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Abstract—Covert communication can hide the information
transmission process from the warden to prevent adversarial
eavesdropping. However, it becomes challenging when the lo-
cation of warden is uncertain. In this paper, we propose a
covert communication scheme against a warden with uncertain
locations, which maximizes the connectivity throughput between
a multi-antenna transmitter and a full-duplex jamming receiver
with the limit of covert outage probability (the probability of
the transmission found by the warden). First, we analyze the
monotonicity of the covert outage probability to obtain the
optimal location for the warden. Then, under this worst situation,
we optimize the transmission rate, the transmit power and
the jamming power of covert communication to maximize the
connection throughput. This problem is solved in two stages.
First, we derive the transmit-to-jamming power ratio limit
from the maximum allowed covert outage probability. With
this constraint, the connection probability is maximized over
the transmit-to-jamming power ratio for a fixed transmission
rate. Since the connection probability and the transmission rate
are coupled, the bisection method is applied to maximize the
connectivity throughput via optimizing the transmission rate
iteratively. Simulation results are presented to evaluate the
effectiveness of the proposed scheme.

Index Terms—Active warden, artificial jamming, covert com-
munication, full-duplex, low probability of detection.

I. INTRODUCTION

The booming of Internet-of-Things (IoT) brings conve-
nience to people’s lives but also raises the concern on data

Manuscript received October 8, 2020; revised January 28, 2021; accepted
March 18, 2021. The work was supported by the National Key R&D Program
of China under Grant 2020YFB1807002, and the National Natural Science
Foundation of China (NSFC) under Grant 61871065. The associate editor
coordinating the review of this paper and approving it for publication was H.
Pishro-Nik. (Corresponding author: Nan Zhao.)

X. Chen and N. Zhao are with the Key Laboratory of Intelligent Control
and Optimization for Industrial Equipment of Ministry of Education, Dalian
University of Technology, Dalian 116024, China, and also with Peng Cheng
Laboratory, Shenzhen 518066, China. (email: cxy@mail.dlut.edu.cn, zhao-
nan@dlut.edu.cn)

W. Sun is with the School of Cybersecurity, Northwestern Polytechnical
University, Xi’an, 710129, China. (email: sunwen@nwpu.edu.cn)

C. Xing is with the School of Information and Electronics, Beijing Institute
of Technology, Beijing 100081, China (e-mail:xingchengwen@gmail.com)

Y. Chen is with the School of Engineering, University of Warwick, Coventry
CV4 7AL, U.K. (email: Yunfei.Chen@warwick.ac.uk)

F. R. Yu is with the Department of Systems and Computer Engi-
neering, Carleton University, Ottawa, ON, K1S 5B6, Canada. (email:
richard.yu@carleton.ca)

A. Nallanathan is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, London E1 4NS, U.K. (email:
a.nallanathan@qmul.ac.uk)

privacy [1]. With the extremely large amount of personal data
in the open wireless networks, wireless transmission is at the
risk of adversarial eavesdropping. In order to protect wireless
privacy, many researchers have worked on the physical layer
security (PLS), e.g., beamforming [2]–[4], artificial jamming
[5]–[8], and polarization [9], [10], etc. However, PLS alone
is not enough, as it only prevents the eavesdropping but does
not hide the existence of communication. In this regard, covert
communication is emerging [11]. The work in [12] gave the
theoretical information transmission limits, which made covert
communication popular. Following these results, more works
on covert communication have been conducted [13], [14].
Also, many works focused on the performance improvement
of covert communication in different scenarios. For example,
He et al. investigated the covert communication under both
the finite and the infinite noise uncertainty in [15]. Hu et
al. studied the covert communication of a greedy relay for
its own message when forwarding the information from the
source to the destination in [16]. In [17], Zhou et al. utilized
the location uncertainty to exploit covert communication in
unmanned aerial vehicle assisted networks and jointly opti-
mized the trajectory and transmit power to achieve maximum
average covert rate. Yan et al. presented the important features
related to covert communication and discussed the practical
challenges of future research in [18].

The advantages of multiple antennas have also been ex-
ploitedat different users to improve the their own performance
in covert communication [19]–[23]. In [19], Shahzad et al.
found that increasing the antennas equipped at the adversary
Willie can reduce the covert throughput with the delay con-
straint. Zheng et al. investigated the covert communication
with a multi-antenna transmitter and randomly distributed
interferers and wardens under the centralized and distributed
antenna systems in [20]. In [21], a multi-antenna beam sweep-
ing based detection scheme was proposed by Hu et al., where
the Pinsker’s inequality and Kullback-Leibler divergence were
adopted to derive the detection error probability. Multiple
antennas were applied for both the receiver and the jammer by
Shmuel et al. in [22] to guarantee the covert communication.
In [23], Shmuel et al. proposed that a multi-antenna jammer
can maximize its assistance to the covert communication via
performing beamforming towards a single direction with all
available power.

On the other hand, artificial noise (AN) can also be adopted
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to confuse the warden by introducing more uncertainty on
time and location [24], [25]. In [24], Soltani et al. derived the
maximum bits that can be covertly transmitted according to
the square root law when the friendly jammer is distributed
as a two-dimensional Poisson point to disturb the warden. In
[25], Liu et al. presented new results related to the active
warden in the “shadow network” formed by the noisy wireless
interference. In addition, the jamming power can be randomly
changed to further improve the covert performance [26]–[28].
Some fundamental work was conducted in [26] to generate
AN at the legitimate node that is closest to the warden, and
thus a significant improvement can be achieved for covert
communication. Shahzad et al. proposed a strategy to aid the
covert communication in [27], where the receiver generates
AN with varying power as a full-duplex receiver to cause
uncertainty at the warden. Hu et al. applied the channel
inversion power control in [28] to vary the power and phase
based on the channel to the full-duplex jamming receiver to
improve the performance in a covert wireless network.

Although the performance of covert communication can be
enhanced either by multiple antennas or full-duplex jamming,
there has been no existing work combining them. In addition,
when the warden can determine an optimal location for
detection, it also imposes a great challenge to the covert
communication. The uncertainty of location information has
been investigated in PLS [29] and in covert communications
[17], [30], but none of the existing works consider a warden
who can choose his optimal location in multi-antenna covert
communications. Thus, in this paper, we focus on the use of
multiple antennas with full-duplex jammer against a warden
with uncertain locations. The key motivation and contribution
of this paper are summarized as follows.

• To the best of our knowledge, the uncertain locations of
a warden who can choose his optimal location in covert
communication has not been studied. This remains a great
challenge due to the high covert outage probability. In this
paper, we will derive the optimal location and detection
threshold for the warden, which brings more threat to the
transmitter being detected. In addition, the warden can
also change his locations to avoid being found.

