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Abstract—In this correspondence, we consider the intelligent
reflecting surface (IRS) assisted unmanned aerial vehicle (UAV)
uplink transmission, where a UAV collects data from ground
users via an IRS. The objective is to maximize the energy
efficiency (EE) by jointly optimizing the UAV trajectory, user
scheduling and IRS phase shifts. Unlike existing offline designs,
we propose a hybrid offline-online scheme to further improve the
performance with both the statistical and instantaneous channel
state information (CSI). Specifically, the UAV trajectory and user
scheduling are optimized based on the statistical CSI in the offline
phase, followed by the online phase in which the phase shifts are
readjusted based on the instantaneous CSI. Simulation results
show the EE gain of the offline-online design over benchmarks.

Index Terms—Intelligent reflecting surface, unmanned aerial
vehicle, statistical and instantaneous CSI, offline-online design.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have attracted extensive
attention in serving as low-altitude communication platforms,
owing to their high mobility and low cost [1]. In particular,
UAV can establish nearly line-of-sight (LoS) links with ground
users, thereby achieving reliable transmission. Despite these
advantages, the limited on-board energy greatly restrains its
performance. Thus, energy efficiency (EE) is of vital impor-
tance for UAV communications [2]. In [3], the propulsion
energy model of rotary-wing UAV was derived by Zeng et al..
Based on [3], Duo et al. proposed a full-duplex UAV secrecy
communication scheme to maximize the EE in [4].

Recently, intelligent reflecting surface (IRS) has become a
promising technology for future networks, due to its ability of
reconfiguring the propagation environment [5]. By adjusting
the phase shifts of all passive reflecting elements, an IRS
can enhance the strength of reflected signal in the desired
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direction and suppress the interference with minimal power
consumption. Introducing IRS into UAV has many promising
advantages, such as extending the wireless coverage and
improving the EE [6], [7]. Pang et al. in [8] discussed
the typical cases of combining UAV and IRS. Zhai et al.
studied the UAV-mounted IRS in mobile edge computing
to maximize the EE in [9]. In [10], Li et al. studied the
robust secure communications, aiming at integrating IRS and
UAV in both downlink and uplink to maximize the secrecy
rate. In [11], the weighted sum bit error rate (BER) and
fairness BER were minimized by Hua et al. based on the
statistical channel state information (CSI) via the joint design
of UAV trajectory, IRS reflection matrix and scheduling. IRS-
enhanced multi-UAV NOMA networks were investigated by
Mu et al. in [12] to maximize the sum rate. In [13], Misbah
et al. leveraged the alternating conjugate gradient method
and particle swarm optimization algorithm for the joint UAV
altitude and IRS phase shift optimization. In [14], Mei et
al. investigated the RIS-assisted UAV communications and
proposed two deep reinforcement learning (DRL) algorithms,
where the 3D trajectory and RIS phase shifts were jointly
optimized to minimize the UAV propulsion energy. Apart
from the IRS-aided UAV communications, there are some
notable works on the intelligent omni-surfaces (IOSs) assisted
UAV communication, e.g., [15] and [16], which can further
extend the wireless coverage and achieve omni-directional rate
enhancement.

It is worth noting that all the above works perform the
offline designs of UAV trajectory and reflection phase shifts
in IRS-aided UAV networks, where all variables are deter-
mined prior to the flight. However, such an approach may
suffer considerable performance loss for channels with non-
negligible small-scale fading. This is because offline IRS phase
shifts are designed based on the deterministic channel model,
which cannot adapt to the instantaneous CSI along the UAV’s
flight. To tackle this challenge, Zhao et al. proposed a two-
timescale beamforming for IRS in [17], where the long-term
phase shifts are optimized via the statistical CSI and the
short-term transmit beamforming is designed adaptive to the
instantaneous CSI. For UAV-aided communications, You and
Zhang proposed a hybrid offline-online design in [18], which
determines the UAV path based on the statistical CSI in the
offline phase, while adjusting its speed and scheduling based
on the instantaneous CSI in the online phase.

