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Abstract—In this paper, we investigate the individual channel
estimation over the three-node one-way relay network (OWRN),
where all nodes are equipped with multiple antennas. We first
examine the scenario where the relay node is equipped with
single antenna. An iterative linear minimum mean-square-error
(LMMSE) method, which has fast convergence speed, is proposed
to estimate the individual channels. The closed-form least square
(LS) channel estimator is also derived through matrix unitary
diagonalization to provide one good initialization point for the
iterative LMMSE estimator. To evaluate the performance of the
proposed algorithm, we present two performance lower bounds:
Bayesian Cramér lower bound (BCRB) and linear estimation
lower bound (LELB). Then, the training block and the relay
amplification factor are optimized through minimizing the LELB.
After that, our studies are extended to the general case where all
the nodes are equipped with multiple nodes. Finally, numerical
results are provided to corroborate our proposed studies.

Index Terms—Bayesian Cramér lower bound, individual chan-
nel estimation, linear estimation lower bound, one-way relay
network.

I. INTRODUCTION

The cooperative relay network is efficient to combat the
wireless channel fading and enhance the transmission capacity
[2]–[4]. As one of the key technologies for the future wireless
networks, the cooperative relay network has attracted more
and more attention. Several efficient techniques, such as the
relay beamforming [5], [6], the best relay selection [7], [8], the
multi-antenna relay [9], [10], the distributed space time coding
(DSTC) [11], [12], have been proposed to take the advantages
of the wireless relay networks.

The accurate channel state information (CSI) at some or
all the nodes in the relay networks is essential for achieving
the promised performance of the above mentioned techniques.
Several channel estimation algorithms at the destination nodes
of the amplify-and-forward (AF) one-way relay networks
(OWRN) have been proposed. In [15], the expectation con-
ditional maximization (ECM) based iterative algorithm was
applied to jointly estimate the channel and detect the data.
In [16], the maximum a posteriori (MAP) based estimation
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schemes are developed to estimate the composite channel. In
[17], Wang et al. investigated the effect of antenna correlations
on the design of training sequences and channel estima-
tion performance. In [18], one weighted least-square (WLS)
channel estimator has been developed for the multiple-input
multiple-output (MIMO) relay communication systems. The
algorithms in [13]–[18] only estimate the cascaded channels
from the source node to the relay node and then to the des-
tination node. However, the individual channels (in-channels)
along the link from the source node to the relay node and that
from the relay node to the destination node are necessary for
some optimal system designs in certain scenarios, such as the
relay beamforming [19] and the subcarrier pairing [20].

To estimate the in-channels, Gao et al. proposed one super-
imposed training framework [22], where the relay superimpos-
es its own training over the received one. Due to is advantages
in efficiency and low-overhead, most of the recent in-channel
estimation algorithms were proposed under the superimposed
training framework [23]–[25]. In [23], Xie et al. designed
two maximum likelihood (ML) estimators to recover the in-
channels. In [24], Zhang et al. examined the performances of
the two in-channel estimators under the superimposed training
framework, i.e., the fully data-aided (FDA) estimator and the
partially data-aided (PDA) estimator. The FDA estimator has
knowledge about the training symbols from both the source
and the relay, while the PDA estimator only has the statistical
information about the data from the source and the full
information of the training symbols superimposed by the relay.
Moreover, Zhang et al. also studied the in-channel estimation
under the time selective flat fading scenario [25]. Specifically,
the unscented Kalman filter (UKF) was used to track the time-
varying in-channels, while the unscented Rauch-Tung-Striebel
smoother (URTSS) was adopted to smooth the UKF’s results.

The works [22]–[25] only considered the classical relay
scenario, where each node in the network is equipped with
single antenna. Yet, some attentions have been paid to the in-
channel estimation in the multiple-input and multiple-output
(MIMO) based OWRN, where some or all nodes are equipped
with multiple antennas. In [26], Rong et al. compared the
two-stage and the superimposed training schemes for the
in-channel estimation in the MIMO-based relay networks,
and optimized the training structures through minimizing the
mean-squared error (MSE) of the in-channel estimation. In
[27], Jing et al. designed one low-complex approximated ML
in-channel estimator for the three-node AF relay network
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Fig. 1. The system model and transmission protocol for three-node OWRN
with multiple antennas at both source and destination.

with multiple antennas at the source node and the destination
node. In [28], the optimal training sequences in the sense of
the minimal MSE is derived for the superimposed training
based in-channel estimation under the MIMO-based relay
networks. However, we still face some challenges. Since the
number of parameters to be estimated in the multiple-antennas
case is much larger than that in the single-antenna case,
the ML, minimum MSE (MMSE) and maximum a posteriori
probability (MAP) estimators for the in-channel estimation in
multiple-antennas case require high dimensional searches or
multiple integrals and cannot be implemented in an easy way.
Theoretically, the linear MMSE (LMMSE) estimator is an
alternative when the optimal ML, MMSE and MAP estimators
are difficult to implement. Unfortunately, due to the product
between the in-channels from the source to the relay and that
from the relay to the destination, the observation data model
at the destination is not a linear model with respect to each in-
channel. Therefore, the LMMSE estimator cannot be directly
utilized.

In this paper, we apply the superimposed training based
in-channel estimation framework to the classical three-node
OWRN, where both the source and the relay have multiple
antennas. When the flat channel fading scenario is considered,
we can achieve the following observation: for a specific
realization of the in-channels along the link from the source to
the relay (or from the relay to the destination), the observation
data model at the destination is one Bayesian linear model with
respect to the in-channels along the link from the relay to the
destination (or from the source to the relay). Based on the
above observation, we propose an iterative LMMSE in-channel
estimator to address the challenges mentioned in the previous
paragraph. Then, we formulate the closed-formed LS estimator
through the matrix unitary diagonalization to provide one
good initialization point for the iterative algorithm. In order to
evaluate the proposed algorithm, we derive two performance
lower bounds: the classical Bayesian Cramér lower bound
(CRB) [29], [30], and the linear estimation lower bound
(LELB). Interestingly, the LELB is proved to be more tighter
than the Bayesian CRB. Moreover, we optimize the optimal
training blocks and the relay’s amplification factor through
minimizing the LELB. Finally, our studies are extended to one
general case, where all the three nodes (the source, the relay,
and the destination) are equipped with multiple antennas.

