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Abstract—Matrix-variate optimization plays a central role
in advanced wireless system designs. In this paper, we aim
to explore optimal solutions of matrix variables under two
special structure constraints using complex matrix derivatives,
including diagonal structure constraints and constant modulus
constraints, both of which are closely related to the state-of-
the-art wireless applications. Specifically, for diagonal structure
constraints mostly considered in the uplink multi-user single-
input multiple-output (MU-SIMO) system and the amplitude-
adjustable intelligent reflecting surface (IRS)-aided multiple-
input multiple-output (MIMO) system, the capacity maximization
problem, the mean-squared error (MSE) minimization problem
and their variants are rigorously investigated. By leveraging com-
plex matrix derivatives, the optimal solutions of these problems
are directly obtained in closed forms. Nevertheless, for constant
modulus constraints with the intrinsic nature of element-wise
decomposability, which are often seen in the hybrid analog-
digital MIMO system and the fully-passive IRS-aided MIMO
system, we firstly explore inherent structures of the element-wise
phase derivatives associated with different optimization problems.
Then, we propose a novel alternating optimization (AO) algo-
rithm with the aid of several arbitrary feasible solutions, which
avoids the complicated matrix inversion and matrix factoriza-
tion involved in conventional element-wise iterative algorithms.
Numerical simulations reveal that the proposed algorithm can
dramatically reduce the computational complexity without loss
of system performance.

Index Terms—Complex matrix derivatives, special structure
constraints, matrix-variate optimization, hybrid analog-digital
system, intelligent reflecting surface.

I. INTRODUCTION

Multi-antenna technology opens a new era for wireless
communications due to its effective utilization of limited
spatial resources [1]-[3]. From the mathematical viewpoint,
the deployment of multi-antenna arrays at transceivers gen-
erally leads to matrix-variate optimization problems [4]-
[6]. Specifically, in the typical multiple-input multiple-output
(MIMO) communication systems, the transmit beamformer
optimization and the receive equalizer optimization can be
both modeled as matrix-variate optimization problems [7]—
[9]. Compared to scalar-variate optimization, matrix-variate
optimization is generally more challenging to tackle because
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it inherently involves complex matrix operations, including
matrix determinant, inversion, matrix decomposition and so
on. In fact, with the development of wireless communica-
tions, many matrix-variate optimization problems with special
structure constraints such as symmetric, diagonal and constant
modulus structure constraints are emerging, which are closely
related to the state-of-the-art wireless systems equipped with
multi-antenna transceiver antenna arrays.

In general, a structure of the matrix variable strongly
depends on three factors, namely, network architectures, fre-
quency bands and communication demands. First, the dis-
tributed network architecture has been studied, since its in-
volved distributed antenna arrays are capable of increasing
spatial diversity gain and extending communication coverage,
as compared with the centralized counterpart [10]. In this
distributed network, the corresponding matrix variable usually
has a diagonal structure. Second, for high-frequency millime-
ter wave (mmWave) and terahertz (THz) communications, a
hybrid analog-digital transceiver structure has been regarded
as an economic and effective way to achieve a large array gain
[11], [12], in which the analog beamforming matrix is usually
subject to the nonconvex and intractable constant modulus
constraints. Third, for smartly reconfiguring the wireless envi-
ronment in a cost-effective manner, intelligent reflecting sur-
faces (IRSs) composed of a large number of passive reflecting
elements have attracted a lot of attention recently [13]-[15].
Considering different levels of hardware implementation, there
are two main types of IRS structures that are widely studied,
i.e., the amplitude-adjustable IRS and the fully-passive IRS.
Note that the reflection matrices of these two IRSs can be
mathematically modeled as diagonal matrices. In particular,
for the fully-passive IRS, the corresponding reflection matrix
is additionally subject to the nonconvex constant modulus
constraint. Building upon the above discussions, it is clear that
matrix-variate optimization problems with special structure
constraints have been widely considered in the state-of-the-art
wireless systems. Therefore, it is essential to develop a frame-
work for optimization algorithms with guaranteed performance
and low complexity for the matrix-variate optimization.