Although plenty of research has combined UAV and IRS
with offline design, the offline-online hybrid design for IRS-
assisted UAV networks is not well investigated. Motivated by
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Fig. 1. IRS-assisted UAV uplink communication.

this, we propose an offline-online design to maximize the EE
of IRS-aided UAV communication by jointly designing the
trajectory, user scheduling and phase shifts. Specifically, we
assume that the system only knows the statistical CSI prior
to the flight to design the trajectory and user scheduling,
while it can obtain the instantaneous CSI to readjust the
phase shifts while flying. Numerical results demonstrate the
effectiveness of the proposed online adjustment in leveraging
the instantaneous CSI to improve the system performance,
with low computational complexity.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an uplink system where a
rotary-wing UAV equipped with a single antenna is deployed
to collect data from K single-antenna ground users with the
aid of an IRS within a duration T . The set of K users is
denoted by K = {1, . . . ,K}. The horizontal coordinates of the
kth user and the IRS are Lk = [xk, yk], ∀k and LI = [xI , yI ],
respectively, and the altitudes of IRS and UAV are denoted
by HI and HU , respectively. T is divided into N time slots
with each equal to δt = T/N , and the UAV’s trajectory can
be approximated as q[n] = [x[n], y[n]], n ∈ N = {1, . . . , N},
with qI and qF denoting the UAV’s initial and final horizontal
locations, respectively. As a result, we have

q[1] = qI , ∥q[N ]− qF ∥2 ≤ (Vmδt)
2
, (1)

∥q[n+ 1]− q[n]∥2 ≤ (Vmδt)
2
, n = 1, ...N − 1, (2)

where Vm denotes the maximum speed of UAV.
Assume that the IRS is equipped with M reflecting ele-

ments, whose phase-shifting matrix in slot n is denoted by
Θ[n] = diag(ejθ1[n], ..., ejθm[n], ..., ejθM [n]) ∈ CM×M , ∀n,
where θm[n] ∈ [0, 2π) represents the phase shift incurred by
the mth reflecting element. Let hkI [n] ∈ CM×1, hIU [n] ∈
CM×1 and hkU [n] ∈ C1×1 denote the channels from the kth
user to the IRS, from the IRS to the UAV and from the kth
user to the UAV, respectively. The composite channel for the
kth user can be given by

hk[n] = hH
IU [n]Θ[n]hkI [n] + hkU [n], ∀k,∀n. (3)

To account for both the large-scale and small-scale fading,
all these direct and reflecting links can be modeled by the
Rician fading as

hkI [n]=

√
ρ

dβ1

kI

(√
K1

K1 + 1
hkI +

√
1

K1 + 1
h̃kI [n]

)
, (4)

hIU [n]=

√
ρ

dIU [n]β2

(√
K2

K2+1
hIU [n]+

√
1

K2+1
h̃IU [n]

)
, (5)

hkU [n]=

√
ρ

dkU [n]β3

(√
K3

K3+1
hkU [n]+

√
1

K3+1
h̃kU [n]

)
, (6)

where ρ is the channel power gain at the reference distance,
K1, K2 and K3 are the Rician factors, and β1, β2 and β3

denote the path-loss exponents. dkI =

√
∥Lk − LI∥2 +HI

2,

dUI [n] =

√
∥q[n]− LI∥2 + (HU −HI)

2 and dkU [n] =√
∥q[n]− Lk∥2 +HU

2 denote the distances from the IRS
to the kth user, from the IRS to the UAV and from the
kth user to the UAV, respectively. In addition, hkI , hIU [n]
and hkU [n] denote the LoS components, while h̃kI [n], h̃IU [n]
and h̃kU [n] denote the non-LoS (NLoS) components, whose
elements are independent and identically distributed complex
Gaussian random variables with zero mean and unit variance.
A uniform linear array (ULA) is considered for IRS. Thus,
hkI , hIU [n] and hkU [n] are given by

hkI = e−j 2π
λ dkI

[
1, ..., e−j 2π

λ d̃(M−1) sin θkI cosϕkI

]T
, (7)

hIU [n]=e
−j 2π

λ dIU [n]
[
1, ..., e−j 2π

λ d̃(M−1)sin θIU[n]cosϕIU[n]
]T
,(8)

hkU [n] = e−j 2π
λ dkU [n], (9)

where sin θkI cosϕkI = xk−xI

dk,I
and sin θIU [n] cosϕIU [n] =

xI−xU [n]
dIU [n] . d̃ is the element separation of IRS and λ is the

carrier wavelength.
Consider that at most one user is served in each slot. Define

a binary variable αk[n] to illustrate the user scheduling, where
the kth user is served when αk[n] = 1 and keeps silent
otherwise. Thus, the user scheduling should satisfy

αk[n] ∈ {0, 1}, ∀k ∈ K, ∀n ∈ N , (10)

K∑
k=1

αk[n] ≤ 1, ∀n ∈ N . (11)

Hence, the achievable rate for the kth user in the nth time
slot can be expressed as