• Under this worst situation, we propose a two-stage
scheme to balance the tradeoff and maximize the con-
nection probability with a fixed transmission rate while
limiting the covert outage probability. Then, the maxi-
mization of the connection throughput is transformed into
an optimization problem with only the transmission rate
to be decided.

• The monotonicity of connection throughput over the
transmission rate is analyzed. We will use the bisection
method to obtain the optimal transmission rate between
the transmitter and the receiver to maximize their con-
nection throughput while guaranteeing the covertness.

The rest of the paper is organized as follows. In Section II,
we present the system model. The detection and hypothesis
testing are narrated in Section III, followed by the optimal
location and power threshold for the warden in Section IV.
In Section V, the optimal transmission rate is derived to

Fig. 1. Illustration of the covert communication between a multi-antenna
Alice and a full-duplex jamming Bob under the surveillance of a Willie with
uncertain locations.

maximize the connection throughput in covert communication.
Simulation results are presented in Section VI, followed by
conclusions in Section VII.

Notation: Boldface lowercase and uppercase letters repre-
sent vectors and matrices. CM×N and X , [x, y]T ∈ R2×1

identify the M × N complex matrix and the location coor-
dinate. aT , a† and ∥a∥ are the transpose, conjugate transpose
and Euclidean norm of vector a, respectively. |c| and ln (∗) are
the absolute norm of the complex c and the natural logarithm.
P {∗}, Ex [∗], fx {∗} and Fx {∗} denote the probability, the
expectation, the probability density function (PDF) and the
cumulative distribution function (CDF) the random variable
x.

II. SYSTEM MODEL

Consider a wireless network with three nodes, Alice, Bob,
and a Willie with uncertain locations, as shown in Fig. 1.
Alice works as a transmitter equipped with M antennas. The
full-duplex Bob receives the private information from Alice
through one antenna and transmits AN via another antenna1.
Bob himself is the AN source. Thus, he can rebuild and
then eliminate the AN. However, due to the computational
complexity limitation and practical constraint, perfect self-
interference cancellation cannot be achieved, i.e., Bob still
has Pbϕ artificial noise left. Pb is the jamming power and
ϕ is the self-interference cancelation ratio, 0 < ϕ ≤ 1,
which represents the proportion of the remaining AN power
from Bob after its rebuilding and elimination. On the other
hand, the single-antenna Willie wanders around trying to
detect the covert communication between Alice and Bob.
Specifically, equipping with a single antenna can improve the
mobility of Willie and make itself difficult to be discovered by
Alice. Without loss of generality, we apply two-dimensional
Cartesian coordinates to denote the locations of Alice, Bob and
Willie as A , [xa, ya]

T , B , [xb, yb]
T and W , [xw, yw]

T ,
respectively. Assume that Willie has the location knowledge
of Alice. Willie can change his detection locations to perform

1The necessary information for Bob to perform the full-duplex jamming
and receiving can be obtained in the header of each frame.
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a better detection or avoid being discovered. To avoid being
found by Alice, he has to keep a distance of at least r from
Alice, which can be set according to the experience and
environmental parameters, and will be specified in Section VI.
Besides, to enable signal detection, he has to stay within the
detection radius r0 of Alice, which can be derived according
to its minimum detectable signal power.

A. Channel Model

Assume that all the channel coefficients, except for the self-
interfering coefficient hbb of Bob, follow a large-scale path-
loss with quasi-static Rayleigh fading. The complex channel
coefficients from the i-th antenna of Alice to Willie and Bob
can be denoted as

√
ρ0

rαaw
haiw and

√
ρ0

rαab
haib, respectively,

where haiw and haib are the fading coefficients, raw and rab
denote the distances from Alice to Willie and from Alice to
Bob, respectively. ρ0 denotes the reference power gain at a
distance of 1 m, and α represents the path-loss exponent.
The self-interfering channel coefficient hbb of Bob follows
quasi-static Rayleigh fading. haiw, haib, hbw, and hbb are
all independent and identically distributed (i.i.d.) complex
Gaussian random variables with zero-mean and unit variance
CN (0, 1). Therefore, the channel vectors can be described
as haw , [ha1w, · · · , haMw]

T ∈ CM×1 between Alice and
Willie, hab , [ha1b, · · · , haMb]

T ∈ CM×1 between Alice and
Bob, and hbw between Bob and Willie.

During each time slot, the channel coefficients are assumed
to be constant, and vary independently from one slot to
another. Assume that Alice has the channel state information
(CSI) hab

2. Thus, she can optimize the precoding vector to
maximize the received power at Bob as

v =
h†
ab

∥hab∥
. (1)

The signal symbols sent by Alice and the jamming symbols
emitted by Bob can be denoted as s[k] and j[k], respectively,
where s[k], and j[k] are i.i.d. complex Gaussian random
variables with zero-mean and unit variance. s[k] is precoded
with v and then transmitted by Alice with the transmit power
Pa, and j[k] is emitted with the transmit power Pb by Bob.
The received signals at Willie and Bob can be expressed as

yw[k]=

√
ρ0Pa

rαaw
vhaws[k]+

√
ρ0Pb

rαbw
hbwj[k] + nw[k], (2)

yb[k] =

√
ρ0Pa

rαab
vhabs[k] +

√
ϕPbhbbj[k] + nb[k], (3)

where nw[k] and nb[k] are the i.i.d. additive white Gaussian
noise (AWGN) at Willie and Bob with variances of σ2

w and
σ2
b , respectively.

2The transmitter sends the training sequences to the receiver, and the
estimated CSI at the receiver can be then fed back to the transmitter.

B. Connection Probability and Throughput

From Alice’s point of view, she has to make sure that the
transmission rate between her and Bob does not exceed the
channel capacity to avoid errors, i.e., to avoid decoding errors
at Bob. According to yb[k] given in (3), the received signal-to-
interference-plus-noise-ratio (SINR) of Bob can be expressed
as

SINRb =
Sb

Jb + σ2
b

, (4)

where Sb = ρ0Pa|vhab|2r−α
ab is the received signal power from

Alice, and Jb = ϕPb|hbb|2 represents the self-interference
power from himself. Thus, the maximum achievable transmis-
sion rate from Alice to Bob can be calculated as

Rcap = ln (1 + SINRb) , (5)

which is a random variable, due to ∥hab∥2 and |hbb|2 in Sb

and Jb, respectively.
When the transmission rate R is less than Rcap, the commu-

nication between Alice and Bob can perform reliably. Thus,
we define the connection probability between Alice and Bob
as [20]

Pc = P {Rcap ≥ R} . (6)

To evaluate the connection of covert communication, the
connection throughput can be defined as [20]

Rcth = PcR. (7)

III. DETECTION AT WILLIE

Willie needs to decide whether Alice is talking to Bob or
not by using the received signal yw[k]. Specifically, Willie
conducts a detection using hypothesis test to distinguish the
null hypothesis H0 and its alternate hypothesis H1, where H0

indicates that Alice is silent, while H1 indicates transmission
between Alice and Bob. The received signals at Willie in two
hypotheses can be expressed as

yw[k]=



√
ρ0Pb

rαbw
hbwj[k] + nw[k], H0,√

ρ0Pa

rαaw
vhaws[k]+

√
ρ0Pb

rαbw
hbwj[k] + nw[k], H1.