The rest of the paper is organized as follows. The system

model of the typical three-node OWRN with multiple-antennas
at both the source and the destination is presented in Section
II. In Section III, we develop the iterative LMMSE in-channel
estimator under the superimposed training framework, com-
plete its convergence analysis and derive the closed-formed
LS estimator to provide the initialization point for the iterative
estimator. Two performance lower bounds are given in Section
IV. Then, we optimize the training structure and amplification
factor in Section V. Section VI provide numerical simulation
results to show the performance of the proposed algorithm.
Moreover, in Section VII, our studies are extended to the
scenario, where all the nodes in our system mode are equipped
with multiple antennas. Finally, we draw our conclusions in
Section VIII.

Notation: The vectors and the matrices are separately
represented by the boldface small and capital letters. The
matrix transpose, complex conjugate and Hermitian transpose
are denoted by (·)T , (·)∗, (·)H , respectively. E(·) denotes the
expectation operation. [x]i is i-th entry of the vector x, while
[X]ij is the (i, j)-th entry of the matrix X. The N×N identity
matrix is denoted by IN . tr(X) represents the trace of X,
and vec(X) denotes the column vector formed by stacking the
columns of X. ⊗ is the Kronecker product, and ‖x‖2 denotes
the two-norm of the vector x. |X| is the determine of the
matrix X.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a typical three-node
OWRN with one source S, one relay R, and one destination
D under the flat fading channel scenario. There is only one
antenna at R, while the nodes S and D are equipped with
Ns and Nd antennas, respectively. Without loss of generality,
we do not consider the direct link between S and D. The
in-channel vectors along the links S → R and R → D can
be separately written as h = [h0, h1, . . . , hNs−1]T ∈ CNs×1

and gT = [g0, g1, . . . , gNd−1] ∈ C1×Nd , where hi represents
the channel between the i-th antenna of S and R, and gj
denotes the channel between R and the j-th antenna of D.
All the in-channels are assumed to be zero-mean circularly
symmetric complex Gaussian (CSCG) random variables, and
the covariance matrices for h and g can be separately written
as Rh = σ2

hINs and Rg = σ2
gINd . Furthermore, we assume

that h is independent of g, and both h and g are block fading,
which means that they do not change within one phase but may
change from phase to phase.

Under the superimposed training framework, one round
of the training symbols transmission from S to D can be
partitioned into two phases. During phase I, S sends one
source-training block Ts ∈ Cτ×Ns to R, where τ is the
number of the time slots for training block transmission. The
received training at R during phase I can be expressed as

rr = Tsh + nr, (1)

where nr ∈ Cτ×1 is the additive white Gaussian noise
(AWGN) vector with zero mean and the covariance matrix
σ2
nIτ .
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During phase II, R superimposes its training sequence tr ∈
Cτ×1 over its received training rr, and the resultant training
from R can be denoted as [22]–[25]

rt = αrr + tr. (2)

Then, R forwards rt to D, and the received training at D can
be written as

Y = αTshgT + trg
T + αnrg

T + Nd, (3)

where Nd ∈ Cτ×Nd denotes the AWGN matrix at D, whose
entries are i.i.d CSCG random variables with zero mean and
variance σ2

n.
We set the average transmitting power of R as Pr, i.e.,

Pr =Eh{‖α(Tsh + nr) + tr‖2}
=α2σ2

hPs + τα2σ2
n + Pt, (4)

where Ps = tr{TsT
H
s } is the power of the source training

block and Pt = ||tr||2 is the power of the relay training
sequence . Then the amplification factor α can be expressed
as

α =

√
Pr − Pt

σh2Ps + τσ2
n

. (5)

III. IN-CHANNEL ESTIMATION

A. Iterative LMMSE In-Channel Estimator

Before preceding, let us define y = vec(Y) and
nd = vec(Nd). Resorting to the Kronecker product property
vec(ABC) = (CT ⊗A)vec(B) [31], we can obtain

y =α(g ⊗Ts)h + (g ⊗ Iτ )tr + α(g ⊗ Iτ )nr + nd︸ ︷︷ ︸
n

=
(
α(INd ⊗Tsh) + (INd ⊗ tr)

)
g + n, (6)

where the equivalent noise vector n defined as the correspond-
ing term is related to the specific realization of g.

When the in-channel statistics is known, the optimal in-
channel estimation method is the MAP estimator, which can
be explicitly expressed as

{ĥ, ĝ} = arg max
h,g

p(y|h,g)p(h,g), (7)

where p(y|h,g) denotes the probability density function
(PDF) of y conditioned on h, g, and p(h,g) is the joint PDF
of h, g. With the equation (6) and the statistical characteristics
of h and g, we can derive the following equations as

ln p(y|h,g)=Const.−ln |Cn|h,g|−(y − µ)HC−1
n|h,g(y−µ),

(8)

ln p(h,g) = Const.− σ−2
h ‖h‖

2 − σ−2
g ‖g‖2, (9)

where

µ = α(g⊗Ts)h+(g⊗Iτ )tr =
(
α(INd⊗Tsh)+(INd⊗tr)

)
g,

and

Cn|h,g = E{nnH |h,g} = σ2
n(α2ggH + INd)⊗ Iτ .

It is noticed that the Kronecker product property (A⊗B)(C⊗
D) = AC ⊗ BD is utilized in the above derivation. After

straightforward calculation, the MAP in-channel estimator can
be represented as

{ĥ, ĝ} = arg min
h,g

(y − µ)HC−1
n|h,g(y − µ)

+ ln |Cn|h,g|+ σ−2
h ‖h‖

2 + σ−2
g ‖g‖2. (10)

Unfortunately, due to its complicated structure, especially
the presence of Cn|h,g, the MAP estimator requires a high
dimensional search and is difficult to implement. Theoretically,
the LMMSE estimator, which minimizes the MSE for the
unknown parameters’ estimation under the constraint that the
estimator must be linear, can be adopted as one suboptimal
estimator under the Bayesian framework. However, due to the
presence of nonlinear term (g ⊗Ts)h or (INd ⊗Tsh)g, the
observation data model in (6) is not a Bayesian linear model
with respect to h and g. Thus, the Bayesian Gaussian-Markov
theorem does not hold here, and the LMMSE estimator cannot
be directly used to estimate the in-channels h and g. Instead,
we would like to conceive an iterative LMMSE in-channel
estimator.