Rk[n] = αk[n]BW log2

(
1 + Pt|hk[n]|2/σ2

)
, (12)

where BW , Pt and σ2 denote the channel bandwidth, the fixed
transmit power and the additive white Gaussian noise power
at the receiver, respectively. Note that Rk[n] is a random
variable since it involves the random NLoS components of
h̃kI [n], h̃IU [n] and h̃kU [n]. We are interested in the expected
achievable transmission rate E[Rk[n]], which is challenging
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to obtain. By using the Jensen’s inequality, the expected
achievable rate E[Rk[n]] can be upper bounded by

E[Rk[n]]≤αk[n]BW log2

(
1+PtE[|hk[n]|2]/σ2

)
,R̄k[n],

(13)

Similar to the proof in [Theorem 1, 11], E[|hk[n]|2] can be
expressed as

E[|hk[n]|2] = |hk,LOS [n]|2+
ρ2d−β2

IU [n]d−β1

kI (K1 +K2 + 1)M

(K1 + 1) (K2 + 1)
+

ρd−β3

kU [n]

K3 + 1
,

(14)

with hk,LOS [n] denoted as

hk,LOS [n] =

√
ρ2d−β2

IU [n]d−β1

kI K1K2

(K1 + 1) (K2 + 1)
hH
IU [n]Θ[n]hkI

+

√
ρd−β3

kU [n]K3

K3 + 1
hkU [n].

(15)

III. PROBLEM FORMULATION

The system power includes the UAV’s propulsion power, the
users’ transmit power and the circuit-related power. According
to [3], the rotary-wing UAV’s propulsion power in the nth time
slot can be written as

Ppro[n] =P0

(
1 +

3∆2
n

U2
tipδt

2

)
+

1

2
d0ρSA

∆3
n

δt
3 + (16)

Pi

(√
1 +

∆4
n

4v40δt
4 − ∆2

n

2v20δt
2

) 1
2

,

where ∆n , ∥q[n+ 1]− q[n]∥. With (13) and (16), the EE
can be approximately expressed as

EE=

N∑
n=1

K∑
k=1

R̄k[n]

N∑
n=1

Ppro[n]+
N∑

n=1

K∑
k=1

αk[n]Pt+N × PC

, (17)

where PC is the fixed circuit-related power by UAV and IRS.
The objective is to maximize the EE by jointly optimizing

the user scheduling, UAV trajectory and IRS phase-shifting
matrix over N time slots, which can be formulated as

max
A,Q,Θ

EE (18a)

s.t. 0 ≤ θm[n] < 2π, (18b)
N∑

n=1
R̄k[n]δt ≥ Bk, ∀k ∈ K, (18c)

N∑
n=1

(αk[n]Ptδt) ≤ Ek, ∀k ∈ K, (18d)

(1), (2), (10), (11). (18e)

The problem (18) is an offline design by utilizing the
statistical CSI and determining the optimal variables prior to
the flight. However, the offline design may suffer from the
performance loss due to the channel fading since the offline
IRS phase shifts cannot adapt to the instantaneous CSI. In the
next section, we will propose a joint offline-online scheme to
tackle this problem.

IV. JOINT OFFLINE-ONLINE DESIGN

A. Offline Optimization

In the offline optimization, we aim at solving (18) by
alternately optimizing A and Q. We first obtain the closed-
form solution to the IRS phase-shifting matrix with given A
and Q according to the following proposition.

Proposition 1: For any given A and Q, the mth optimal
offline IRS phase shift to maximize R̄k[n] can be given by

θoffm [n] =
2π

λ
(dkI − dIU [n]− dkU [n])−

2π (m− 1) d̃

λ
×

(sin θIU [n] cosφIU [n]− sin θkI cosφkI) . (19)

Proof: According to [11], the closed-form solution to the
phase shift of the mth element to optimize the composite
channel hH

IU [n]Θ[n]hkI [n] + hkU [n] can be expressed as

θ∗m[n]=arg (hkU [n])−arg
(
hH
IU,m[n]

)
−arg (hkI,m[n]) , (20)

where hH
IU,m[n] and hkI,m[n] denote the mth element of

hH
IU [n] and hkI [n], respectively. Since we aim at deriving the

offline phase shift θoffm [n] to maximize R̄k[n] in (13), it is
equivalent to maximize the first term of E[|hk[n]|2] in (14),
i.e., hk,LOS [n]. Thus, the mth optimal offline IRS phase shift
can be given by