Currently, there have been many common popular algo-
rithms for solving matrix-variate optimization problems, such
as the Karush-Kuhn-Tucker (KKT)-based algorithm [16]-
[19], the block coordinate descent (BCD) algorithm [20] and
the majorization-minimization (MM)-based algorithm [21]. It
is well-known that for convex matrix-variate problems, the
KKT-based algorithm is able to directly derive the optimal
structures of matrices. Generally, the symmetric structure
constraints of matrix variables can be implicitly satisfied by
the derived optimal closed-form solutions [22]. Moreover,
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TABLE I 2
COMPLEX MATRIX DERIVATIVES UNDER DIAGONAL STRUCTURE CONSTRAINTS

Function Type Derivative w.r.t. Ag

Derivative w.r.t. Ag

fo,rL = Tr(Ag M) + Tr(Ae M™) Diag{M"}

Diag{ M}

fp,rq = Tr(AGW Ae) Diag{AZ W}

Diag{WAe}

fo,r1 =Tr ((IM + ‘I’A@)_l)

—Diag{@%(IM + @%A@@%)*Z@%} 0

/o, =log Iy + PAe|

Diag{@%(IM+q>%A@q>%)—1q>%} 0

for diagonal structure constraints, this algorithm considers
applying the first-order derivative to each diagonal element
to obtain the optimal solution. Furthermore, in terms of the
intractable constant modulus constraints, dual variables are
usually introduced and iteratively optimized by the subgra-
dient method to satisfy complementary slackness conditions,
thereby potentially suffering from high iteration complexity
[23]. In contrast, the BCD algorithm is always adopted to solve
highly nonconvex problems caused by strongly-coupled matrix
variables. Specifically, under the BCD framework, the original
matrix-variate optimization problem can be decomposed into
multiple low-dimensional subproblems, each of which needs to
be iteratively optimized until convergence. In order to ensure
at least local convergence of the BCD algorithm [20], each
subproblem is required to have a unique optimal solution.
Nevertheless, considering that subproblems may be nonconvex
and thus hard to globally solve, the MM-based algorithm has
attained extensive attention, whose core idea is to construct a
tractable surrogate function to locally approximate the original
nonconvex subproblem. Unfortunately, the derivation of the
surrogate function usually involves high-complexity matrix
manipulations and also needs to be iteratively carried out to
achieve a close approximation.

Obviously, the KKT-based algorithm based on complex
matrix derivatives generally achieves the lowest complexity
among the three types of algorithms [24]. Nonetheless, its
application range is relatively limited as compared to the BCD
and MM-based algorithms. Note that the implementation of the
latter two algorithms depends on the specific wireless system
and may have high computational complexity, especially for
large-scale arrays. To circumvent these issues, in this paper,
we aim to develop a unified framework for matrix-variate
optimization with two special structure constraints, namely,
diagonal structure and constant modulus constraints. For each
considered case, the novel low-complexity algorithm with
guaranteed performance is proposed. The main contributions
of our work are further summarized as follows.

o Firstly, we consider the diagonal structure constraints
often seen in the uplink multi-user single-input multiple-
output (MU-SIMO) system and the amplitude-adjustable
IRS-aided MIMO system, which are always involved
in the capacity maximization problem, mean squared
error (MSE) minimization problem and their variants.
We propose complex matrix derivatives associated with
diagonal structures, based on which the optimal solutions
of these matrix-variate problems are directly obtained in
closed forms. Furthermore, the above study is extended
to the case of block-diagonal structure constraints.

o Secondly, in terms of constant modulus constraints mostly
adopted in the hybrid analog-digital MIMO system and
the fully-passive IRS-aided MIMO system, we propose
the element-wise phase derivatives inspired by their

element-wise decomposability nature. For different clas-
sical matrix-variate optimization problems, it is revealed
that the element-wise phase derivatives can be classified
into the following two general forms, i.e., the linear form
and the conjugate linear form.

« Finally, by exploring inherent structures of the element-
wise phase derivatives, we develop a novel alternating
optimization (AQO) algorithm with the aid of several
arbitrary feasible solutions for the matrix-variate opti-
mization under constant modulus constraints. Note that
the computational complexity of the proposed AO algo-
rithm sharply decreases, since it avoids the complicated
matrix inversion and matrix factorization involved in the
conventional element-wise iterative algorithm. Moreover,
we demonstrate that the proposed algorithm is able to
achieve almost the same performance as the existing
benchmark schemes.

Notation: Scalars, vectors and matrices are represented
by non-bold, bold lowercase, and bold uppercase letters,
respectively. The notations AT, A*, A" A= Tr(A) and | A]
denote the transpose, conjugate, hermitian, inversion, trace and
determinant of the complex matrix A, respectively. Diag{ A}
denotes a vector whose elements are diagonal elements of
matrix A, and Blockdiag({A}X ;) is a block diagonal
matrix with diagonal sub-matrices of Aj’s. Moreover, the ith
row and the jth column of A are denoted as [A]; . and [A]. ;,
respectively, the element in the ¢th row and the jth column
is denoted as [A]; ;. % and % denote the differential and
the partial derivative of f with respect to a, respectively. ®
denotes the Hadamard product and (a)* = max{0,a}. R{a}
and {a} denote the real and imaginary parts of a complex
variable a, respectively. The symbol Phase{a} denotes the
phase of a complex scalar @ and —7 < Phase{a} < 7. Lastly,
the word “with respect to” is abbreviated as “w.r.t.”.