The proposed iterative LMMSE in-channel estimator is
based on the following observation: for specific realization of
g (or h), the observation data model of y in (6) is a Bayesian
linear model with respect to h (or g). Hence, with the Bayesian
Gaussian-Markov theorem [32], the LMMSE estimation of h
conditioned on given g can be formulated as

ĥ|g =α
(
R−1

h + α2(g ⊗Ts)
HC−1

n|g(g ⊗Ts)
)−1

(g ⊗Ts)
HC−1

n|g
(
y − (g ⊗ Iτ )tr

)
, (11)

where the covariance matrix

Cn|g = E{nnH |g} = σ2
n(α2ggH + INd)⊗ Iτ . (12)

Utilizing the matrix property equations (I + AB)−1 = I −
A(I + BA)−1B and (A ⊗ B)−1 = A−1 ⊗ B−1, we can
derive the inverse of Cn|g as

C−1
n|g =σ−2

n

(
INd − α2g(1 + α2gHg∗)−1gH

)
⊗ Iτ

=σ−2
n

(
INd −

α2

1 + α2‖g‖2
ggH

)
⊗ Iτ . (13)

Substituting (13) into (11), we can reexpress (11) as

ĥ|g =α
(
R−1

h +
α2‖g‖2

σ2
n(1 + α2‖g‖2)

TH
s Ts

)−1

( gH

σ2
n(1 + α2‖g‖2)

⊗TH
s

)(
y − (g ⊗ Iτ )tr

)
=

α

σ2
n(1 + α2‖g‖2)

(
R−1

h +
α2‖g‖2

σ2
n(1 + α2‖g‖2)

TH
s Ts

)−1

TH
s

(
Y − trg

T
)
g∗, (14)

where the matrix equation vec(ABC) = (CT ⊗A)vec(B) is
used in the derivation.

Let us further investigate the estimation of g for a specific
h. Similarly, the covariance matrix of n conditioned on h can
be denoted as

Cn|h =E{nnH |h} = σ2
n(α2Rg + INd)⊗ Iτ . (15)
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Algorithm 1 The Iterative LMMSE In-Channel Estimator for
In-Channels h and g

Initialization: Initial LS in-channel estimation
1: Unitarily diagonalize the Hermitian matrix YHΞY to

obtain the eigenvector that corresponds to the maximal
eigenvalue of YHΞY, i.e, v0, and derive ĝLS according
to (29).

2: Calculate ‖̂g‖LS according to (23), and obtain ĝLS as
ĝLS = ‖̂g‖LS ĝLS .

3: Calculate ĥLS according to (19) by substituting ĝLS into
it.

4: k= 0, ĥ0 = ĥLS , ĝ0 = ĝLS .
5: repeat
6: k=k+1.
7: Calculate the current ĥk with the linear estimator (14)

by substituting the previous ĝk−1 into it.
8: Calculate the current ĝk with the linear estimator (17)

by substituting the current ĥk into it.
9: until some termination criterion is satisfied.

10: return ĥk,ĝk.

Resorting to the fact Rg = σ2
gINd , we can derive the inverse

of Cn|h as

C−1
n|h =σ−2

n (α2σ2
gINd + INd)−1 ⊗ Iτ

=
1

σ2
n(α2σ2

g + 1)
IτNd . (16)

Then, for given h, the standard LMMSE estimation of g is
given by

ĝ|h =
(
R−1

g +
(
INd ⊗ (αTsh + tr)

)H
C−1

n|h
(
INd⊗

(αTsh + tr)
))−1(

INd ⊗ (αTsh + tr)
)H

C−1
n|hy

=
1

σ2
n(α2σ2

g + 1)

(
R−1

g +
‖αTsh + tr‖2

σ2
n(α2σ2

g + 1)
INd

)−1

(
INd ⊗ (αTsh + tr)

H
)
y

=
(
σ2
n(α2+ σ−2

g )+‖αTsh+tr‖2
)−1

YT (αTsh + tr)
∗

(17)

B. Initial LS In-Channel Estimator
As is well known, a good initial point is essential for an

iterative estimator since it affects the convergence point and
speed of convergence. Obviously, the LS estimator

{ĥLS , ĝLS} = arg min
h,g
‖y − α(g ⊗Ts)h− (g ⊗ Iτ )tr‖2

= arg min
h,g
‖Y − αTshgT − trg

T ‖2F (18)

could serve as a good initial point for the iterative LMMSE
in-channel estimator.

With given g, the LS estimation of h can be expressed as

ĥLS =α−1‖g‖−2
(
gH ⊗ (TH

s Ts)T
H
s

)
(y − (g ⊗ Iτ )tr)

=α−1‖g‖−2(TH
s Ts)

−1TH
s (Y − trg

T )g∗. (19)

Incorporating (19) into (18) and recalling (6), we can rewrite
(18) as

ĝLS=arg min
g

∥∥Y − trg
T − ‖g‖−2W(Y − trg

T )g∗gT
∥∥2

F
,

(20)

where W = Ts(T
H
s Ts)

−1TH
s . For simplicity, instead of min-

imizing the right hand side (RHS) of (20) through optimizing
g directly, we can minimize it first with respect to the norm of
g, i.e., ‖g‖, and then with respect to the normalized version
of g, i.e., g = g

‖g‖ . Hence, we should reformulate (20) as{
ĝLS , ‖̂g‖LS

}
(21)

= arg min
g,‖g‖

∥∥∥Y−‖g‖trgT −W(Y − ‖g‖trgT )g∗gT
∥∥∥2

F

= arg min
g,‖g‖

∥∥∥Y−‖g‖trgT∥∥∥2

F
−
∥∥∥W(Y−‖g‖trgT )g∗gT

∥∥∥2

F

= arg min
g,‖g‖

‖g‖2‖(Iτ −W)tr‖2

− 2‖g‖<
(
tHr (Iτ −W)Yg∗

)
− ‖WYg∗‖2. (22)

Fixing g and taking the first order derivative of (22)’s RHS
term with respect to ‖g‖, we can derive the LS estimation of
‖g‖ as

‖̂g‖LS = ‖(Iτ −W)tr‖−2<
(
tHr (Iτ −W)Yg∗

)
. (23)

Let us substitute (23) back into (22). Then, the LS estimation
of g can be achieved as

ĝLS = arg max
g

L(g), (24)

where

L(g) = <2(tHr (Iτ −W)Yg∗) + ‖(Iτ −W)tr‖2‖WYg∗‖2.