θoffm [n]=arg
(
hkU [n]

)
−arg

(
h
H

IU,m[n]
)
−arg

(
hkI,m

)
. (21)

Substituting (7), (8) and (9) in (21), we arrive at (19).
Based on Proposition 1, we can rewrite R̄k[n] in (13) as

Roff
k [n] =αk[n]BW log2

(
1 +

Pt

σ2

(
d−β2

IU [n]CTk1[n]

+ d−β3

kU [n]ρ+ d
−β2
2

IU [n]d
−β3
2

kU [n]CTk2[n]
))

,

(22)

where CTk1[n] and CTk2[n] can be respectively given by

CTk1[n] = ρ2d−β1

kI

(K1 +K2 + 1)M +K1K2M
2

(K1 + 1) (K2 + 1)
, (23)

CTk2[n]=2M

√
ρ3d−β1

kI

K1K2K3

(K1 + 1) (K2 + 1) (K3 + 1)
. (24)

Therefore, the problem (18) can be simplified as

max
A,Q

N∑
n=1

K∑
k=1

Roff
k [n]

N∑
n=1

Ppro[n]+
N∑

n=1

K∑
k=1

αk[n]Pt+N × PC

(25a)

s.t.
N∑

n=1
Roff

k [n]δt ≥ Bk, ∀k ∈ K, (25b)

(1), (2), (10), (11), (18d). (25c)

In order to tackle the fractional objective of (25a), we trans-
form it into a non-fractional form through the Dinkelbach’s
method. With the given Dinkelbach parameter η(i) in the ith
Dinkelbach iteration, the problem (25) can be converted as

max
A,Q

Φ(A,Q, η(i)) (26a)

s.t. (1), (2), (10), (11), (18d), (25b), (26b)
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where

Φ(A,Q, η(i)) =
N∑

n=1

K∑
k=1

Roff
k [n]− η(i)

N∑
n=1

(
Ppro[n]

+
K∑

k=1

αk[n]Pt + PC

)
. (27)

In the following, (26) is decomposed into two subproblems
by invoking the BCD and then alternately optimized.

1) User Scheduling Optimization: To tackle the binary
variables, we relax A into continuous ones between 0 and
1. With the given Q, the user scheduling can be written as

max
A

Φ(A,Q, η(i)) (28a)

s.t. 0 ≤ αk[n] ≤ 1, (28b)
(11), (18d), (25b). (28c)

Since both the objective and constraints are linear with respect
to A, (28) is a standard linear programming. In addition,
due to the relaxation of A, the obtained solution should be
reconstructed as binary ones by comparing with 0.5.

2) UAV Trajectory Optimization: For any given A, the UAV
trajectory optimization can be written as

max
Q

Φ(A,Q, η(i)) (29a)

s.t. (1), (2), (25b). (29b)

It is observed from (16) that the third term in Ppro[n] is
non-convex. As such, we introduce slack variables Ap[n] as

Ap[n]
2 ≥

√
1 +

∆4
n

4v04δt
4 − ∆2

n

2v02δt
2 . (30)

Therefore, Ppro[n] can be rewritten as

PAp
pro[n]=P0

(
1 +

3∆2
n

U2
tipδt

2

)
+

1

2
d0ρSA

∆3
n

δt
3 +PiAp[n]. (31)

To deal with the non-convex Roff
k [n], we introduce auxil-

iary variables xk1[n], yk1[n] and zk1[n] to recast (29) as

max
Q,Ap[n],zk1[n]
xk1[n],yk1[n]

ΦU (Q, η(i)) (32a)

s.t.
N∑

n=1
αk[n]BW log2

(
1 + Pt

σ2

(
xk1[n]CTk1[n]

+ yk1[n]ρ+ zk1[n]CTk2[n]
))

δt ≥ Bk, (32b)

1

Ap[n]
2 ≤ Ap[n]

2 +
∆2

n

v02δt
2 , (32c)

xk1[n] ≤ d−β2

IU [n], (32d)

yk1[n] ≤ d−β3

kU [n], (32e)

zk1[n]
2

yk1[n]
≤ xk1[n], (32f)

(1), (2), (32g)

Algorithm 1 Iterative Algorithm for (25)
Input: Set the Dinkelbach iteration index i = 0, the Dinkel-

bach parameter η(i) = 0 and the threshold ∆1 > 0.
1: while η(i) − η(i−1) > ∆1 do
2: Set the BCD iteration index t = 0, the convergence

threshold ∆2 > 0 and feasible points A(0) and Q(0).
3: while Φ(A(t),Q(t), η(i))−Φ(A(t−1),Q(t−1), η(i))>∆2

do
4: Solve (28) via CVX and obtain A(t+1);
5: Solve (34) via CVX and obtain Q(t+1);
6: Calculate Φ(A(t+1),Q(t+1), η(i));
7: Update: t = t+ 1;
8: end while
9: Set {A(i+1),Q(i+1)} = {A(t),Q(t)}.

