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Abstract—Low-resolution architectures represent a compelling
and power-efficient approach for high-bandwidth communication
in massive multiple-input multiple-output (MIMO) systems. In
this letter, we present a novel residual convolutional neural
network (CNN) with recurrent neural network (RNN) called
ResR model to tackle the carrier frequency offset (CFO) problem
in multi-user massive MIMO with one-bit analog-to-digital con-
verters (ADCs). Leveraging the combined strengths of residual
CNN and RNN, the ResR model can extract frequency-spatial
characteristics of all users for CFO estimation. Moreover, it
effectively addresses the vanishing gradient problem in CNN-
based model while delivering superior accuracy with fewer
parameters compared to exiting CNN or RNN models. Through
extensive experimental evaluations, we consistently demonstrate
the efficiency and robustness of the ResR model in multi-user
CFO estimation for one-bit ADCs massive MIMO.

Index Terms—carrier frequency offset (CFO), deep learning,
multiple-input multiple-output (MIMO), one-bit analog-to-digital
converter (ADCs), residual network.

I. INTRODUCTION

With the rapid advancement of communication technology,
massive multi-input multi-output (MIMO) systems, which can
focus transmitted signal energy within limited ranges from
the base station (BS), play a pivotal role and are currently
undergoing significant development. This concentrated energy
allocation yields substantial improvements in terms of overall
system capacity and can simultaneously serve multiple users
on the same time-frequency resources [1]. In the conventional
massive MIMO systems, each radio frequency (RF) port is
equipped with two high-resolution analog-to-digital converters
(ADCs), where the cost and power consumption of the ADCs
increases significantly with the number of quantization bits. As
a result, the low cost and power consumption make multi-user
massive MIMO with one-bit ADCs a promising technique for
the next generation wireless systems [2].

However, the remarkable improvements of multi-user mas-
sive MIMO with one-bit ADCs in both spectral efficiency and
power consumption depends on perfect frequency synchro-
nization between the transceivers [3]. Since the joint recovery
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of multiple CFOs leads to a highly non-linear estimation prob-
lem, the multi-user frequency synchronization in the massive
MIMO systems is quite different from the conventional single-
CFO estimation [4]-[6]. In the past decade, there have been a
few works on the CFO estimation for the conventional multi-
user MIMO systems [7], [8]. For example, Zhang et al. in [8]
proposed a joint spatial-frequency alignment procedure (JSFA)
for the frequency synchronization in the massive MIMO with
uniform linear array (ULA) at the BS. However, conventional
methods designed for the high-resolution massive MIMO sys-
tems may suffer from substantial estimation performance loss
in the one-bit ADCs due to the severe non-linear distortion.

Recently, with the potential to capture non-linear feature
interaction, deep learning (DL) has emerged as a powerful
tool for addressing complex tasks in the field of communi-
cations [9], [10]. Compared to the conventional methods, DL
models excels at extracting relevant features from the received
signal with reduced manual feature engineering. The authors
in [12] utilized the convolutional neural network (CNN) and
its derivatives to design a robust CFO estimator for single-
user MIMO with one-bit ADCs. However, the traditional back
propagation method may encounter challenges and gives rise
to a vanishing gradient problem after extensive training due
to the large number of antennas in massive MIMO systems.
In [13], a hybrid CNN-attention-deep neural network (DNN)
architecture was proposed for CFO estimation in the single-
input single-output (SISO) orthogonal frequency division mul-
tiplexing (OFDM) systems, where the residual CNN module
was employed to abstract the necessary features from the
received OFDM signal. The residual CNN module can address
the vanishing gradient problem in CNN caused by the escala-
tion of convolutional layers. However, the above works only
considered the conventional single-user CFO estimation and
may not be applied in the multi-user massive MIMO systems.