From the basic inequalities, we can prove that L(g) satisfy

L(g) ≤ gTYHΞYg∗, (25)

where the Hermitian matrix Ξ = ‖(Iτ −W)tr‖2W + (Iτ −
W)trt

H
r (Iτ −W) is only related to the training matrices Ts,

tr, and the equality holds when the term tHr (Iτ −W)Yg∗

is real. Note that the quadratic polynomial gTYHΞYg∗ can
serve as an upper bound of the objective function L(g). Instead
of directly solving (24), we can first look into the following
optimization:

νopt = arg max
‖ν‖2=1

νHYHΞYν, (26)

where ν denotes the Nd × 1 column vector. It can be readily
checked that YHΞY is Hermitian and can be decomposed as
[31]

YHΞY = Vdiag(λ0, λ1, . . . , λNd−1)VH , (27)

where V = [v0,v1, . . . ,vNd−1] is an unitary matrix, i.e.,
VVH = VHV = I and the real variables λ0, λ1, . . . , λNd−1

are the eigenvalues of YHΞY. Without loss of generality, we
assume λ0 ≥ λ1 ≥ . . . ≥ λNd−1.
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From the Rayleigh-Ritz theorem [31], it can be obtained
that

λ0 = max
‖ν‖2=1

νHYHΞYν, (28)

where the maximal value is achieved, if νopt equals the
eigenvector of YHΞY corresponding to the eigenvalue λ0,
i.e., νopt = v0.

With the above analysis, we can conclude that L(g) ≤
vH0 YHΞYv0 and the upper bound can be achieved only if

ĝLS = v∗0e
j∠WYv0 . (29)

Let us use ĥk and ĝk to denote the estimations of h and
g during the k-th iteration, respectively. Then, the proposed
iterative LMMSE in-channel estimation algorithm is outlined
in Algorithm 1.

C. Convergence Analysis

To analyse the convergence property of proposed iterative
LMMSE in-channel estimator, we derive the following lemma.

Lemma 1: Define the variable a > 0 and the N×N positive
semi-definite Hermitian matrix X. For the following matrix
function

f(X) =
(
aI + AHX−1A

)−1
, (30)

we have tr
(
f(X2)

)
− tr

(
f(X1)

)
< 0 if tr

(
X2

)
< tr

(
X1

)
.

Proof: See Appendix A.
It is clear that the current estimation of h (g) is subjected to

the error propagation from the previous imperfect estimation of
g (h) . During the k-th iteration, the average MSEs (AMSEs)
for both ĥk and ĝk can be separately expressed as

tr
(
C∆hk

)
= tr

(
E
{

∆hk∆hHk
})
, (31)

tr
(
C∆gk

)
= tr

(
E
{

∆gk∆gHk
})
. (32)

where ∆hk = h − ĥk and ∆gk = g − ĝk. Plugging g =
ĝk + ∆gk into (6), we can obtain that

y =α(ĝk ⊗Ts)h + (ĝk ⊗ Iτ )tr

+ α(∆gk ⊗Ts)h + (∆gk ⊗ Iτ )tr + n︸ ︷︷ ︸
ω|∆gk

, (33)

where ω|∆gk represents the equivalent noise during the
estimation of h conditioned on given ∆gk. Correspondingly,
its covariance matrix can be listed as

Cω|∆gk =α2σ2
hC∆gk ⊗ (TsTs

H)

+ (INd ⊗ tr)C∆gk(INd ⊗ tHr ) + Cn|g. (34)

Furthermore, we can derive the covariance matrix for the
LMMSE estimation ĥk+1 conditioned on given C∆gk as [32]

C∆hk+1
|C∆gk

=
(
R−1

h + α2(ĝHk ⊗TH
s )(Cω|ĝk)−1(ĝk ⊗Ts)

)−1

. (35)

Since all the matrices terms in (34) and (35) are positive semi-
definite, it can be concluded from Lemma 1 that the decrease

of the AMSE for ĝk, i.e. tr(C∆gk), will reduce the AMSE of
ĥk+1, i.e. tr(C∆hk+1

). Similarly, substituting h = ĥk+1 +
∆hk+1 into (6),we get

y =
(
α(INd ⊗Tsĥk+1) + (INd ⊗ tr)

)
g

+ α(INd ⊗Ts∆hk+1)g + n︸ ︷︷ ︸
ω|∆hk+1

, (36)

and

Cω|∆hk+1
=α2σ2

g(INd ⊗Ts)C∆hk+1
(INd ⊗TH

s )+Cn|h.
(37)

Then, the covariance matrix for g’s estimation error condi-
tioned on given C∆hk+1

in (k + 1)-th iteration step can be
written as

C∆gk+1
|C∆hk+1

=
(
R−1

g +
(
INd ⊗ (αTsĥk+1 + tr)

)H
(
Cω|ĥk+1

)−1(
INd ⊗ (αTsĥk+1 + tr)

))−1

. (38)

Basing on (37) (38) and Lemma1, we can also find that
decrease of the AMSE for ĥk+1, i.e. tr(C∆hk+1

), will reduce
the AMSE of ĝk+1, i.e. tr(C∆gk+1

).
Obviously, the estimation error of h (g) is lower bounded

by estimation with exact given g (h), which is given by

tr
(
C∆h|g

)
= tr

((
R−1

h + α2(g ⊗Ts)
HC−1

n|g(g ⊗Ts)
)−1
)

= tr
((
σ−2
h INt +

α2‖g‖2

σ2
n(1 + α2‖g‖2)

TH
s Ts

)−1
)
, (39)

tr
(
C∆g|h

)
= tr

(((
R−1

g +
(
INd ⊗ (αTsh + tr)

)H
C−1

n|h

(
INd ⊗ (αTsh + tr)

))−1
)

= tr
((

R−1
g + σ−2

n ‖αTsh + tr‖2(α2Rg + INd)−1
)−1
)

= tr

((
σ−2
g +

‖αTsh + tr‖2

σ2
n(α2σ2

g + 1)

)−1

INd

)
. (40)

With a good initial point provided by LS estimator, the
estimation errors of h and g decrease alternately. Moreover,
as the estimation error has a lower bound, it is easy to draw
the conclusion that the proposed iterative LMMSE in-channel
estimator converges to a minimum estimation error.