10: η(i+1)=

N∑
n=1

K∑
k=1

(
R̄

(i+1)
k [n]

)
N∑

n=1
P

(i+1)
pro [n]+

N∑
n=1

K∑
k=1

α
(i+1)
k [n]Pt+N×PC

;

11: Update: i = i+ 1;
12: end while
Output: The final solution set {A∗,Q∗} = {A(i),Q(i)}.

where

ΦU (Q, η(i))=
N∑

n=1

K∑
k=1

αk[n]BW log2

(
1+

Pt

σ2

(
xk1[n]CTk1[n]+yk1[n]

ρ+zk1[n]CTk2[n]
))

−η(i)

N∑
n=1

(
P

Ap
pro[n]+

K∑
k=1

αk[n]Pt+PC

)
. (33)

By replacing the right-hand side of (32c), (32d) and (32e)
with their first-order Taylor expansions at the given feasible
points At

p[n] and qt[n] in the tth BCD iteration, we have
the constraints (35)-(37) shown at the top of the next page.
Therefore, (32) can be converted as

max
Q,Ap[n],zk1[n]
xk1[n],yk1[n]

ΦU (Q, η(i)) (34a)

s.t. (1), (2), (32b), (32f), (35), (36), (37), (34b)

which is convex and can be solved by CVX. The algorithm
for solving (25) is summarized in Algorithm 1. In the inner
layer, with the given Dinkelbach parameter η(i), the objective
value of (26) is non-decreasing after each iteration as well
as upper bounded by a finite value. In the outer layer, we
gradually update the Dinkelbach parameter. Based on the
convergence proof in [19], this Dinkelbach-based Algorithm is
guaranteed to converge. In Step 4 and Step 5, the complexity
for solving (28) and (34) are represented by O (KN) and
O (3KN + 3N)

3.5. Thus, the computational complexity can
be given by O

(
NDNB (3KN + 3N)

3.5
)

, where ND and NB

denote the number of iterations for the Dinkelbach’s method
and BCD.

B. Online Optimization

During the UAV’s flight, directly using the offline IRS phase
shifts via the statistical CSI may suffer from the performance
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1

Ap[n]
2 ≤ At

p[n]
2 + 2At

p[n]
(
Ap[n]−At

p[n]
)
+

1

v02δt
2

(
−
∥∥qt[n+ 1]− qt[n]

∥∥2 + 2
(
qt[n+ 1]− qt[n]

)T (
qt[n+ 1]− qt[n]

))
, (35)

xk1[n] ≤
(∥∥qt[n]− LI

∥∥2 + (hU − hI)
2
)− β2

2 −β2

2

(∥∥qt[n]− LI

∥∥2 + (hU − hI)
2
)− β2

2
−1

×
(
∥q[n]− LI∥2 −

∥∥qt[n]− LI

∥∥2) , (36)

yk1[n] ≤
(∥∥qt[n]− Lk

∥∥2 + hU
2
)− β3

2 − β3

2

(∥∥qt[n]− Lk

∥∥2 + hU
2
)− β3

2
−1

×
(
∥q[n]− Lk∥2 −

∥∥qt[n]− Lk

∥∥2) . (37)

loss due to the varying instantaneous CSI. To further improve
the performance, we design the online policy that can adjust
IRS’s phase shifts to reach the signal alignment of direct
and reflecting links and maximize the composite channel
response hk[n] based on the instantaneous CSI during the
flight such that the received signal strength can be maximized
in real time. We assume that the perfect CSI is available to
provide a theoretical performance upper bound. According to
Proposition 1, the mth optimal online IRS phase shift in the
nth slot can be given by

θonm [n]=arg (hkU [n])−arg
(
hH
IU,m[n]

)
−arg (hkI,m[n]) . (38)

Thus, we can adopt the online phase shift θonm [n] according
to the closed-form solution in (38) with low computational
complexity to replace the offline one θoffm [n] in (21) to achieve
better performance.