II. DIAGONAL STRUCTURE CONSTRAINTS

In this section, we firstly provide some fundamental prop-
erties of complex matrix derivatives associated with diagonal
structures for several types of objective functions. Based on
these properties, we then obtain the optimal solutions of
a series of optimization problems in the uplink MU-SIMO
system and the amplitude-adjustable IRS-aided MIMO system
in closed forms. Moreover, the above study is extended to the
case of block-diagonal matrix variables.

A. Mathematical Preliminaries

At the beginning, some fundamental definitions for diagonal
matrices are provided, which are the basis of the following
analysis. For any two diagonal matrices Ag, € CM*M and
Ao, € CM*M we have

Diag{A@l + A@2} = Diag{A@l} + Diag{A@z}' (1
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(a) Uplink MU-MISO system

(b) Amplitude-adjustable IRS-aided MIMO system

Fig. 1. A diagram of application scenarios associated with diagonal matrix variables.

CM*M e have

For an arbitrary square matrix ® €
Diag{®Ae} = Diag{Ae®}. 2)

Moreover, the following equality holds for any complex ma-
trices N € CV*M and M € CM*N | je.,

Diag{ NAe M} = ®Diag{Ae} with ® = N o M™*. (3)

Together with the operation of Diag{-}, the vectorization of
the first-order derivative of a scalar-valued function f(Aeg)
w.r.t the complex diagonal matrix Ag can be defined as [24]

_ [9f(Ae)) _ [0f(Ae) fAe) 1"
Dwg{ OAe }__[ﬂAeth”’3M®th]
_ [of(Ae)\ _ [0f(re) flAe) |
Dias | 9A% }- a[A@H,J”’a[Aem,N] @

In the sequel, we mainly concern about complex matrix
derivatives w.r.t. diagonal matrices for four common objec-
tive functions, including the trace-linear function, the trace-
quadratic function, the trace-inverse function and the log-
determinant function.

1) Trace-Linear Function: For an arbitrary complex ma-
trix M € CM*M | the differential of a trace-linear function
forL=Tr(AS M)+ Tr(Ae M) wrt. Ae can be obtained
as d (fp,r.) = Tr (d (Ae) M™) . Based on this, the corre-
sponding first-order derivative w.r.t. Ag can be obtained as

Diag { aéfi’;L } = Diag{M""}. )
The first-order derivative of fp 11, w.r.t. Ag is also given by
Diag { agi; } = Diag{M}. (6)

2) Trace-Quadratic Function: For a Hermitian matrix
W e CMM | the differential of a trace-quadratic function
forq= Tr(AI(E)WA@) wrt. Ae and Ag are respectively
calculated as d (fp,rq) = Tr(ABWd(Ae)),d (fp,1q) =
Tr(d(AS)W Ag). Then, the corresponding first-order deriva-
tives w.r.t. Ag and Ag can be obtained as

Diag {%} = Diag{ABW},

0

Diag LEQ = Diag{WAe}. 7)
OAY

3) Trace-Inverse Function: For a positive semi-definite

matrix ® € CM*M the differential of a trace-inverse func-

tion fprr = Tr ((IM +¢>A@)_1> w.rt. Ag is given by

d(for) = —Tr ((IM + @A@)’z'!I)dA@) . The correspond-
ing first-order derivative w.r.t. Ag is then given by

Diag { 652’; } = — Diag {(In + ®Ae) *®} ©)

— _ Diag {Q%(IM + tP%A@@%)*Q(b%} .

4)  Log-Determinant Function: Considering a log-
determinant function fprp = log|ly + ®Ae|, its dif-
ferential w.rt. Ae can be derived as d(fpLp) =
Tr (In+®Ae) '®dAe), based on which the following
first-order derivative w.r.t. Ag holds.

Diag { %fi? } =Diag {(In/ + ®Ao) '@} 9)

=Diag {qﬁ(IM + @%A@<1>%)—1<1>%} .

In conclusion, the complex matrix derivatives of the above
four types of objective functions are summarized in Table I.
Exploiting these fundamental properties, some classical wire-
less applications are investigated in the following subsection.