IV. PERFORMANCE LOWER BOUNDS

In this section, we first derive the LELB to evaluate the
performance of the proposed iterative LMMSE in-channel
estimator. Then, to solidify the derived LELB, we will also
derive the Bayesian CRB, which is widely used to evaluate the
performance of the estimators under the Bayesian framework.
Interestingly, it will be proved that the LELB is tighter than
the Bayesian CRB.
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A. Linear Estimation Lower Bound (LELB)

To derive a closed-form LELB, we first introduce the
following lemma.

Lemma 2: With the variable a > 0, x > 0 and the N ×N
matrix A � 0, the matrix function

f(x) = tr
(
(aI + xA)−1

)
(41)

is convex for x > 0.
Proof: See Appendix C.

From the convex optimization theory, we have the following
inequality [33]

E{f(x)} ≥ f(E{x}), (42)

where f(x) is one convex function, and x is a random variable.
As derived in section III.C, the lower bound of the esti-

mation error tr{C∆hg} (tr{C∆gh
}) with a specific g (h) is

given by (39) and (40). By taking the expectation of tr{C∆hg}
and tr{C∆gh

} over g and h, respectively, we can derived the
closed-form LELBs for h and g with the help of Lemma 2
and inequality (42) as follows:

Eg

{
tr
(
C∆h|g

)}
= Eg

{
tr
[(
σ−2
h INs +

α2‖g‖2

σ2
n(1 + α2‖g‖2)

TH
s Ts

)−1]}
,

≥ tr
((
σ−2
h INs + ω1T

H
s Ts

)−1
)

=
Ns

ω1Ps/Ns + σ−2
h

M
= LELBh (43)

Eh

{
tr
(
C∆g|h

)}
= Eh

{
tr
[(
σ−2
g +

‖αTsh + tr‖2

σ2
n(α2σ2

g + 1)

)−1

INd

]}
≥ tr

[(
σ−2
g +

σ−2
n Pr − τ
α2σ2

g + 1

)−1

INd

]
= Nd

(
σ−2
g +

σ−2
n Pr − τ
α2σ2

g + 1

)−1

M
= LELBg. (44)

B. Bayesian CRB (BCRB)

Since the iterative LMMSE in-channel estimator is proposed
under Bayesian frameworks, the Bayesian CRB can be adopted
to evaluate the performance of the proposed in-channel estima-
tor. From [34], we know that the estimation error covariance
of θ = [gT ,hT ]T is lower bounded as

Eh,g

{
(θ − θ̂)(θ − θ̂)H

}
� F−1 (45)

where A � B means that the matrix A−B is positive semi-
definite, and F is the (Ns+Nd)× (Ns+Nd) Bayesian Fisher
information matrix (BFIM).

Following the similar methods in [23]–[25], we can calcu-
late F as

F =Eh,g

{[
∂2p(y|h,g)
∂g∗∂gT

∂2p(y|h,g)
∂g∗∂hT

∂2p(y|h,g)
∂h∗∂gT

∂2p(y|h,g)
∂h∗∂hT

]}

+ Eh,g

{[
∂2p(h,g)
∂g∗∂gT

∂2p(h,g)
∂g∗∂hT

∂2p(h,g)
∂h∗∂gT

∂2p(h,g)
∂h∗∂hT

]}

=Eh,g

{[
∂µH

∂g∗ C−1
n|h,g

∂µ
∂gT

∂µH

∂g∗ C−1
n|h,g

∂µ
∂hT

∂µH

∂h∗ C−1
n|h,g

∂µ
∂gT

∂µH

∂h∗ C−1
n|h,g

∂µ
∂hT

]}
+ Eh,g

{
blkdiag

(
Σ,0Ns×Ns

)}
+ blkdiag

(
R−1

g ,R−1
h

)
=

[
F11 F12

F21 F22

]
(46)

where F11 ∈ CNs×Ns , F12 ∈ CNs×Nd , F21 ∈ CNd×Ns
and F22 ∈ CNd×Nd are the corresponding sub-matrices of F,
Cn|h,g equals Cn|g in (12), the partial derivatives are defined
as

∂µ

∂gT
=
(∂µH
∂g∗

)H
=
[ ∂µ
∂g0

,
∂µ

∂g1
, . . . ,

∂µ

∂gNd−1

]
,

∂µ

∂hT
=
(∂µH
∂h∗

)H
=
[ ∂µ
∂h0

,
∂µ

∂h1
, . . . ,

∂µ

∂hNs−1

]
,

and Σ is a Nd ×Nd matrix with the (i, j)-th element as

Σij = tr

(
C−1

n|h,g
∂Cn|h,g

∂g∗i
C−1

n|h,g
∂Cn|h,g

∂gj

)
. (47)

Notice that the facts that n and h are separately independent
on h and g are utilized in derivation. From (12), it can be
derived

∂Cn|h,g

∂gi
= σ2

nα
2eig

H ⊗ Iτ , (48)

where ei denotes the Nd × 1 basis vector with 1 for the
i-th element and 0 otherwise. Plugging (13), (48) into (47)
and taking some tedious mathematical manipulations, we can
derive Eh,g

{
Σij

}
as

Eh,g

{
Σij

}
= Eg

{ τα4

1 + α2‖g‖2
tr
(
geHi ejg

H
)}

− Eg

{ τα6‖g‖2

(1 + α2‖g‖2)2
tr
(
geHi ggHejg

H
)}

= Eg

{ τα4‖g‖2

1 + α2‖g‖2
(
1− α2‖gi‖2

1 + α2‖g2‖
)}
σ(i− j)

= Eg

{ τα4‖g‖2

1 + α2‖g‖2
(
1− α2‖g0‖2

1 + α2‖g2‖
)}
σ(i− j), (49)

wherei, j = 0, 1, · · · , Nd − 1. The equations tr(AB) =
tr(BA), tr(A ⊗ B) = tr(A) tr(B) and the fact that g0 and
gi has the same distrbution are used in the above derivation,