In this letter, a residual CNN with recurrent neural network
(RNN) called ResR model is designed to handle the frequency
synchronization problem in multi-user massive MIMO with
one-bit ADCs. The proposed ResR model outperforms both
exiting CNN and RNN models in terms of achieving higher
accuracy while using fewer parameters. For the first time,
both the frequency and spatial characteristics are extracted
in the proposed model for multi-user CFO estimation. By
combining the residual CNN and RNN, the vanishing gradient
problem has been avoided to a certain extent, resulting in
better estimation accuracy. We further develop a structure that
effectively utilizes the spatial characteristics extracted from the
residual CNN to facilitate the user separation. The numerical
results demonstrate the effectiveness and robustness of the
proposed model and their superiority over existing approaches
in the one-bit ADCs massive MIMO.
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II. SYSTEM MODEL

The multi-user CFO estimation problem in the uplink
massive MIMO systems with one-bit ADCs is considered
in this work. In the massive MIMO systems, K single-
antenna users are randomly distributed in the coverage area
and communicating with the BS simultaneously. The BS is
equipped with M > 1 antennas in the form of ULA and
usually elevated at a very high altitude such that there are
few surrounding scatterers at the end of the BS. Hence, the
spatial channel model in [15] that exploits the array manifold
and angle information of propagation signals is adopted in this
work. Similarly, we assume that the channel is flat fading and
time-invariant as in [15], while the proposed model can be
extended to the frequency-selective scenario.

The propagation channel hy, € CM*1 between the BS and
the kth user is assumed to be composed of P separable rays
and can be given as:

P
1
h, = — 0, 1), 1
k ‘/ij}:; ap,ka(Op, k) )

where a,, x ~ CN(0,07 ) denotes the complex gain in the
pth ray of the kth user with mean zero and variance o%_p.
Moreover, the array manifold vector a(6; ;) € CM*! can be
expressed as:

_s2n(M—1)d
X
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where )\ is the signal carrier wavelength, d is the antenna
spacing and 6, ;, represents the angle-of-arrival (AoA). Similar
to [15], we assume that the incident angles of the kth user are
limited within a narrow angular range 6, ; € (05 — Oas, 0k +
0as), where 0; and 0,5 represent the mean AoA of the kth
user and angular spread (AS), respectively. Then, the channel
matrix of all users can be expressed by H € CM*K as:

H = [h;, h, ..., hgl. 3)

Let us consider the classic problem of CFO estimation of a
discrete-time set of samples. Denote z, ,,n = 0,1,--- ,N—1
as the pilot symbol of the kth user with NV being the length of
pilot symbol. Let A f;, and T stand for the real CFO of the
kth user and the sampling interval, respectively. The CFO-
induced phase shift over one symbol can be represented as
2nwy, = 2nNTsA fi. Denote Xi = [Tr.0, Tk 1y ThN-1]7 5
where Zj , = a:k,nej(%;kn*mv") with ¢y ,, being the phase
shift. After passing the channel, the received signal after one-
bit quantization is expressed as

Y =sign (HX + N), 4)

where X = [x1,Xa2,...,Xx]T and N € CM*N denotes the
corresponding additive white Gaussian noise (AWGN) matrix
with E[NN#] = No2I,,. In the one-bit ADCs massive
MIMO, the signum function sign (-) is adopted as the element-
wise operator applied separately to the real and imaginary parts
of the received signal and is given by

den(@) = { b i#=0
& 1 —1, otherwise

&)

2

Here, the quantized received signal Y is considered as the

input of proposed ResR model for multi-user CFO estimation,

which is rather challenging due to the coexistence of different
T . . .

CFOs w = [w1,ws,...,wk]" in the received signal.

III. PROPOSED RESR MODEL

In this section, we present the ResR method for multi-user
CFO estimation in one-bit ADCs massive MIMO systems. As
illustrated in Fig. 1, the ResR comprises two key components:
the multi-user separation (MUS) module and the multi-CFO
estimation (MCE) module. The MUS module, comprising a
residual stack and a specially designed convolution layer for
feature combining (FC), is intended to extract the frequency
and spatial characteristics for multi-user separation with sig-
nificantly reduced number of parameters. The MCE module
is designed to jointly estimate multi-user CFOs from a set
of approximate single-user models, leveraging the long short-
term memory(LSTM)-gated recurrent units (GRU) to address
the vanishing gradient problem during training and to reduce
the computational complexity of the entire method.