B. Specific Wireless Applications

1) Uplink MU-SIMO System: As shown in Fig. 1(a), we
firstly consider an uplink distributed MU-SIMO system, where
K single-antenna users transmit independent data streams to
the BS equipped with IV, antennas [10]. The received signal
at the BS can be expressed as

y=Hs+n with H=[hy, - hg]eCV*E (10

where hj, € CVt*1 denotes the channel between the BS and the
kth user, and s=]sy,--- , sx]Te CE*! is the transmit signal,
n is the additive noise obeying Gaussian distribution with
zero mean and covariance matrix E{nn!} = 2. It is worth
noting that the covariance matrix of s is diagonal, since the
transmit data streams of K users are independent of each other,
i.e., E{ss''} = Ag. Then, the uplink capacity maximization
problem is formulated as

Prob.1: max log ’INt + Z_IHA@HH‘
)
s.t. TI‘(A(.)) <P 0L [A(-B]k,k’ < P, VE. (11)

By recalling (9), the first-order derivative of the objective
function of Prob.1 w.r.t. Ag is given by

. O0log |In, +2_1HA@HH|
Diag 9Ag

12)

1 1 1 -1 1
:Diag{HHEZ (INtJrE*EHA@HHE*f) 22H}.
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In order to derive the optimal Ag, we present the KKT
optimality conditions of Prob.1 as follows [25]:

1 1 -1
Diag{HHz—% (INt + E—EHA@HHz—a)

xz—%H} = uDiag {I}—[th1,- -+ ,k]|T, (13a)
1 (Tr(Ae) — P) =0, (13b)
’l/)k ([A(-B}k,k' — Pk):O, Vk’, (13C)

where p is the Lagrange multiplier associated with the
sum power constraint and ;’s correspond to the power
constraints imposed on each user. We firstly define J;, =
Ix+(H"S"'H — H};)) (Ae — Aey), where H), € CK*K
is an all-zero matrix except for its kth column being
[HHE’lH]:k and Ag; € CK*K is an all-zero matrix
except for its (k, k)th element being [Ae] k.k- Then, the left-
hand side of (13a) can be rewritten as

—1
Diag {HHE—% (INt—&-E‘%HA@HHE‘%) 2—%H}

“@piag { (Ix + H'S'HAg) ™' HH2—1H}

()  [Ae]kxDiag {J,"H,J;'HiS1H}
1+ [A@]hkTI"(Jl;lﬁk)
+ Diag {J,'H"S'H}, (14)

where (a;) holds based on the matrix inversion lemma
NI+ MN) ! = I+ NM) !N and (az) is attained
using the Sherman Morrison formula, ie., (M + N )_1 =
M- — % for a full-rank matrix M and a rank-
one matrix IN. By substituting (14) into (13a), the optimal
[Ae]k ks is derived in the following water-filling form [26].

+
Yk
<[Diag{Jk1Hka1HHZ1I-I}]k+Tr(Jk1Hk)yk) ’
if [Aelkr < Pk,
Py, if [Aelkr > Py, VF,

Aok k= (15)

where y, = [Diag {J,/ ' H"S~'H}], — s Moreover, since
Tr(Ae) is monotonically decreasing w.r.t ;1 > 0, the optimal
w satisfying (13b) can be found via the bisection search.

In addition, MSE is a widely used performance metric,
which reflects the accuracy of the desired signals that can be
recovered from the noise corrupted observations. Accordingly,
the MSE minimization problem is formulated as

Prob2: min Tr |(Iy, + 5~ 'HAe H") |
e
st. Tr(Ae) < P, 0 < [Aelis < Py, Yh. (16)

By recalling (8), the first-order derivative of the objective
function of Prob.2 w.r.t. Ag is given by

. OTr [(In, + " 'HAeoH™)™1]
Diag Ao

1 1 1 -2 1
:—Diag{HHE2(INt+22HA@HH22) zzH}.

4

Based on (17), the KKT optimality conditions of Prob.2 can
be formulated as

-2
Diag {HHE—% (INt + 2—%HA@HH2—%)

xE*%H} — yDiag {Ixc}—[¢n,- -, ¥x]T, (18a)
1 (Tr(Ae) — P) =0, (18b)
¢k ([A@}]@k — Pk):(), Vk, (18C)

where p and 1y’s are defined similarly to Prob.1. The left-
hand side of (18a) can be rewritten as