(8)

False alarm (FA) indicates the acceptance of H1 when Alice
is silent, while miss detection (MD) denotes the acceptance
of H0 when there is a transmission between Alice and Bob.
Willie uses an energy detector to test the average statistical
power P̄w of the received signals as

P̄w =
1

N

N∑
k=1

|yw[k]|2 . (9)

Due to the averaging in (9), P̄w tends to converge to a fixed
value as the number of samples increases, i.e., N →∞. Thus,
(9) becomes

P̄w →

{
Jw + σ2

w, H0,

Sw + Jw + σ2
w, H1,

(10)
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where Jw = ρ0Pb|hbw|2r−α
bw represents the received jamming

power, and Sw = ρ0Pa|vhaw|2r−α
aw denotes the received power

from Alice. We assume that Jw and Sw are unchanged during
each time slot due to the quasi-static Rayleigh fading and fixed
Pa and Pb.

Willie decides whether Alice is transmitting based on his
observation [31]. The decision is made according to

P̄w

D1

≷
D0

ξ, (11)

where ξ is the predefined detection threshold of P̄w at Willie,
D0 denotes the decision of accepting H0, and D1 is in favor of
H1. Willie decides D0 when P̄w ≤ ξ, and D1 when P̄w > ξ.
The probability of detection is calculated as [20]

p = pH0P {D0|H0}+ pH1P {D1|H1} , (12)

where P {∗} means the probability of ∗ being true, pH0 =
P {H0}, and pH1 = P {H1}. The classical literature [12]
has proved that pH0 = pH1 = 0.5 can introduce more
uncertainty to deceive Willie. Thus, we consider the equal
priori probability of pH0 = pH1 = 0.5 in this paper, which
indicates that Alice can transmit randomly in 50% of the time
slots. Thus, (12) becomes

p = 0.5 (P {D0|H0}+ P {D1|H1}) . (13)

The case when pH0 ̸= 0.5 will be discussed in Appendix A.
Using P̄w in (10) and the decision rule in (11), p can be

calculated as

p =

{
1, Jw + σ2

w ≤ ξ ≤ Sw + Jw + σ2
w,

0.5, otherwise,
(14)

where Sw and Jw are assumed to be unchanged for a specific
time slot, and vary from slot to slot, due to the quasi-static
Rayleigh fading and fixed Pa and Pb. Thus, p relies on
the selection of ξ. As such, p becomes a standard Bernouli
random variable with two possible outcomes p = 1 and
p = 0.5 according to the given threshold ξ. This means
either P̄w = Jw + σ2

w or P̄w = Sw + Jw + σ2
w. When

Jw + σ2
w ≤ ξ ≤ Sw + Jw + σ2

w, we have P {D0|H0} =
P {D1|H1} = 1, which leads to p = 1. When ξ ≤ Jw + σ2

w,
we have P {D0|H0} = 0 and P {D1|H1} = 1, which leads
to p = 0.5. Finally, when ξ ≥ Sw + Jw + σ2

w, we have
P {D0|H0} = 1 and P {D1|H1} = 0, which also leads to
p = 0.5.

If the transmission between Alice and Bob is discovered by
Willie, the covert communication is not achievable. Therefore,
we define the probability that the communication is found out
by Willie as the covert outage probability po, which can be
described as3

po = P{p = 1}. (15)

In an interference-limited network, we ignore σ2
b in (4) and

σ2
w in (14).

IV. OPTIMAL THRESHOLD AND LOCATION FOR WILLIE

In this section, we analyze the metrics at Willie to find the
optimal threshold and location for his detection.

3po can be calculated by taking the limit of infinite number of time slots.

Jw 

Sw 

ξ 

ξ

zone-I

zone-II

Fig. 2. Explanation of the CDF in (18).

A. Problem Formulation
Since Willie knows the location of Alice, his position will

affect the correct detection probability. Thus, we optimize the
position of Willie to achieve higher probability of detecting
the transmission of Alice as

P1: max
ξ,W

po (16a)

s.t. raw + rbw ≥ rab, (16b)
rbw ≤ raw + rab, (16c)
r ≤ raw ≤ r0, (16d)
rbw > 0, (16e)

where raw, rbw, and rab denote the distances from Alice
to Willie, from Bob to Willie, and from Alice to Bob,
respectively, with raw = ∥A −W∥, rbw = ∥B −W∥, and
rab = ∥A − B∥. The constraints (16b) and (16c) result from
the triangle inequality theorem, and the constraints (16d) and
(16e) describe the possible locations of Willie. By solving (16),
the optimal position for Willie can be found.

B. Optimal Detection Threshold
To solve the problem in (16), we need to derive the

expression of po first, which can be derived by substituting
(14) into (15) as

po = P {Jw ≤ ξ ≤ Sw + Jw} . (17)

As shown in Fig. 2, we first consider the case when Jw ≤ ξ,
which indicates the whole mesh zone-I and slash zone-II to
the left of the green dotted line. In addition, Sw+Jw has to be
greater than ξ, which reduces the sum of zone-I and zone-II
to the slash zone-II. Based on the basic knowledge of CDF,
(17) can be calculated as

po = FJw (ξ)−FJw+Sw (ξ) . (18)

As hbw ∼ CN (0, 1), we have |hbw|2 ∼ exp(1) and

Jw ∼ exp(λb), (19)

where λb =
rαbw
ρ0Pb

. Thus, we have the CDF of Jw as

FJw (ξ) = 1− e−λbξ. (20)

According to [32], with the i.i.d. distribution of habi ∼
CN (0, 1) and hawi

∼ CN (0, 1), we have

|h†
abhaw|2

∥hab∥2
∼ exp(1). (21)
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With the definition above, the distribution of Sw can be
expressed as

Sw ∼ exp(λa), (22)

where λa =
rαaw

ρ0Pa
. Usually, Pa ≪ Pb, and we have λa ̸= λb.