A. Model Structure of MUS Module

The MUS module consists of two main components: fea-
ture extraction (FE) module and FC module. In the network
architecture design, CNN has been chosen due to its advantage
of effectively extracting fundamental features from localized
repetitive fields [12]. The multi-user CFO estimation of one-
bit ADCs massive MIMO can be considered as an image-
to-image translation as shown in [11]. Hence, the quantized
received signal can be conceptualized as two low-resolution
images with the dimension of M x NN, and represented as:

Y1 = [R(Y), 3(Y)), (6)

where the real part and imaginary part of quantized received
signal Y are separated and stacked together, resulting in the
final input Y1 € CM*~N*2_Ag shown in Fig. 1, the network
architecture of FE module consists of the convolutional layers
and a residual stack. To extract the frequency and spatial char-
acteristics of received signal, the convolution layer performs
convolution operation on Y; and abstracts the features

F (Y1) =SeLU(Conv(Y1)) = SeLU(Y1 % ® 4+ by), (7)

where ® represents the weights of the convolution kernel and
b, denotes the bias. Here, the scaled exponential linear unit
(SeLU) is employed and x is the convolutional operator. Then,
the abstracted feature are passed down to the residual stack
with three stages. In the first stage, the output and the input
of convolution layer is combined together as the

U, = F (U;) 4+ Uy, (8)

where Uj is the input of the first stage. Then, U, serves as
the input of the second stage with two convolution layers.
Similarly, the output of the second stage is combined with the
input Uy, ie., Us = F(F(Usz)) + U,. Then, the procedure
is continued in the third stage with three convolution layers
and the final output of residual stack can be expressed as

Uy = F(F(F(U3))) + Us + Uy, 9
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::g Fig. 1: ResR architecture for multi-user CFO estimation in one-bit ADCs massive MIMO.
20
21 where the input of residual stack is combined together in the sequences with the memory cells and three gates. The input
22 final stage. The purpose of incorporating the residual CNN gate i; stores information to the cell state and the forget
23 structures is to address the vanishing gradient problem, which  gate f; determines how much information should be removed
24 is a common challenge in deep convolutional layers. Moreover, from the cell state. Finally, the output gate o, selects valuable
25 these structures can improve the estimation accuracy with the information from the current cell state and presents it as an
26 increased depth of the convolutional layers. output. The hidden state of tth cell h; can be computed as:
27 . . oy
8 Fmal'ly, 'the FC module is proposed to facilitate the user i, = 0 (Waix, + Wihy_y + by) |
separation in the angle domain and reshape the output of FE
29 module into the sequences that suitable for the subsequent fi = o (Warxe + Wishyy +by),
30 module. First, the FC module transforms the feature map ¢, =f0c,_1 +i; o tanh (Wyexe + Wychy—1 +b,),
g; Uy fro(rjn its origi111al 1sh;alpe of M x N indeach ghannel into 01 = 0 (WaoXs + Wiohi_1 +b,),
a one-dimensional (1D) representation, denoted as uy = h, —

- + = 04 o tanh (c;) (11
33 [uéf),ugf)7~.~7u§\5)]V,1]T € CMNx1 ¢ — 1 9... F. Here, "
34 F is the number of convolutional kernels. Subsequently, u; is where x; represents the input of the cell and c; denotes the cell
35 fed into a 1D convolutional layer with a kernel size of M and ~State. Here, W and b are the learnablelnetwork parameters
36 a stride of M. Moreover, a SeLU activation function is applied ™ thiLSTM’ respectively. o(z) = = and tanh(z) =
37 to the spatial characteristics of the received signal, resulting 7= are nonlinear activation functions, and the symbol o
38 in a combination process that partitions the signal into distinct ~denotes the Hadamard product.
39 user components. This process can be expressed as follows: Meanwhile, the convergence rate of MCE module is accel-
40 o erated by GRU, which is another variant of the basic RNN
41 (f) and computationally efficient by combining the memory cell