-2
Diag{HHz—% (INt—&-E‘%HA@HHE‘%) 2—%H}

Aolrrd T HyJ b\
©Diag (J,;1 _ ey ud T ) H'S'H
1L+ [AelkkTr(J, "Hy)
[Ael} Diag {J; 'HyJ, *H,J,, ' H'S 'H}
1 2
(14 [AelkiTr(J, "Hy))
[AelkxDiag {J, *HJ, 'HYS 1H}
1+ [A@]hkTr(Jk_lﬁk)
[Ae]irDiag {J, "HJ, *HYS'H}
1+ [A(—)]hkTr(Jk_lﬁk)
+ Diag {J; >H"S'H}, (19)
where (b) holds similarly to (14). Substituting (19) into (18a),
we have

a[Ael} i + bi[Ae]rkk + 2k =0, VE, (20)

where

a, =Tr*(J, "Hy)z,+ [Diag {J;, "HJ; *H,J, ' H'S ™!
H}|, —Tr(J; "H})[Diag {J,°H, J, 'H'S'H}),
— Tv(J, 'H),)[Diag {J, "H,J, 2 H S H}),,

by, =2Tr(J; "Hy)ay, — [Diag {J; 2 HyJ, ' HIS T H ),
— [Diag {J;, "HJ; *H"S'H}];,

xy, = [Diag {J, *H"S'H}|, — p, Vk. (21)

Then, the optimal [Ae] 1’s of Prob.2 can be attained using
quadratic formula as follows:

- +
SRR A N
[Aekr= ( o ) if (Ao < P, Vk. (22)
P, if [Ae]kk > Pr,

Similarly, 1+ can be obtained using the bisection search.

2) Amplitude-Adjustable IRS-aided MIMO System: Here-
after, we consider the state-of-the-art amplitude-adjustable
IRS-aided point-to-point MIMO system as shown in Fig. 1(b),
where a N;-antenna BS serves a N,.-antenna user with the aid
of a K -element amplitude-adjustable IRS. The received signal
at the user can be expressed as

y=Hs+mn with H=Hy+ H AegH>, (23)

where Hy € CN>Ne | | € CN>K and H,cCH XNt represent
the BS-user direct channel, the IRS-user channel and the BS-
IRS channel, respectively. Ag € CK*X denotes the diagonal
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IRS reflection matrix whose each diagonal element represents
the adjustable amplitude and phase of the corresponding

reflecting element, which usually satisfies ‘[A@]i,i‘ <1 or

Tr(A@Ag) < K [27]). Similar to Sec. II-B1, we firstly
consider the following capacity maximization problem.

Prob.3: max log|S™ HH" + Iy,
]

s.t. Tr(AeAB) < K. (24)

By recalling (7) and (9), the first-order derivative of the
objective function of Prob.3 w.r.t. Ag is given by

] 810g|2’1HHH+INT
Diag Ao

—Diag {HQHQHAngH [ 'HH" + Iy ] 2—1H1}

+Diag { 2 H{! [S'HH" + Iy,] ' S7'Hi} . (25)

Unfortunately, even though the first-order derivative is derived,
it is still difficult to derive the optimal closed-form solution
from (25), since its involved quadratic term w.r.t. Ag appears
in an inverse form. As a remedy, we intend to solve it based on
problem transformation. Specifically, via introducing a series
of auxiliary variables, Prob.3 is equivalently transformed into

Prob.4: min
Ao,

Tr (W [GAH — Iy, [GAH — INJH)
+ Tr(WGAZGY) — log |W|

s.t. Tr(AeAg) < K. (26)
The equivalence between Prob.3 and Prob.4 is built based
on the idea of weighted MSE minimization (WMMSE) [28],
[29]. Then, Prob.4 can be efficiently solved via the AO among
G, Ae and W. Specifically, both optimal GA and W can
be directly derived by taking the first-order derivatives of the
objective function of Prob.4 w.r.t. GA and W to zeros, i.e.,
Ga = HY (S + HHY) ™' W = (I, — GAH) ™' . Then,
the optimization problem w.r.t. Ag can be written as

Prob.5: min Tr (W [GAH — Iy, [GAH — INt]H)
(S]
st. Tr(AeAD) < K. 27)

The first-order derivative of the objective function of Prob.5
w.rt. Ag is given by

0Ty (W (GAH — Iy, [GAH — INJH>

Di
iag 7Ag

=Diag{H, (H"G}\ — H,) WGAH,:}, (28)

based on which the KKT optimality conditions of Prob.5 can
be formulated as
Diag{ H,(H"G)\ — H))W G H1} =—pDiag{Ag}, (29a)
i (Tr(AoAg) — K) =0, (29b)

where g is the dual variable associated with the amplitude
constraint. Based on (29a), the optimal Ag is derived as

Diag{Ag} = (ulx + @) 'a, (30)

Under review for possible publication in

where ® = H,HY o (HIGHWGH,)" and a =
Diag{HW G H,—H>HY GYW G A Hy}. Moreover, since
Tr(AeAd) is monotonically decreasing w.r.t. z1, the optimal
w satisfying (29b) is found via the bisection search.

