ξl|H0)]

. (73)

The probabilities Pr(ξl|H0), Pr(ξl|H1), corresponding to the
system being in state ξl under H0 and H1, respectively, are
determined as

Pr(ξl|H0)=
∏

n∈Ψ0
l

P
(n)
FA [j+n−1]

∏
n∈Ψ̄0

l

(
1−P

(n)
FA [j+n−1]

)
,

Pr(ξl|H1)=
∏

n∈Ψ1
l

P
(n)
D [j+n−1]

∏
n∈Ψ̄1

l

(
1−P

(n)
D [j+n−1]

)
.

Substituting the above expressions for Pr(ξl|Hi) in (73), the
expression for βrd can be further simplified for different values
of N as follows. To illustrate this with an example for N = 2
CNs, the expression for βrd can be evaluated considering the
four possible states, i.e., ξ0 = [0, 0], ξ1 = [0, 1], ξ2 = [1, 0]
and ξ3 = [1, 1] as βrd = N2

D2
, where N2 and D2 are given in

(74) and (75) respectively. The expressions in (74) and (75)
can be further simplified to yield the final expression for βrd

as

βrd =
(1−β)

(
1−P

(2)
FA[j+1]

)
−β
(
1−P

(2)
D [j+1]

)
βP

(2)
D [j+1]− (1− β)P

(2)
FA[j+1]

. (76)



,f(Rrd[j+N ])︷ ︸︸ ︷
(Rrd[j+N ]−µrd,0[j+N ])2σ2

rd,1[j+N ]−(Rrd[j +N ]−µrd,1[j+N ])2σ2
rd,0[j+N ]

H1

≷
H0

2σ2
rd,0[j+N ]σ2

rd,1[j+N ] ln

[√
σ2
rd,1[j +N ]

σ2
rd,0[j +N ]

βrd

]
. (65)

f(Rrd[j +N ])

=R2
rd[j+N ](σ2

rd,1[j+N ]− σ2
rd,0[j+N ]) + 2Rrd[j+N ](µrd,1[j+N ]σ2

rd,0[j+N ]− µrd,0[j+N ]σ2
rd,1[j+N ])

+ (µ2
rd,0[j+N ]σ2

rd,1[j+N ]− µ2
rd,1[j+N ]σ2

rd,0[j+N ])

=(σ2
rd,1[j+N ]−σ2

rd,0[j+N ])

[
Rrd[j+N ]+

µrd,1[j+N ]σ2
rd,0[j+N ]−µrd,0[j+N ]σ2

rd,1[j+N ]

σ2
rd,1[j+N ]−σ2

rd,0[j+N ]

]2

−
(µrd,1[j+N ]σ2

rd,0[j+N ]−µrd,0[j+N ]σ2
rd,1[j+N ])2

σ2
rd,1[j +N ]− σ2

rd,0[j +N ]
+(µrd,1[j+N ]σ2

rd,0[j +N ]−µrd,0[j+N ]σ2
rd,1[j+N ]). (67)

β

 ∑
l=0,2,··· ,2N−2

Pr(ξl|H1)√
2σ2

rd,1[j +N ]
exp

(
− (Rrd[j +N ]− µrd,1[j +N ])

2

2σ2
rd,1[j +N ]

)

+
∑

l=1,3,··· ,2N−1

Pr(ξl|H1)√
2σ2

rd,0[j +N ]
exp

(
− (Rrd[j +N ]− µrd,0[j +N ])

2

2σ2
rd,0[j +N ]

)
H1

≷
H0

(1− β)

 ∑
l=0,2,··· ,2N−2

Pr(ξl|H0)√
2σ2

rd,1[j +N ]
exp

(
− (Rrd[j +N ]− µrd,1[j +N ])

2

2σ2
rd,1[j +N ]

)

+
∑

l=1,3,··· ,2N−1

Pr(ξl|H0)√
2σ2

rd,0[j +N ]
exp

(
− (Rrd[j +N ]− µrd,0[j +N ])

2

2σ2
rd,0[j +N ]

) , (70)

1√
σ2
rd,1[j+N ]

exp

(
− (Rrd[j+N ]−µrd,1[j+N ])

2

2σ2
rd,1[j+N ]

) ∑
l=1,3,··· ,2N−1

[βPr(ξl|H1)−(1−β)Pr(ξl|H0)]

H1

≷
H0

1√
σ2
rd,0[j+N ]

exp

(
− (Rrd[j+N ]−µrd,0[j+N ])

2

2σ2
rd,0[j+N ]

) ∑
l=0,2,··· ,2N−2

[(1−β)Pr(ξl|H0)−βPr(ξl|H1)], (71)

For N = 3, the expression for βrd considering the eight
possible states can be obtained as βrd = N3

D3
, where N3 and D3

are given in (77) and (78), respectively, which can be further
simplified to yield the final expression for βrd as

βrd =
(1−β)

(
1−P

(3)
FA[j+2]

)
−β
(
1−P

(3)
D [j+2]

)
βP

(3)
D [j+2]− (1− β)P

(3)
FA[j+2]

. (79)

On the similar lines, the expression for βrd considering the 2N

possible states due to the presence of N CNs can be similarly
obtained as

βrd =
(1−β)

(
1−P

(N)
FA [j+N−1]

)
−β
(
1−P

(N)
D [j+N−1]

)
βP

(N)
D [j+N−1]− (1− β)P

(N)
FA [j+N−1]

.

(80)
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