As Sw and Jw are i.i.d., po in (18) can be expressed as

po = 1− e−λbξ −
∫ ξ

0

FJw (ξ − x) fSw (x) dx

=
λb

λa − λb

(
e−λbξ − e−λaξ

)
, λa ̸= λb.

(23)

According to (23), we can conclude that po only depends
on Pa, Pb, ξ and W . To maximize po, the optimal detection
threshold ξ∗ is derived in Proposition 1.

Proposition 1: The optimal detection threshold ξ∗ for Willie
can be expressed as

ξ∗ =
lnλa − lnλb

λa − λb
. (24)

Proof: To derive the optimal detection threshold ξ∗, the
monotonicity of po should be considered. Using po in (23),
we have the first-order derivative of po with respect to ξ as

p′o (ξ) =
λb

λa − λb

(
λae

−λaξ − λbe
−λbξ

)
. (25)

From the definitions of λa and λb, we know that λa > 0 and
λb > 0.

First, if λa > λb, when ξ < ξ∗, we have λae
−λaξ >

λbe
−λbξ, and we further conclude that p′o > 0. On the other

hand, when ξ > ξ∗ we know that p′o is negative.
If λa < λb, we derive λae

−λaξ < λbe
−λbξ from ξ < ξ∗,

which leads to p′o > 0. Then, ξ > ξ∗ can guarantee p′o < 0.
Thus, po monotonically increases with ξ, when ξ ≤ ξ∗, and

monotonically decreases when ξ > ξ∗, based on which we
can obtain the optimal detection threshold ξ∗ to maximize po
as (24).

C. Optimal Detection Position

In practical systems, the jamming signal should be much
stronger than the transmitted information, i.e., Pa ≪ Pb, which
leads to λa ̸= λb. Thus, using the optimal ξ∗ in (24), we can
derive the optimal p△o as

p△o =

(
λa

λb

)− λa
λa−λb

, λa ̸= λb. (26)

Without loss of generality, assume that Bob is located at
B = [xa + rab, ya]

T . Then, we analyze the monotonicity of
po against raw and rbw in Proposition 2 to obtain the optimal
detection location for Willie.

Proposition 2: The optimal detection location for Willie
can be expressed as

W = [xa − r, ya]
T . (27)

Proof: From (26), we have the expression of p△o (λa)
′ and

p△o (λb)
′ as

∂p△o
∂λa

=
λb

(
λa

λb

)− λa
λa−λb

(λa − λb)
2 tλa , (28a)

∂p△o
∂λb

=
λa

(
λa

λb

)− λa
λa−λb

(λa − λb)
2 tλb

, (28b)

where we define

tλa = ln

(
λa

λb

)
− λa

λb
+ 1, (29)

and
tλb

= − ln

(
λa

λb

)
+

λa

λb
− 1. (30)

With λa

λb
> 0, we have tλa |λa

λb
→0 < 0, tλa |λa

λb
=1 = 0,

and tλa |λa
λb

→∞ < 0. Thus, it is obvious that tλa ≤ 0 and
tλb
≥ 0, and we can further conclude that p△o monotonically

decreases with λa while increasing with λb. Consequently, to
obtain higher successful detection probability, Willie needs to
make raw as small as possible while rbw as large as possible.

With fixed raw, we can derive the optimal r∗bw = raw + rab
from the coupling relationship of rbw ≤ raw + rab. Therefore,
we have the first-order derivative of p△o (raw) as

∂p△o
∂raw

=
∂p△o
∂λa

∂λa

∂raw
+

∂p△o
∂λb

∂λb

∂raw

=
p△o α (raw + rab)

α−1
(raw)

α−1
rabPaPb

(Pbrαaw − Pa (raw + rab)
α
)
2 tλa .

(31)

As tλa ≤ 0, we can conclude from (31) that ∂p△
o

∂raw
≤ 0.

Thus, the optimal position to maximize the successful detec-
tion probability po is r∗aw = r. Then, we can further derive
r∗bw = r + rab, which leads to the optimal detection location
for W expressed in (27).

Thus, using the optimal detection threshold ξ∗ in (24) and
the optimal detection position in (27), the optimal detection
probability p∗o of Willie is

p∗o =

(
rαPb

(r + rab)
α
Pa

)− rα/Pa
rα/Pa−(r+rab)

α/Pb

. (32)

Remark 1: Willie can obtain the optimal detection threshold
as ξ∗ based on Proposition 1, and perform the detection
at the optimal location W∗ demonstrated in Proposition 2.
Accordingly, he can maximize his detection probability po
based on these results in (24) and (27).

V. COVERT COMMUNICATION WITH OPTIMAL
THRESHOLD AND POSITION OF WILLIE

In this section, we optimize the transmission rate, the
transmit power and the jamming power to maximize the
connectivity throughput with a fixed covert outage probability,
in the worst situation when Willie operates with the optimal
threshold and position4.

4Although Willie can change his locations for detection, Alice tries to
improve the covert performance assuming Willie at his optimal location.
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A. Problem Formulation

The optimization problem can be formulated as

P2: max
Pa,Pb,R

Rcth (33a)

s.t. Pa ≤ Pamax , (33b)
Pb ≤ Pbmax , (33c)
R ≥ Rth, (33d)
p∗o ≤ ε, (33e)

where ε is the maximum allowed covert outage probability,
Rth represents the rate threshold for Bob to correctly decode
the message from Alice, and Pamax and Pbmax are the maxi-
mum transmit power for Alice and Bob, respectively.

According to (6) and (7), Rcth is related to R and Pc, while
Pc is also determined by R. Owing to the coupling between R
and Pc, we first optimize Pa and Pb to obtain the maximum
P ∗
c . Then, Rcth is maximized by optimizing R. Consequently,

the problem of (33) can be divided into two sub-problems as

P 2.1: max
Pa,Pb

Pc (34a)

s.t. Pa ≤ Pamax , (34b)
Pb ≤ Pbmax , (34c)
p∗o ≤ ε, (34d)

P 2.2: max
R

Rcth, (35a)

s.t. Pc = P ∗
c , (35b)

R ≥ Rth. (35c)

The solution to P 2.1 is derived in Section V-B. With the
optimal P ∗

c , the connection throughput between Alice and Bob
is maximized in Section V-C by solving P 2.2.