In addition, we formulate the MSE minimization problem
for the amplitude-adjustable IRS-aided MIMO system as

. . 1 H —1
Prob.6: min Tr ([2 HH" +Iy,] )
st. Tr(AeAD) < K. @31

Similar to Prob.3, Prob.6 is difficult to solve since it in-
volves a quadratic term w.r.t. Ag appears in an inverse form.
Fortunately, it can also be equivalently transformed into the
WMMSE minimization problem Prob.4 by setting W = I,.

C. Extension to Block-Diagonal Structure Constraints

In this subsection, we extend the complex matrix derivative
to the block-diagonal matrix, which is essentially a kind of
bidiagonal matrix. In a general multi-antenna MU-MIMO
uplink system, the received signal from K users at the BS
can be written as [30]

y=Hs+n with H=[H,,---,Hg], (32

where H;, € CN+*Nr denotes the channel between the BS and
the kth user, s, € CV*1 denotes the transmitted data stream
of the kth user, and all data streams s;’s are stacked into the
vector s € CNEX1 je s = [s], -+, sk]T. Accordingly,

the covariance matrix of s is a block-diagonal matrix, i.e.,
Q = E{ss"} = Blockdiag ({Qk},ﬁil) . (33)

where Q= E{sysi!} is the transmit covariance matrix of
sy. Hereafter, we mainly consider the capacity maximization
problem under the general user grouping power constraints,
which is formulated as

Prob.7: max log Iy, + S "HQH"|

st > Tr(Qx) < Pu, Qi = 0, Vh,n,  (34)
k€on

where ¢, is the set of user indices in the n-th user
group and P, is the corresponding available transmit power.
Generally, we have ngl on = {1,2,--- K} and ¢, N
Om = D,Ym # n. Specifically, we set n = 1,--- | K,
¢n = {k} in the MU-MIMO uplink system, and n
1, ¢ = {1,2,---,K} in the virtual MU-MIMO up-
link system based on the uplink-downlink duality [17]. The
differential of the objective function of Prob.7 w.rt. Q
is given by d(log|In, + E'HQH"|) = Tr((In, +
S HQH"S %) 'S~ 3 Hd(Q)H"S"%). The corre-
sponding first-order derivative w.r.t Q is then derived as

dlog Iy, + X" HQH"|
oQ
~Blockdiag( { HI'="# (Iy, + S *HQH"x"?)

-1

xz—%Hk}:;). (35)
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TABLE II 6
ELEMENT-WISE PHASE DERIVATIVES UNDER THE CONSTANT MODULUS CONSTRAINT

Function Type

Element-Wise Phase Derivative w.r.t. [®]; ;,Vi, j

fern = Te(BRX) + Tr(BX™M)

—23{[B*];,j[X])i,;}

foto = Tr(XTIXH®)
,TQ

—2G {[(@XTI)*]; ;[X]i ;}

forn=Tr ((® 4+ XHIIX) 1)

25 {[(OX (@ + X"0X)2)"], [X]i, |

foLp = log |® + XHIIX|

DY { (X (@ + X"TX)~1)7], [X]m}

Following that, the KKT optimality conditions are given by

Blockdiag({H,IjE_é(INt—i—E_%HQHHE—é)_l
1 K . e
xE—EHk}k 1):Blockdlag({ukIN,,—qlk}k_l), (36a)

Nn( Z Tr(Qk) - Pn) = Oy,U/k: = MnaVk € ¢n7 (36b)
kE¢pn
Tr(‘I’ka) - Oa Vkv (360)

where p; and Wy, are the Lagrange multipliers associated with
the transmit power constraint and the positive semi-definite
constraint at the kth user, respectively. Then, (36a) can be
rewritten in terms of @ as follows:

HI'S 3 (Iy, + £ HQH"S 3) 'S 1 H,
—HI'S 3L (Iy, + L, * S  HyQ HI'S 3L %)™
x L *S Hy = updy, — Wy, Yk, 37)

where Ly, = Iy, + Z#kZ’%HijHJHE’%. Thus, based
on eigenspace alignment, the optimal Qj’s can be derived as
that in [16, Theorem 1], i.e., Q) = V”'LkAQkV’){L{kV Yk, where
Ag, is a diagonal matrix, each diagonal element of which
has a water-filling form, and V3, is an unitary matrix coming
fronll the singular value decomposition (SVD) represented as
L, *Y 3 Hy = Up, Ay, V3 with Agg, N\, where Az, \,
implies that the diagonal elements of A4, are arranged in
descending order. Similarly, p that satisfying (36b) can be
obtained by the bisection search.