With the definition of µ in (7), it can be achieved that

∂µ

∂g
= α(INd ⊗Tsh) + (INd ⊗ tr),

∂µ

∂h
= α(g ⊗Ts). (50)
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Combining (13) and (50), we have the following results:

Eh,g

{∂µH
∂h∗

C−1
n|h,g

∂µ

∂hT

}
= σ−2

n Eg

{ α2‖g‖2

1 + α2‖g‖2
}

TH
s Ts

(51)

Eh,g

{∂µH
∂g∗

C−1
n|h,g

∂µ

∂hT

}
=
(

Eh,g

{∂µH
∂h∗

C−1
n|h,g

∂µ

∂gT

})H
= 0Nd×Ns (52)

Eh,g

{∂µH
∂g∗

C−1
n|h,g

∂µ

∂gT

}
= σ−2

n Eh

{
‖α2Tsh + tr‖2

}
Eg

{
1− α2‖g0‖2

1 + α2‖g‖2
}

INd

= (σ−2
n Pr − τ)Eg

{
1− α2‖g0‖2

1 + α2‖g‖2
}

INd (53)

With and (46), (49) and (53), the sub-matrices Fij(i, j =
1, 2) of the F can be derived as

F12 = FH12 = 0Ns×Nd , (54)

F22 = σ−2
n Eg

{ α2‖g‖2

1 + α2‖g‖2
}

TH
s Ts + R−1

h

= ω1T
H
s Ts + σ−2

h INs , (55)

F11 = Eg

{ τα4‖g‖2

1 + α2‖g‖2
(

1− α2‖g0‖2

1 + α2‖g‖2
)}

INd

+ (σ−2
n Pr − τ)Eg

{
1− α2‖g0‖2

1 + α2‖g‖2
}

INd + R−1
g

= ω2INd + ω3INd + σ−2
g INd . (56)

where ω1, ω2 and ω3 are defined in Appendix B. Since the
optimal source-training block Ts satisfies TH

s Ts = Ps
Ns

INs ,
which will be proved in next section, the Bayesian CRBs for
g and h can be separately given by

BCRBh = tr(F−1
22 ) =

Ns

ω1Ps/Ns + σ−2
h

, (57)

BCRBg = tr(F−1
11 ) =

Nd

ω2 + ω3 + σ−2
g

. (58)

Theorem 1: In an AF-based OWRN with multiple antennas
at the source S and the destination D, the LELB for the
in-channel along the link S → R equals the corresponding
Bayesian CRB, while the LELB for the in-channel along the
link R→ D is tighter than the corresponding Bayesian CRB,
i.e., LELBh = BCRBh and LELBg > BCRBg.

Proof: The equation LELBh = BCRBh can be readily
checked from the expressions of LELBh and BCRBh in (43)
and (57). Moreover, the inequality LELBg > BCRBg can be
obtained by the following derivations as

BCRBg

<tr
((

(σ−2
n Pr−τ)Eg

{
1− α2‖gi‖2

1+α2‖g‖2
}

INd +σg
−2INd

)−1)
< tr

((
(σ−2
n Pr−τ)Eg

{ 1

1+α2‖g0‖2
}

INd+σg
−2INd

)−1)
≤ tr

((
σ−2
g +

σ−2
n Pr − τ
α2σ2

g + 1

)−1

INd

)
= Nd

(
σ−2
g +

σ−2
n Pr − τ
α2σ2

g + 1

)−1

= LELBg. (59)

The proof of Theorem 1 is completed.

V. OPTIMAL TRAINING AND AMPLIFICATION FACTOR
DESIGN

Since LELB is tighter than BCRB, we will adopt the LELB
as the criterion to design the training block and amplification
factor. Fortunately, the LELB has simple analytical solutions,
which can be seen from (43) and (44) . Hence, it can provides
sufficient insight on the training parameter optimization.

A. Training Design

It can be concluded from (43) and (44) that the source-
training block Ts only affects the LELBh, and that the
structure of relay-training block tr has no impact either on
LELBh or on LELBg. Therefore, the optimal training design
can be done through minimizing the LELBh with respect to
Ts, which can be formulated as follows

(P1) min
Ts

LELBh (60)

s.t. tr{TH
s Ts} = Ps

For any positive-definite Ns ×Ns matrix A, we have [35]

tr(A−1) ≥
Ns−1∑
i=0

1

[A]ii
, (61)

where the equality holds when A is diagonal. With this
inequality, it can be derived that

LELBh

(a)

≥
Ns−1∑
i=0

1

σ−2
h + ω1[TH

s Ts]ii

(b)

≥ Ns(σ
−2
h + ω1Ps/Ns)

−1, (62)

where the equality in (a) holds when TH
s Ts is diagonal, and

the equality in (b) holds when each diagonal entry of TH
s Ts

equals Ps/Ns [36]. Thus, the optimal Ts should satisfy the
following constraint.

TsT
H
s =

Ps
Ns

INs . (63)

Notice that the number τ of the time slots for training block
transmission should be no less than Ns to satisfy the above
constraint. Since the system throughput decreases with the
increase of τ , the optimal choice of τ is τ = Ns + 1 to
ensure that tr are also orthogonal with Ts. With the above
analysis, an example of the optimal training blocks Ts and
tr can be constructed from the (Ns + 1)× (Ns + 1) discrete
fourier transform (DFT) matrix as

[Ts]i,j =

√
Ps
τNs

e
−2πij
τ , i= 0, 1,· · ·,τ−1, j= 0, 1,· · ·, Ns−1.

(64)

[tr]i =

√
Pt
τ
e

−2πiNs
τ , i = 0, 1, · · · , τ − 1. (65)
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Fig. 2. The in-channels h, g estimation NMSEs versus SNR with N = 2.
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Fig. 3. The in-channels h, g estimation NMSEs versus iteration with SNR =
15, 30dB,N = 2.