B. Connection Probability

According to (4) and (5), we can rewrite (6) as

Pc = P
{

Sb

Jb + σ2
b

≥ β

}
, (36)

where β = eR − 1 > 0. Ignoring σ2
b , (36) becomes

Pc = EJb

[
P
{
∥hab∥2 ≥ γJb

}]
, (37)

where γ =
βrαab

ρ0Pa
. Since habi ∼ CN (0, 1) and hbb ∼

CN (0, 1), we have ∥hab∥2 ∼ Γ (M, 1) and |hbb|2 ∼ exp (1).
Thus, we can obtain Jb ∼ exp

(
1

ϕPb

)
. Then, (37) can be

calculated as

Pc = EJb

[
e−γJb

M−1∑
m=0

(γJb)
m

m!

]

=

M−1∑
m=0

γm

m!

m!(
γ + 1

ϕPb

)m+1

Pbϕ

= 1−
(
1 +

ρ0Pa

ϕPbrαab (e
R − 1)

)−M

.

(38)

Then, we analyze the monotonicity of Pc with regard to
Pa, Pb, R and M . From the expression of (38), we have the
first-order derivative of Pc against Pa, Pb, M , and R as

∂Pc

∂Pa
=

M

ϕPbrαabβ
η−M−1, (39a)

∂Pc

∂Pb
=
−Mρ0Pa

ϕP 2
b r

α
abβ

η−M−1, (39b)

∂Pc

∂M
= η−M ln η, (39c)

∂Pc

∂R
=
−Mρ0Pae

R

ϕPbrαabβ
2

η−M−1, (39d)

where
η = 1 +

ρ0Pa

ϕPbrαab (e
R − 1)

. (40)

Thus, η > 1. We have ∂Pc

∂Pa
> 0, ∂Pc

∂Pb
< 0, ∂Pc

∂M > 0, and ∂Pc

∂R <
0. Thus, we can conclude that Pc monotonically increases with
Pa and M , and decreases with Pb and R.

Accordingly, we can improve Pc by adjusting the transmit
power and the number of antennas at Alice, the jamming
power at Bob, and the transmission rate between them.

With P ′
c (M) given in (39c), we further discuss the influence

of the number of antennas on the connection performance
between Alice and Bob.

P ′
c (M) in (39c) suggests that Pc monotonically increases

with M . The second-order derivative of Pc (M) can be derived
as

P ′′
c (M) = − (ln η)

2
η−M . (41)

Since P ′′
c (M) < 0, P ′

c (M) monotonically decreases with M .
Based on P ′

c (M) > 0 given in (39c), we know that with the
increase of M , Pc (M) becomes large but the increase tends
to slow down. Therefore, we can conclude that Pc is concave
with M . This suggests that more antennas equipped at Alice
can improve Pc. However, the improvement becomes marginal
as the number increases. Since the influence of the number of
antennas on Pc decreases when M gets larger, M should be
properly selected to achieve more effective communication.
This will be further discussed in Section VI.

From po in (32), we can also see that it can be influenced
by both Pa and Pb. To analyze the monotonicity of p∗o against
Pa and Pb, we derive its first-order derivatives with Pa and
Pb as

∂p∗o
∂Pa

=
∂p∗o
∂λa

∂λa

∂Pa
= −p△o (λa)

′ rα

ρ0P 2
a

, (42a)

∂p∗o
∂Pb

=
∂p∗o
∂λb

∂λb

∂Pb
= −p△o (λb)

′ (r + rab)
α

ρ0P 2
b

, (42b)

where λa = rα

ρ0Pa
and λb =

(r+rab)
α

ρ0Pb
according to Proposition

2. Since p△o (λa)
′ ≤ 0 and p△o (λb)

′ ≥ 0, we have p∗o (Pa)
′ ≥ 0

and p∗o (Pb)
′ ≤ 0. Thus, we can conclude that p∗o monotoni-

cally increases with Pa, and decreases with Pb.
The influences of Pa and Pb on Pc are opposite to p∗o. In

order to bind the connection and derive the bounds of Pa and
Pb from (34d), we first introduce an auxiliary variable as

t =
λb

λa
=

(
r + rab

r

)α
Pa

Pb
. (43)
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It is obvious that t > 0. By deriving the upper bound of t,
the maximum power ratio Pa/Pb can be obtained, which is
presented in Proposition 3.

Proposition 3: The upper bound of the transmit-to-jamming
power ratio Pa/Pb can be expressed as

Pa

Pb
≤ rα

(r + rab)
α

W0 (ε ln ε)

ln ε
, (44)

where W0 (∗) is the principal branch of Lambert W function
[33].

Proof: Since t = λb

λa
, p∗o can be turned into

p∗o =

(
1

t

)− 1
1−t

. (45)

Substituting (45) into (34d), we have

1

1− t
ln t ≤ ln ε, (46)

where t ̸= 1. For simplicity, let c = ln ε. Owing to ε ∈ (0, 1),
we have c ∈ (−∞, 0). The upper bound of t is discussed in
two situations of t ∈ (0, 1) and t ∈ (1,+∞).

First, when t ∈ (1,+∞), (46) can be changed to

ln t ≥ (1− t) c,

ctect ≤ cec.
(47)

Since c < 0, we have

−1

e
≤ cec < 0. (48)

Thus, the solution to (47) can be derived as

W−1 (ce
c)

c
≤ t ≤ W0 (ce

c)

c
, (49)

where W−1 (∗) is the negative branch of Lambert W func-
tion. Based on the rule of Lambert W function, we have
W−1 (ce

c) < −1 < W0 (ce
c) < 0, which leads to W−1 (ce

c) =
c. Therefore, we can conclude that

W−1 (ce
c)

c
≤ t ≤ W0 (ce

c)

c
= 1, (50)

which is against our original assumption of t ∈ (1,+∞).
Then, when t ∈ (0, 1), (46) can be turned to

ln t ≤ (1− t) c,

ctect ≥ cec.
(51)

The solution to (51) can be described as

t ∈
(
0,

W0 (ce
c)

c

)∪(
W−1 (ce

c)

c
, 1

)
. (52)

However, by realizing W−1(ce
c)

c = 1, the solution to (51)
should be changed to t ∈

(
0, W0(ce

c)
c

)
.

To sum up, the upper bound of t can be described as

0 < t ≤ W0 (ε ln ε)

ln ε
. (53)

Combining (43) and (53), the limit of the transmit-to-jamming
power ratio can be derived as (44).