Remark 1: Based on the above discussions, we can conclude
that globally optimal solutions of several classical optimization
problems in the state-of-the-art wireless systems can be di-
rectly obtained with low complexity by the proposed complex
matrix derivatives under diagonal structure constraints. In
addition, for optimization problems that not satisfy diagonal
structure constraints directly, the proposed algorithm is also
able to obtain an approximate solution by further exploring
the inherent structure of the optimal solution. For example, the
optimal matrix variables in the point-to-point MIMO system
operating at high SNR conditions and the MU-MISO downlink
system employing the BD-ZF strategy [31] are both validated
to be approximately diagonal.

III. CONSTANT MODULUS CONSTRAINTS

Different from diagonal structure constraints, constant mod-
ulus constraints are imposed on matrix variables in an element-
wise manner, which makes the optimization problem chal-
lenging to directly solve using complex matrix derivatives.
Motivated by this fact, we firstly provide some mathematical
preliminaries for the element-wise phase derivatives of several
widely adopted objective functions. Then, we investigate spe-
cific optimization problems in both the hybrid analog-digital

MIMO system and the fully-passive IRS-aided MIMO system.
In order to avoid complicated matrix inversion and matrix
factorization, a novel AO algorithm with the aid of several
arbitrary feasible solutions is proposed.

A. Mathematical Preliminaries

We firstly introduce a complex matrix variable X € CN*M

subject to constant modulus constraints as follows:
[X]i; = €%, Vi, jand Tr(XX™) = NM, (38)

where 6; ; € [0,27] denotes the phase of [X]; ;. Based
on (38), the first-order derivative w.r.t. the constant modulus
constrained X can be replaced by the first-order derivative
w.r.t. the corresponding unconstrained phase matrix &, where

[®];; = #6,,,7i,j. Accordingly, the element-wise phase
derivatives of the function f(X) w.r.t. ® can be defined as
9f(X) of(X) .
= Vi, j. 39
[ 20 e, (39

Similar to Sec. II-A, we also consider the element-wise phase
derivatives for four common objective functions, i.e.,

1) Trace-Linear Function: Since the phase [®]; ;’s are real
scalar, for arbitrary complex matrix B € CNY*M | the element-
wise phase derivatives of a trace-linear function fc i, =
Tr(BYX) + Tr(BX™) w.rt. [©];;’s can be obtained as

{aj«;cémh _ {a S zn[?gn,m[X]n,ij

N {82771 Zn[B]n,m[X*]n,mL]

00
IB*)i ;1 X]i; — 3[Bli ;[ X i
== 2{[B":;[X]i s} Vi, J. (40)

)

2) Trace-Quadratic Function: For arbitrary Hermitian ma-
trices II € CM*M and & € CN*N the element-wise
phase derivatives of a trace-quadratic function fcrq =
Tr(XIIX1®) wrt. [©]; ;s are given by

[5];(3&(:2} i = J(®XTIL)"]; ;[ X];; — J[(PXTI)]; ;[ X" ;
= 29 {[(XTID)*]; ;[ X]is}, Vi, ] 41)

3) Trace-Inverse Function: Regarding a trace-inverse func-
tion fo,r1 = Tr ((® + X"ILX)™!), we have the following
element-wise phase derivatives w.r.t. [@]; ;’s.

dfcm
00

=— [(@ + xHmx) XHH] g [XTi.

+7 [(IIX (@ + XTIX)7?)], (X (42)

=23 { [(HX(@ + XHHX)‘Q)*] y [X]m} , Vi, j.
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—f w [of X Yl = oy, Y : Y]
BS User BS User

(a) Hybrid analog-digital MIMO system

(b) Fully-passive IRS-aided MIMO system

Fig. 2. A diagram of application scenarios associated with constant modulus matrix variables.

4) Log-Determinant Function: Similarly, the element-wise
phase derivatives of a log-determinant function fcrp =
log |® + XHIIX| w.rt. [©]; ;s are given by

dfc.Lp
00

]Z = 2%{ {(HX(‘I’+XHHX)71)*}

s,

(2]
X [X]”}, Vi, j. (43)

The element-wise phase derivatives of the above four types
of objective functions are summarized in Table II. In the
following subsection, several state-of-the-art wireless appli-
cations will be investigated in detail based on the above
fundamental properties.

B. Specific Wireless Applications

In Fig. 2, there are two typical wireless applications as-
sociated with constant modulus constraints, i.e., the analog
beamforming optimization in the hybrid analog-digital MIMO
system and the phase shift optimization in the fully-passive
IRS-aided MIMO system, which are elaborated as follows.