B. Amplification Factor α Design
It is clear that LELBh and LELBg are monotonely decreas-

ing and increasing functions with respect to α, respectively.
Therefore, a tradeoff between LELBh and LELBg should be
made in designing α. A meaningful approach is optimizing α
to minimize the weighted sum of LELBh and LELBg, which
can be formulated as follows

(P2) min
α

f(α) = γhLELBh + γgLELBg

s.t. 0 ≤ α ≤ αmax,
where the positive variables γh and γg are the weight-
s for LELBh and LELBg, respectively, and αmax =√
Pr/(σh2Ps + τσ2

n) ensures the power of tr is nonnegative.
In an OWRN, the in-channel g always plays a more important
role than h, because the destination can utilize g to predict
the relay’s operation, to achieve the relay’s paring strategy, or
to estimate the covariance matrix of the equivalent noise [37],
[38]. Moreover, in some scenarios, the relay not only forwards
the received data packet from source but also sends its own
data to destination. Thus, the factor γg should be bigger than
γh in general.

With the help of (43),(44) and (75), the closed-from ex-
pressions of f(α) and its first-order derivative f ′(α) can be

presented on the top of the next page, where ξ = Pse
−σ−2α−2

NsNdσ2
nσ

2
gα

2

and the derivative formula δ 1F1(a;b;x)
δx = a

b 1F1(a+1; b+1;x)
of the confluent hypergeometric function is utilized in the
derivation. Due to its complicated structure, it is difficult to
derive the analytic expression of the optimal α through solving
the equation f ′(α) = 0. However, its numerical solution can
be conveniently obtained with the gradient descent algorithm
[39].

VI. SIMULATIONS

In this section, the numerical results are provided to examine
the proposed iterative LMMSE estimator. All the in-channels
and noise are assumed to have unit variance, i.e., σ2

h = σ2
g =

σ2
n = 1. Without loss of generality, we set Ns = Nd = N .

We fix Pr = 2Ps and the signal to noise ratio is defined as
SNR = Ps/σn = Ps. The normalized MSEs, BCRBs, and
LELBs (NMSEs, NBCRBs and NLELBs) of h, g are used as
the figures of the merit, which are defined as

NMSEθ =
E{‖θ − θ̂‖2}

N
, (68)

NBCRBθ =
BCRBθ
N

, (69)

NLELBθ =
LELBθ
N

, (70)

where θ = h,g. In total, 104 Monte-Carlo runs are adopted
for numerical average.

Firstly, we examine the performance and convergence prop-
erty of the proposed iterative LMMSE estimator. Here, we set
α = 0.8 and utilize the optimal orthogonal training block in
(64) and (65).

Fig. 2 presents the NMSE curves of the initial LS estimation
and the proposed iterative LMMSE in-channel estimator. It can
be seen that the iterative LMMSE in-channel estimator can
effectively improve the accuracy of the initial LS in-channel
estimation in terms of NMSE of both h and g. Compared
with the cases of iterations 3 and 5, the iterative LMMSE
in-channel estimator with iteration=1 can achieve larger per-
formance gains. The iterative LMMSE algorithm only takes
five iterations to arrive at a steady state, which shows that the
algorithm has fast convergence speed. Moreover, the NMSE
curves versus number of iteration is show in Fig. 3 to explicitly
exhibit the convergence of proposed estimator.

Fig. 4 and Fig. 5 compare NLELBs and NBCRBs with
N = 2 and N = 6, respectively. Five iterations are used
for the iterative LMMSE algorithm. We obtain the following
observations: the in-channels’ (h and g) NMSE curves of the
iterative LMMSE estimator cannot approximate the NLELB
curves, which can be explained by the in-channel estimation
error propagation phenomena; the NLELB is more tighter than
NBCRB, which matches the theoretical analysis in Theorem
1; When N increases from N = 2 to N = 6, NLELB of both
h and g become quite close to the NMSE, but the NBCRBg

is still far away from NMSEg.
Next, we evaluate the designed optimal training structure.

The NMSE with different τ , i.e., N −1, N,N + 1 and N + 2,
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f(α)=γhNs

(
σ−2
h +

Ps
Nsσ2

n

− Ps
NsNdσ2

nσ
2
gα

2
e−σ

−2
g α−2

1F1(Nd − 1;Nd;σ
−2
g α−2)

)−1

+γgNd

(
σ−2
g +

σ−2
n Pr − τ
α2σ2

g + 1

)−1

. (66)

f ′(α) = 2ξγhNs

(
σ−2
h +

Ps
Nsσ2

n

− Ps
NsNdσ2

nσ
2
gα

2
e−σ

−2
g α−2

1F1(Nd − 1;Nd;σ
−2
g α−2)

)−2(
(α−3 − α−5σ−2

g )

1F1(Nd −1;Nd;σ
−2
g α−2)− Nd − 1

Ndα5σ2
g

1F1(Nd;Nd+1;σ−2
g α−2)

)
+2ασ2

gγgNd

(
σ−2
g +

σ−2
n Pr − τ
α2σ2

g + 1

)−2 σ−2
n Pr − τ

(α2σ2
g + 1)2

. (67)
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Fig. 5. Comparison between the LELB and BCRB versus SNR with N = 6.

are presented in Fig.6. Comparing the NMSE with different
τ , we can find that the NMSEh decreases significantly when
τ increases from N − 1 to N as the training sequences
for different source antennas becomes orthogonal, and that
NMSEg decreases when τ increases from N to N+1 since the
relay’s training sequences becomes orthogonal with source’s
training block. However, both the NMSEh and NMSEg can’t
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Fig. 9. The system model and training blocks transmission protocol for
OWRM with multiple antennas at all nodes.

be lowered any further by continually increasing τ , which
validates our analytical study. It can be also seen that NMSEg

increases with increasing τ at low SNR regime. This phe-
nomenon is not strange and can be explained as follow: as the
relay’s total power is constrained, more noise power merges
into received signal power with increase of τ , which leads to
decrease in SNR at destination.