= SeLU b 10 . .
42 Sn ¢ <zzowmu"M+ m +bn), 10 and the forget gate into a single update gate. Moreover, the
m= .
43 ' ) GRU layer can also work as a compensator that retrieves the
44 where wy, and b, denotehthfe weight an%blas of the SeLU  os¢ information resulting from the denoising process.
45 layer, respectively. Then, the feature map U, is converted into _
46 a 2D matrix of size N x F and then broken into F' sequences. & = 0 (WagXe + Wigh_1 +by),
47 7zt =0 (Wy,x¢ + Wy hy 1 +b,), (12)
gt — tanh (Wngt + q: © (Whght—l) =+ .bg)7
ZS B. Model Structure of MCE Module h; =1 —-2)ohy_q + 2z, 0g(t),
50 We propose to employ the LSTM-GRU-DNN structure in ~ where the reset gate q; determines which information from
51 the MCE module to precisely estimate the multi-user CFOs, the previous state h;_; should be discarded or forgotten, and
52 which contains two LSTM layers, one GRU layer and one the update gate z; selects new information from both the input
53 DNN layer. vector and the previous state h;_; to be integrated into a new
54 In the massive MIMO systems, the number of sequences state. The candidate for the future hidden state is determined
55 after FC module is enormous, which causes a vanishing by the candidate state gate g;. Finally, the output of GRU
56 gradient and leads to the training failure. The LSTM can is further processed by the subsequent fully connected layer,
57 effectively process MIMO data and overcome the vanishing where DNN is utilized to establish the relationship between
58 gradient problem, ensuring superior estimation performance. the inputs and target values to estimate the multi-user CFOs
o1 . . . PN “oOT

59 Two LSTM layers are utilized to effectively denoise the input & = [w1, D9, ..., W]
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TABLE I: SETTINGS FOR DATA GENERATION

Parameter Value
CFO wy, [0.2,0.25]
Phase shift ¢y ,, [0, 27]
Number of channel rays P 2
d/\ 0.5
Pilot lengths N {8, 16,32
Numbers of antennas M {8, 16,32
Numbers of users K {2,4,6}
SNR [-20,40]

IV. SIMULATION RESULTS

In this section, we outline the process of generating the
training data and configuring the parameters for the pro-
posed ResR method. Then, we evaluate the CFO estimation
performance of proposed ResR under various conditions by
comparing it with the conventional two stage approach (TSA)
in [6], the JSFA in [8], the exiting CNN-based and RNN-based
methods in [12] and the ResD (Residual CNN with DNN).

A. Data Generation

In the simulation, the training datasets D = {Yl,iawi},]‘i”l
are generate based on (4), where the parameter w; denotes
the true CFO of each user which is utilized as the label
during training process and N, is the total number of training
samples. We assume that the CFO wy, is randomly generated
from 0.2 to 0.25, and the phase shift ¢y, ,, follows the uniform
distribution within the range of [0, 27]. The number of channel
ray is set as P = 2 and d = \/2. The channel vector of
different users are formulated according to (1). The average
power of pilot symbol is normalized to 1, and the signal-to-
noise ratios (SNR) is defined as 1/02. The angular spread
0.s = 10° is considered. We introduce the noise with different
SNR ranging from -20dB to 40dB. Moreover, we consider
various configurations with different qualities: the number of
pilot symbols, the number of antennas, the number of users
and quantized/unquantized training data as shown in Table I.

B. Training Model

For the MUS module, two convolutional layers is utilized
with the kernel size Z = 3 and the number of convolutional
kernels F' = 32. Three blocks are considered in the residual
stack of MUS module to avoid the vanishing gradient prob-
lem and increase the estimation performance with 32 output
channel. The network is trained by the Adam optimizer and
learning rate decay, employing a batch size of N, = 32
instances in each iteration and an initial learning rate of 0.001.
The network parameters are updated by minimizing the mean
square error (MSE) loss function.

For the MCE module, the objective is to minimize the
loss function, which is the discrepancy between the output of
proposed model @ and the correct label w. The regularization
term is added to avoid overfitting. The loss function for our
proposed model can be formulated as follows:

Ny
1 R
Loss = EZ”% — w2+ AI8I1%, (13)
=1

4

where ) is set as 5 x 1078 and (3 is the parameters of network
with ||-|| being the Euclidean norm.