Based on Algorithm 1 and (38), the joint offline-online
design can be briefly summarized as follows. In the offline
design, the initial UAV trajectory and user scheduling can be
designed by Algorithm 1 and then performed by the UAV.
Then, in the online design, the UAV can acquire the instanta-
neous CSI during its flight, based on which, the optimal online
IRS phase shifts can be calculated accordingly. Therefore,
combining the statistical CSI based trajectory and scheduling
and the instantaneous CSI based phase shifts can contribute to
a better performance.

V. NUMERICAL RESULTS

We present numerical results to verify the effectiveness of
the proposed scheme. The UAV is assumed to fly from qI =
[−300, 150] m towards qF = [300, 150] m within T = 60 s
with Vm = 20 m/s. Set δt = 1 s, HU = 100 m and HI = 20
m. K = 3 users are considered, which are located on the
ground at L1 = [−20, 90] m, L2 = [0, 50] m and L3 =
[30, 100] m with Pt = 0.1 W. The IRS is located at [0,0]
m. Other parameters are set as ρ = −40 dB, σ2 = −90 dBm,
d̃/λ = 0.25, β1 = 2.4, β2 = 2.2, β3 = 3.5, K1 = 3, K2 = 10,
K3 = 10 and BW = 360 kHz.

We compare the following benchmarks: a) Conventional
Scheme, which adopts the offline policy based on the outdated
CSI with no online adjustment. b) Offline-NoOnline Scheme,
which obtains A, Q and Θ based on the statistical CSI
by Algorithm 1 with no online adjustment. c) Random IRS
Scheme, where Θ is randomly generated in each slot. d) No
IRS Scheme, without deploying IRS. The proposed scheme
is named as Offline-Online Scheme. Fig. 2 plots the UAV
trajectories of the proposed scheme and No IRS scheme, with
B = 5 bit/Hz and E = 2 J. We can see that the UAV hovers
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Fig. 2. Trajectories of UAV of the proposed scheme and the No IRS scheme.

around each user for a while in both schemes. This is because
the UAV needs to balance the throughput and the propulsion
energy. The most striking difference is that the UAV hovers
between User 2 and IRS for a long time in Fig. 2(a) while
it hovers sequentially above the three users in Fig. 2(b) to
establish the best channels for them. This is because the IRS
can reconfigure the propagation environment, and its nearby
user (i.e., User 2) can attain the optimal composite channel
with comparable direct and reflecting channels.

To further show the effectiveness of IRS, we plot the EE
versus the number of IRS reflecting elements in Fig. 3. It
shows that the EE of the proposed scheme outperforms those
of the Offline-NoOnline scheme and the Conventional scheme.
The main reason is that in the Offline-NoOnline scheme
and the Conventional scheme, the phase shifts are obtained
according to the outdated CSI, which results in nonnegligible
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Fig. 4. Propulsion energy and amount of information versus the number of
IRS reflecting elements.

performance loss. In contrast, the proposed scheme can adjust
the phase shifts in an online manner to fully improve its pas-
sive beamforming gain. Meanwhile, more reflecting elements
can provide higher passive beamforming gain, making the
online adjustment more effective. Compared with the No IRS
scheme and the Random IRS scheme, the EE of the proposed
scheme is significantly higher than these two benchmarks and
the gap increases with MIRS .

Fig. 4 presents the impact of introducing IRS on the
UAV propulsion energy and amount of information, Note that
MIRS = 0 corresponds to No IRS scheme. We can see
that No IRS scheme consumes the highest propulsion energy
but transmits the least amount of information. As MIRS

increases, the propulsion energy decreases while the amount
of information significantly increases. This phenomenon can
be attributed to the ability of the IRS to manipulate the
wireless channel by aligning the phase of reflecting link
with that of direct link to achieve coherent signal combining.
Additionally, UAV hovers around users with favorable channel
conditions for the maximum possible duration at the speed
with minimum propulsion power, thereby reducing propulsion
energy. Thus, introducing IRS into UAV communication can
enhance network throughput while reducing the UAV’s energy
consumption. As a result, the EE increases with the number
of IRS reflecting elements.

VI. CONCLUSION

In this correspondence, we have proposed an offline-online
design of the UAV trajectory, user scheduling and IRS’s phase

shifts for IRS-aided UAV communications to maximize the
EE. Specifically, the offline optimization can determine the
UAV trajectory and user scheduling via the Dinkelbach’s
method and BCD, while the online optimization can adaptively
tune IRS’s phase shifts according to the closed-form solution
during the flight. Simulation results show that the EE can be
significantly improved by the offline-online design compared
to benchmarks.
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