Based on (43) and the optimal location of Willie in Propo-
sition 2, Pc in (38) can be rewritten as

Pc = 1−
(
1 +

ρ0r
αt

ϕ (r + rab)
α
rαabβ

)−M

. (54)

Then, we have the first-order derivative of Pc against t as

∂Pc

∂t
=

ρ0r
αM

ϕ (r + rab)
α
rαabβ

η−M−1, (55)

based on which, we have ∂Pc

∂t > 0 according to the definition
of η in (40). Therefore, the closed-form expression of Pc can
be obtained for P 2.1 by applying t = W0(ε ln ε)

ln ε as

P ∗
c = 1−

(
1 +

ρ0r
αW0 (ε ln ε)

ϕ (r + rab)
α
rαabβ ln ε

)−M

. (56)

Remark 2: With the power ratio of Pa

Pb
set as the upper bound

in (44), the connection probability Pc can be maximized while
guaranteeing the covertness requirement of po. Therefore, the
legitimate users can achieve higher connection throughput by
properly setting Pa, Pb and R.

C. Connection Throughput

In this subsection, to derive the solution to P 2.2, we
calculate the connection throughput Rcth using the derived
optimal P ∗

c subject to a limit on the covert outage probability
ε. Based on P ∗

c in (56), the connection throughput is

Rcth (β) = P ∗
c R

=

[
1−

(
µβ

1 + µβ

)M
]
ln (1 + β),

(57)

where

µ =
ϕrαab
ρ0

(r + rab)
α

rα
ln ε

W0 (ε ln ε)
. (58)

To maximize the covert connection throughput, we analyze
the monotonicity of Rcth (β) against the transmission rate
R. Before discussing the monotonicity of Rcth (β), we first
introduce Lemma 1.

Lemma 1: When µ ≪ 1, if a solution to ∂Rcth(β)
∂β = 0

exists, it is unique.
Proof: In order to derive the tendency of Rcth(β) with β,

we first calculate its first-order derivative R′
cth(β0) as

∂Rcth(β)

∂β
=
1−

(
µβ

1+µβ

)
M

1 + β
−µM ln (1 + β)

(1 + µβ)
2

(
µβ

1+µβ

)M−1

. (59)

According to the principle of l’Hôpital’s rule [34], we have

lim
β→∞

(
µβ

1 + µβ

)
= 1, (60a)

lim
β→0

(
µβ

1 + µβ

)
= 0, (60b)

lim
β→∞

ln (1 + β)

(1 + µβ)
2 = 0, (60c)

lim
β→0

ln (1 + β)

(1 + µβ)
2 = 0. (60d)
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Thus, we conclude that

lim
β→0

∂Rcth (β)

∂β
= 1, (61)

lim
β→∞

∂Rcth (β)

∂β
= 0. (62)

If ∂Rcth(β)
∂β = 0 exists, assume that β0 is one of the zero

point roots. According to (59), we have

1−
(
1 + 1

µβ0

)
−M

1 + β0
=

M ln (1 + β0)
(
1+ 1

µβ0

)−M−1

µβ2
0

. (63)

The second-order derivative R′′
cth(β) is presented as (64) at

the top of next page. Based on (63), R′′
cth(β) at β0 can be

derived as (65) at the top of next page, where

K(β0) =
M ln(1+β0)

(
1+ 1

µβ0

)−M−1

µβ2
0

, (66)

T (β0)=

(
−(M+1)

β0(µβ0+1)
+

2

β0
− 2

(β0+1) ln (1+β0)
− 1

1+β0

)
. (67)

It is easy to see K(β0) > 0.
From the definition of µ in (58), we have µ≪ 1 according

to the related practical parameters. Based on ln(1 + β0) ≤ β0

and µ≪ 1, we can conclude

T (β0) <
β0 − M−1

µ − 2

β0(β0 +
1
µ )

. (68)

As M−1
µ +2 is very large, we have

β0−M−1
µ −2

β0(β0+
1
µ )

< 0, which
indicates T (β0) < 0. Then, we conclude that R′′

cth(β0) < 0,
which indicates that R′

cth(β) monotonically decreases around
β0. Thus, the zero point β0 is unique.

With Lemma 1, the monotonicity of Rcth (β) is proved in
Proposition 4.

Proposition 4: Rcth (β) first increases and then decreases
with β.

Proof: With the limit in (60c), we have

lim
β→0

Rcth (β) = 0, (69)

When β →∞, the limit of Rcth(β) can be expressed as

lim
β→∞

Rcth (β) = lim
β→∞

1−
(

µβ
1+µβ

)M

1
ln (1+β)

= lim
β→∞

−M
(

µβ
1+µβ

)M−1
µ

(1+µβ)2

− 1
(1+β)(ln (1+β))2

= M lim
β→∞

(ln (1 + β))
2

1 + µβ
= 0.

(70)

In addition, as shown in (61) and (62), we can conclude
that ∂Rcth(β)

∂β can be either positive when β > 0 as shown in
Fig. 3(a), or has a single zero point as shown in Fig. 3(b),
according to Lemma 1.

0
0

1

2

3

4

0
-1

-0.5

0

0.5

1

(a) Positive derivative when >0

(b) A single zero point when  >0

Fig. 3. The assumption of the tendency for ∂Rcth(β)
∂β

.

First, if the case in Fig. 3(a) is true, Rcth (β) monotonically
increases with β. According to (69), Rcth (β) increases grad-
ually from 0 as β gets larger. This contradicts with the fact in
(70) that Rcth (β) approaches to 0 when β → ∞. Thus, this
case is not true.

Consequently, Fig. 3(b) is true, and there exists a β0

that leads to ∂Rcth(β)
∂β |β=β0 = 0. Under this assumption,

combining (69) and (70), we can conclude that Rcth (β) first
monotonically increases and then monotonically decreases.

Thus, we have the maximum covert connection throughput
Rcth (β0), where β0 is derived from R′

cth(β0) = 0. However,
it is difficult to find the zero point β0, owing to the complex
expression of R′

cth(β). Thus, we adopt the bisection method
to find β0. We can obtain the root of R′

cth (β) = 0 through
iteratively bisecting the interval [βa, βb], and then selecting the
subinterval, where R′

cth (β) changes sign. The midpoint in the
bisection method can be calculated as

βc =
βa + βb

2
. (71)

The approaching process starts with βa = eRth − 1 and a
given initial βb = βini, and ends until the difference ∆ of β
meets the minimum required precision δ, where ∆ is defined
as

∆ = βb − βa. (72)

With the given limit of covert outage probability ε, the optimal
transmit-to-jamming power ratio (Pa

Pb
)∗ can be derived. Then,

the calculation of the optimal transmission rate R∗ between
Alice and Bob can be summarized as Algorithm 1 based on
the bisection method.