Lastly, we would like to check our designing of optimal α.
Fig.7 and Fig.8 present the curves of weighted sum of NMSEg

and NMSEh versus α with SNR = 30dB and SNR = 20dB,
respectively. Three different relay power, i.e., Pr = 2Ps, Pr =
1.5Ps, and Pr = Ps, are adopted for both cases. We set the
weight γh = 0.2 and γg = 0.8 as analyzed in main text
that the weight of g should be greater than h in general. As
observed from both figures, the optimal α obtained by our
designed approach ( marked as red circle) are well-matched
with the lowest points of weighted sum NMSEs of simulation,
which demonstrated our analytical study. It is clearly that α
increases with the increase of relay power Pr, which matches
the fact that more power should be allocated for forwarding
the received source training blocks if relay have more power.
Comparing the optimal α with different SNR, we can also
conclude that optimal α decreases with decreas of SNR. This
result comes from the fact that more power should be allocated
for relay’s training sequence to guarantee the estimation of g
in low SNR as g has a greater weight.

VII. THE GENERAL CASE WHERE RELAY HAS MULTIPLE
ANTENNAS

In previous sections, we only consider the specific case
where the relay has single antenna . In this section, following
the similar approach in [27], we extend our studies to the
general scenario, where the relay has Nr > 1 antennas.

As shown in Fig. 9, let us denote the in-channel vector along
S to R’s i-th (i = 0, 1, · · · , Nr−1) antenna and that along R’s
i-th antenna to D as hi and gi, respectively. One round of the
training symbols transmission from S to D is still partitioned
into two phases.

During phase I, S sends one source-training block Ts to R.
Then, the received training at R’s i-th antenna during phase I

can be expressed as

rr,i = Tshi + nr,i, (71)

Different from the single antenna case, we divide the phase
II into Nr stages. In the i-th stage, R superimposes the relay-
training sequence tr,i in rr,i, i.e.

rt,i = αirr,i + tr,i, (72)

and forwards rr,i to D through its i-th antenna. Then, the
received training at D in stage i can be written as

Yi = αiTshigi
T + tr,igi

T + αinr,igi
T + Nd,i. (73)

Since each relay’s antenna forwards its own received train-
ing in each stage independently, with respect to each relay an-
tenna, the problem becomes the same as that for the case where
relay has single antenna. Thus, hi and gi can be estimated
by the proposed iterative LMMSE in-channel estimator from
observation (73) in stage i. The performance analysis, optimal
training design, and optimal amplification factor design for
the single antenna case also apply to the case where relay
has multiple antennas. It is worth to point out that the the
dimension of the source-training block Ts does not increase
with relay’s antenna number Nr.

VIII. CONCLUSION

In this paper, we investigated the in-channel estimation in
the classical three-node AF OWRN with multiple antennas at
all the nodes. The typical scenario, where the relay node is
equipped with single antenna, was first examined. Under the
superimposed training framework, we developed an iterative
LMMSE in-channel estimator, whose initial point was pro-
vided by the LS in-channel estimator formed by the matrix
unitary diagonalization. We further derived LELB and BCRB
to evaluate the proposed algorithms. The optimal training and
amplification factor was designed by minimizing the LELB.
Furthermore, simulation results were provided to corroborate
our studies. Finally, we extended our studies to the general
case, where all the nodes are equipped with multiple antennas.

APPENDIX A
PROOF OF LEMMA 1

The term tr
(
f(X)

)
can be expressed as

tr
(
f(X)

)
= tr

(
(aI + AHX−1A)−1

)
=

1

aN + tr
(
AHX−1A)

=
1

aN + 1

tr
(
X(AAH)−1

) . (74)

From the fact that (AAH)
−1 � 0, it can be derived that

tr
(
X2(AAH)

−1)
< tr

(
X1(AAH)

−1) if tr(X2) < tr(X1),
where X1 � 0 and X2 � 0. Therefore, we can obtain
tr
(
f(X2)

)
< tr

(
f(X1)

)
.
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APPENDIX B
DEFINITIONS AND CALCULATIONS OF ω1 ω2 AND ω3

We first calculate the factor ω1 as

ω1 = σ−2
n Eg

{ α2‖g‖2

1 + α2‖g‖2
}

= σ−2
n −

2

σ2
nσ

2
gα

2
Eg

{ 1

2σ−2
g α−2 + 2σ−2

g ‖g‖2
}
. (75)

With the statistics of g, it can be checked that the term
2σ−2

g α−2 + 2σ−2
g ‖g‖2 is the non-central chi-squared dis-

tributed with the degrees of freedom 2Nd and the non-
centrality parameter 2σ−2

g α−2. Thus, we can derive that

Eg

{ 1

2σ−2
g α−2 + 2σ−2

g ‖g‖2
}

=
1

2Nd
e−σ

−2
g α−2

1F1(Nd − 1;Nd;σ
−2
g α−2), (76)

where

1F1(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ta−1(1− t)b−a−1eztdt

(77)

is the confluent hypergeometric function. Plugging (76) into
(75), we get the closed-form expression of ω1.

Following the similar methods, the variables ω2 and ω3 in
(56) can be separately written as

ω2 = Eg

{ τα4‖g‖2

1 + α2‖g‖2
(

1− α2‖g0‖2

1 + α2‖g2‖

)}
, (78)

ω3 = (σ−2
n Pr − τ)Eg

{
1− α2‖g0‖2

1 + α2‖g‖2
}
. (79)

Due to the complicated structures of the expectations in (78)
and (79), it is difficult for us to achieve simple analytical solu-
tions for both ω2 and ω3. Nonetheless, we can use the Gibbs
sampling technique and generate samples g1,g2, · · · ,gNc
from its PDF CN (0,Rg). Then, the numerical scheme to
calculate ω2 and ω3 can be listed as

ω2 ≈
1

Nc

Nc∑
k=1

{ τα4‖gk‖2

1 + α2‖gk‖2
(

1− α2‖gk0‖2

1 + α2‖gk‖2
)}

(80)

ω3 ≈
1

Nc

Nc∑
k=1

(σ−2
n Pr − τ)

{
1− α2‖gk0‖2

1 + α2‖gk‖2
}

(81)

APPENDIX C
PROOF OF LEMMA 2

With the matrix property tr(X−1) = 1/ tr(X), f(x) can be
rewritten as

f(x) =
1

aN + x tr(A)
. (82)

Moreover, the second derivative of f(x) with respect to x can
be denoted as

f ′′(x) =
2 tr2(A)(

aN + x tr(A)
)3 > 0, (x > 0) (83)

where tr(A) > 0 for A � 0 is utilized. From the fact that
f ′′(x) > 0, we can conclude that f(x) is convex for x > 0.
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