C. Performance Comparations

In Fig. 2, we compare the proposed ResR with the exiting
methods in the scenario of two users with M = 32 and N =
32. The mean AoA of two users are fixed as {50°,70°}. It
is evident that the ResR significantly outperforms the existing
methods due to the superior architecture that combines the
residual CNN and RNN together. Moreover, the performances
of RNN and TSA are poor since it cannot discriminate the
spatial characteristics between different users. Similarly, Fig.2
depicts that the proposed method achieves performance gain as
compared to the JSFA, which depends heavily on the massive
ULA. Furthermore, the ResR surpasses the CNN and ResD
since the LSTM and GRU layers in the ResR can effectively
capture long-term dependencies in sequential data.

-20
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-30 A ~ ResR.
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~
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891 . e n
—~——— & —@
2 A~ -
= A TR —a
g 50 e
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Fig. 2: MSE performance comparison of different methods (K = 2).

In Fig. 3, we present the MSE performance of our pro-
posed ResR under different scenarios for both K = 2
and K = 6. Three scenarios are defined by varying an-
gular distances 6,4 between the adjacent users as in Table
II. It can be found out that as the angular distance 60,4
decreases, the overlapping region 6, expands from non-
overlapping to severe overlapping among users, resulting in
similar spatial characteristics. For K = 2, the mean AoAs
are distributed as {(70 — 60,4)°,70°}. For K = 6, the
mean AoAs are fixed as {(70 — 0,4)°, 70°,90°, (90 + 04q)°,
(110 4 0aq)°, (110 + 26,4)° }, where the spatially proximate
users are underlined. It can be observed from Fig. 3 that
the ResR exhibits remarkable stability and effectively handles
scenarios with severe overlapping, including the scenario with
a 90% overlapping. Moreover, the MSE performance decreases
as the number of users K increases since the dataset becomes
enriched with more similar spatial characteristics in the train-
ing and testing process.

TABLE II: DIFFERENT SCENARIOS FOR AoA-OVERLAPPING

Scenario Angular Distance | Overlapping
Nonoverlapping 20 0 (0%bas)
50%overlapping 15 5 (50%0as)
90%overlapping 11 9 (90%0as)
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Fig. 3: MSE performance of the ResR under different overlapping scenarios.

TABLE III: COMPARATIVE COMPLEXITY ANALYSIS

Method | Parameters | Flop counts
ResR 342,750 58,607,248
CNN 398,861,984 | 595,778,400
RNN 16,771,333 23,918,688
ResD 33,558,575 25,909,968

In Fig. 4, we evaluate the impact of both quantization
noise and the number of antennas on the CFO estimation
performance of the proposed ResR. The performance of the
high-resolution case has be provided as the upper bound.
In this example, the mean AoA of six users are fixed
as {50°,70°,90°,110°,130°,150°}. Both one-bit and oco-bit
training models are included with M = [16, 32, 64]. The MSE
results clearly demonstrate that the ResR performs effectively
under both high-resolution and low-resolution conditions.
Moreover, we can also observe that the MSE performance
improve as the number of antennas M increases since adding
more antennas can provide higher spatial resolution.

-38 - | co-bit (M=64)|
|—e— L-bit (M=64)
N - m = coobit (M=32)

NN - @ = 1-bit (M=32)
40 [ m- - obit (M=16)

N . @ - I-bit (M=16)

SNR (dB)

Fig. 4: MSE performance of the ResR with one-bit/co-bit training models.

The required complexities of different methods are provided
in Table III. Notably, the proposed ResR can achieve much
better estimation performance with a lower order of compu-
tational burden than the existing CNN. Though the RNN and
ResD have smaller flop counts, the proposed ResR achieves
much better performance with the MUS module.

IEEE Wireless Communications Letters

V. CONCLUSIONS

In this letter, we design a novel residual CNN with RNN
(ResR) model to address the multi-user CFO estimation
problem in one-bit ADCs massive MIMO. By leveraging
the advantages of both residual CNN and RNN, the ResR
method not only overcomes the vanishing gradient problem
but also achieves superior estimation accuracy, surpassing the
performance of standalone CNN and RNN methods. The MUS
module can effectively extract both the frequency and spatial
characteristics from highly quantized received signals for CFO
estimation. Moreover, the combination of LSTM and GRU
can addresses the vanishing gradient problem and accelerate
the convergence rate, resulting in superior performance in
both denoising and CFO estimation. The simulation results
demonstrated the effectiveness and robustness of the ResR
over exiting methods.
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