Thus, the achievable maximum connectivity throughput
R∗

cth in P 2.2 can be calculated with optimized R∗ derived
from Algorithm 1 as

R∗
cth =

[
1−

(
µ(eR − 1)

1 + µ(eR − 1)

)M
]
R∗. (73)

VI. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are presented to verify
the effectiveness of the proposed scheme. Without loss of
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R′′
cth(β) =

M ln (1 + β)
(
1 + 1

µβ

)−M−1

µβ2

−(M + 1)
(
1 + 1

µβ

)−1

µβ2
+

2

β
− 2

(β + 1) ln (1 + β)

− 1−
(
1 + 1

µβ

)−M

(1 + β)2
. (64)

R′′
cth(β0)=

M ln(1+β0)
(
1+ 1

µβ0

)−M−1

µβ2
0

(
−(M+1)

β0(µβ0+1)
+

2

β0
− 2

(β0+1) ln (1+β0)

)
−

M ln(1+β0)
(
1+ 1

µβ0

)−M−1

µβ2
0

1

(1+β0)

= K(β0)T (β0).

(65)

Algorithm 1 The bisection method for P 2.2
Input: r, α, M , ϕ rab, ε, βa, βb, δ
Output: R∗

1: Get µ from (58)
2: ∆←∞
3: while ∆ ≥ δ do
4: Get βc from (71)
5: Get R′

cth (βa) , R
′
cth (βc) , R

′
cth (βb) from (59)

6: if R′
cth (βc) == 0 then

7: Break
8: else if R′

cth (βa)R
′
cth (βc) > 0 then

9: βa = βc

10: else
11: βb = βc

12: end if
13: ∆← βb − βa

14: end while
15: β0 ← βc

16: R∗ ← ln (β0 + 1)
17: return R∗

generality, assume that Alice and Bob are located at A =
[100, 100]T and B = [200, 100]T in meters, respectively. The
Willie wanders within the radius r0 = 200 m around Alice,
but stays outside of r = 30 m. The channel coefficients follow
Rayleigh fading with ρ0 = −20 dB and α = 2.6. The self-
interference cancellation coefficient is ϕ = −90 dB.

The covert outage probability is studied for different po-
sitions of Willie in Fig. 4, when Pa = 0.1 W, Pb = 1 W,
and M = 8. The results show that the theoretical values
of po match with the simulation well. In addition, we can
see that the covert outage probability first increases and then
decreases with the detection threshold ξ. There exists an
optimal detection threshold ξ∗ to maximize po, which agrees
with Proposition 1. Thus, we can conclude that different
positions of Willie may lead to different po, which is further
demonstrated in Fig. 5.

In Fig. 5, the covert outage probability po is studied when
Willie is located at different positions using the optimal ξ∗ set
as (24), when Pa = 0.1 W, Pb = 1 W, and M = 8. From
the results, we can observe that the covert outage probability
increases when Willie is closer to Alice and decreases when
he gets closer to Bob. In addition, we can see that the covert
outage probability reaches its maximum when Willie is at

0 0.5 1 1.5 2 2.5
 (W) 10-7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Theoretical in (23),      =[70 100]T

Theoretical in (23),      =[130 100]T

Theoretical in (23),      =[100 150]T

Simulation,                  =[70 100]T

Simulation,                  =[130 100]T

Simulation,                  =[100 150]T

 at     =[130 100]T
 at     =[100 150]T

 at     =[70 100]T

Fig. 4. Comparison of the covert outage probability po under different
detection threshold ξ. Three cases of W = [70, 100]T , W = [130, 100]T

and W = [100, 150]T are considered.

Fig. 5. Comparison of the covert outage probability po when Willie is located
at different positions with the optimal ξ∗.

[70, 100]T according to (27), which agrees with Proposition
2.

Then, the influence of Pa/Pb on the covert outage prob-
ability is investigated using the optimal ξ∗ in (24) in Fig. 6,
when Pb = 1 W and M = 8. From the results, we can observe
that po monotonically increases with the power ratio Pa/Pb.
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
P

a
/P

b

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
p o

Willie at [70 100]T

Willie at [100 70]T

Willie at [130 100]T

Theoretical in (44) (P
a
/P

b
)  for p

o
=0.2

Fig. 6. Comparison of po with different Pa/Pb. W = [70, 100]T , W =
[100, 70]T and W = [130, 100]T are considered. The theoretical maximum
values of (Pa/Pb)

∗ for ε = 0.2 are marked as well.

0 0.5 1 1.5 2 2.5 3

R (nat/s/Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
c

Theoretical in (56) M=4
Theoretical in (56) M=8
Theoretical in (56) M=12
Theoretical in (56) M=16
Simulation M=4
Simulation M=8
Simulation M=12
Simulation M=16

Fig. 7. Comparison of connection probability Pc with different transmission
rate R. Four cases of M = 4, M = 8, M = 12 and M = 16 are considered.

In addition, we can also see that po is different when Willie
is located at different positions. When W = [70, 100]T , po is
the largest according to Proposition 2. With the upper bound
of po set as ε = 0.2, the theoretical maximum value of Pa/Pb

in (44) of Proposition 3 matches with the simulation result,
where W = [70, 100]T .

In Fig. 7, the connection probability Pc is compared for
different antenna numbers M at Alice, where ε = 0.13. Based
on the upper bound of Pa/Pb in (44), we set Pa = 0.0043
W and Pb = 1 W. We can also see that Pc monotonically
decreases with transmission rate R according to (39d). The
results also indicate that the increase of number of antennas
can lead to higher connection probability. Furthermore, we
can see that the increasing of M will obviously affect the
performance around M = 16 when R > 1 nat/s/Hz. However,
when M = 16, the complexity of the transmitter is already
very high, and we have no need to further improve the
performance by increasing M . Based on this, the largest
value of M is set to 16 for analysis, and we should make a
balance between the complexity and the performance of covert
communication when selecting M , which is further discussed

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M

P
c

 

 

R=0.5 nat/s/Hz
R=1 nat/s/Hz
R=1.5 nat/s/Hz

Fig. 8. Comparison of connection probability Pc for different M , with three
cases R = 0.5 nat/s/Hz, R = 1 nat/s/Hz and R = 1.5 nat/s/Hz considered.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
c

Theoretical in (56), R=0.5 nat/s/Hz
Theoretical in (56), R=1 nat/s/Hz
Theoretical in (56), R=1.5 nat/s/Hz
Simulation, R=0.5 nat/s/Hz
Simulation, R=1 nat/s/Hz
Simulation, R=1.5 nat/s/Hz

Fig. 9. Comparison of connection probability Pc for different covert outage
limits, with three cases R = 0.5 nat/s/Hz, R = 1 nat/s/Hz and R = 1.5
nat/s/Hz considered.

in Fig. 8.
The impact of M on the connection probability Pc is

investigated in Fig. 8 under different transmission rate R at
Alice, when Pa = 0.0043 W and Pb = 1 W. We can see that
Pc monotonically increases with M , and the increase tends to
slow down as M becomes larger, which is consistent with the
analysis in Section V-B. Thus, the performance improvement
and the number of antennas should be carefully balanced.

The impact of covert outage upper bound ε on the connec-
tion probability Pc is investigated in Fig. 9, where R = 0.5
nat/s/Hz, R = 1 nat/s/Hz, and R = 1.5 nat/s/Hz are compared.
We can see that Pc monotonically increases with ε, because
larger ε will increase Pa/Pb. In addition, the results also
indicate the better connection performance can be achieved
with smaller transmission rate, which is consistent with that
in Fig. 7.

Furthermore, the influence of the number of antennas and
the upper bound of po on the connection throughput are
investigated in Fig. 10 and Fig. 11, respectively, where W =
[70, 100]T . In Fig. 10, we set ε = 0.1. From the results, we
can see that the connection throughput first increases then
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Fig. 10. Comparison of the connection throughput under different transmis-
sion rate R, with M = 4, M = 8, M = 12 and M = 16 considered. The
optimal R∗ and maximum Rcth derived by the bisection method are also
presented.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R (nat/s/Hz)

R
ct

h(n
at

/s
/H

z)

 

 
ε=0.1
ε=0.15
ε=0.2
ε=0.25

R* and R
cth

 by the Bisection Method

Fig. 11. Comparison of connection throughput under different transmission
rate R, with ε = 0.1, ε = 0.15, ε = 0.2 and ε = 0.25 considered. The
optimal R∗ and the maximum Rcth derived by the bisection method are also
presented.

decreases with the transmission rate R. We can also find that
the optimal values of R∗ derived by the bisection method are
consistent with the simulation ones. In addition, the results also
show that the increase of M can achieve higher connection
throughput. On the other hand, the connection throughput is
compared with different covert outage limits in Fig. 11, with
ε = 0.1, ε = 0.15, ε = 0.2 and ε = 0.25, respectively. We set
M = 8. From the results, we can see that the increase of ε
leads to higher connection throughput.

The connection throughput is compared for the proposed
scheme and the scheme without Pa/Pb optimization in Fig. 12,
with M = 8. From the results, we can see that the connection
throughput increases with Pa/Pb until po = ε in the scheme
when the power ratio is not optimized, which can reach its
maximum value as po = ε in the proposed scheme. In addition,
R∗

cth becomes higher with larger ε in the proposed scheme,
due to the fact that the restriction on ε is relaxed to allow
higher transmit power at Alice.
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Fig. 12. Comparison of optimized connection throughput R∗
cth for the

proposed scheme and the scheme without Pa/Pb optimization. Three cases
of ε = 0.1, ε = 0.15 and ε = 0.2 are considered.
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Fig. 13. Comparison of maximized connection throughput R∗
cth and

optimized transmission rate R∗ under different ε. Three cases of M = 8,
M = 16 and single antenna are considered.

The maximum connection throughput R∗
cth and the optimal

transmission rate R∗ are compared for different number of
antennas in Fig. 13 with varying ε. From the results, we can
see that both R∗

cth and R∗ increase with ε when it is small, but
tend to be unchanged when ε becomes larger. This is because,
Pc approaches 1 as ε keeps increasing, which leads to the
stability of R∗

cth and R∗. In addition, we can also conclude
that the proposed scheme with multiple antennas can achieve
better performance than that when only a single antenna is
equipped at Alice.

Finally, the effectiveness of the proposed scheme is verified
towards location uncertainty in Fig. 14, when M = 8 and
Willie is located at different positions adopting the optimal
ξ∗ set as (24). We set Pa = 0.0043 W and Pb = 1 W
according to the upper bound of Pa/Pb in (44) when ε = 0.13.
From the results, we can see that the maximum covert outage
probability is achieved at Willie’s optimal detection location
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Fig. 14. Comparison of the covert outage probability po when Alice and
Bob set their transmit power to their optimal as (44) and Willie is located at
different positions with the optimal ξ∗.

W = [70, 100]T , which is consist with Proposition 2. In
addition, although the location of Willie is uncertain, the
covertness requirement po ≤ ε can be guaranteed wherever
Willie locates, when Alice and Bob set their power ratio to
the upper bound in (44). For the connection throughput, it will
not affected by the location of Willie. Thus, we can conclude
that the proposed scheme of covert communication is effective
towards the location uncertainty of Willie.

VII. CONCLUSIONS

In this paper, we have considered the covert communication
of a multi-antenna transmitter aided by a full-duplex jamming
receiver against a warden with uncertain locations. To guar-
antee the covert outage probability lower than its limit while
maximizing the connection throughput, a covert communica-
tion scheme is proposed. The optimal detection location and
power threshold are presented for the warden to demonstrate
the worst situation for the covert communication. Then, the
transmit-to-jamming power ratio and the transmission rate are
optimized sequentially to maximize the connection throughput
under the given covert outage limit for this worst situation.
Specifically, to calculate the optimal transmission rate, the
bisection method is utilized. Simulation results are presented to
prove that the theoretical results are perfectly consistent with
the simulation ones, and the proposed scheme can maximize
the connection throughput while guaranteeing the covertness
effectively.

APPENDIX A
APPLICABILITY OF p WHEN pH0

̸= pH1

Based on [35], when pH0 = pH1 = 0.5, we have the upper
limit of Willie’s correct detection probability as

p =
1

2
(PFA + PMD) ≤ 0.5 + ε. (74)

where PFA is the probability of FA, and PMD is the proba-
bility of MD.

On the other hand, when pH0 ̸= pH1 , Alice can still carry
covert communication with Bob. In this case, the detection

probability of Willie can be calculated as

p∗=pH0P
{
Jw+σ

2
w≤ξ

}
+pH1P

{
Sw+Jw+σ

2
w≥ξ

}
= (1− pH1)(1− PFA) + pH1(1− PMD)

≤ 1−min{1− pH1 , pH1}(PFA + PMD)

≤ 1−min{1− pH1 , pH1}+ ε′,

(75)

where ε′ = 2εmin{1 − pH1 , pH1}. We can see that the
maximum p when pH0 = pH1 = 0.5 is smaller than p∗ when
pH0 ̸= pH1 . Thus, we set pH0 = pH1 = 0.5 to improve the
covert performance for Alice in the paper.
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