1) Hybrid Analog-Digital MIMO System: As shown in Fig.
2(a), we firstly consider the hybrid analog-digital beamforming
design in the downlink point-to-point MIMO system, where
the BS equipped with NV; antennas and N, radio-frequency
(RF) chains transfers N, data streams to a N,.-antenna user
with the fully-digital equalizer [12]. Then, the received signal
at the user can be expressed as

y=GHXFps+ Gn, (44)

where G € CN+*Nr denotes the fully-digital receive equalizer,
H € CN-*Nt denotes the channel between the BS and the
user, X € CNtxNrs and Fp € CNv+*Ns are the constant
modulus analog beamformer and the digital beamformer, re-
spectively. s € CV=*1 is the transmit data streams with unit
covariance matrix, i.e., E{ssf} = In.. n € CN**! is the
additive Gaussian noise with zero mean and covariance matrix
E{nn"}=3. Based on (44), the MSE matrix is given by

Fuse =E [(g —8)(5— s)H]
—(GHXFp, —Iy.)(GHXFp — Iy)" + GZGH

9 Iy, + FEX"HYS"HXFp] (45)

—

where § denotes the estimated signal and (c) holds
based on the optimal unconstrained Wiener filter G =
FilxHigt (HXFDFlngHHH—i-Rn - [32]. Without loss
of generality, we usually assume Fp Fl ~ 21y, ; for large-
scale MIMO systems [20]. Under this assumption, the capacity
maximization problem of the hybrid analog-digital MIMO
system can be formulated as

Prob.8: max log|Iy,, + XHTIX|

st |[X]igl =1, Vi, j, (46)

where TI = v2HH¥ X' H represents the effective signal-to-
noise ratio (SNR). According to the KKT optimality con-
ditions, the element-wise phase derivatives of the objective
function of Prob.8 w.r.t. [X];;’s must equal zeros at the
optimal [X]; ;’s. Specifically, we recall (43) to obtain

%{[(HX(IN”—#XHHX)*)*] ,[X]Z-,j}:oy Vi, j. (47)
2,7

£4;,;(X)

Define A; 1INt+X\/‘j:—X\:]HH and nj = 1+[X]:IfjHAj_1[X]:7j,
where X:] denotes the sub-matrix of X with the jth col-
umn removed. Then, [TIX (I, + XHHX)’l]m,’s can be
rewritten as

[TIX (Iy,, + X"IX) "], (48)
@ [ (o - AT IXLXTATY
J n; y

1 —11H 1 —11H —
:nszl#[HAj }l,i[th + E[HAj ]“[X]Ua Vi, j,

where (d) holds similarly to (14). By substituting (48) into
(47), we have

%{[(HX(IN”, +XHHX)_1)*LJ [X]Z-,j} (49a)

=9 { <nljzl#[HAj1]z},Ii [X]l,]) * [X]ij

+ (1[HA;1]}fi) } =0, Vi,j. (49b)

n;j
Since the following equality holds, i.e.,
OA; ' =II(Iy, + X; X;'II) "
=(Iy, + IX; X )7 = (AT HY, v, (50)

we can conclude that l'IAj_1 is a Hermitian matrix. As such,
it is readily inferred that n; and %[HAj_l]H are both real
J

scalars. Recall the definition of [X]; ; = €%, Vi, j, it follows
from (49b) that the optimal [®]; ;’s to Prob.8 are derived as

—11H
[©];.; =Phase {ZZ#[HAJ. ]M[X]l’j}
or 7 + Phase {ZZ#[HA;I]&[X]M} , Vi.j. (5D
In addition, the MSE minimization problem is expressed as
Prob9: min Tr ((Iy,, + X"I1X) ")
X

|IEEE Transactions on Communications
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Similarly, to find the optimal solution of Prob.9, the element-
wise phase derivatives of the objective function w.r.t. [X]; ;’s
must equal zeros, that is,

%{KHX (IN,,+XHHX)_2)*L [X];,

2]

]} =0, Vi, j. (53)

£g,5(X)

~ ’s can be rewritten as
0,3

The terms [HX (In,, +XHTIX) *2}

OX(Iy,, + X"TIX)7?].

i,j
-1 H —1\ 2
(e H( 4 A XX, ) <
nj
@]
(e2) 1 TA; AT X,
n][ ],[ ]:,J_ ni[ 7 ]:71‘[ }:,J
e A7 J Ji, +C N
(3) 1 J 1 j[n]2 1 ][ ] ,Vi,j, (54)

J

where (e1) holds due to the same reasons as (14), (e2) holds
by defining m; = [X]:I’{jHAj_Q[X]%j, which is a real scalar
and this can be proved similarly to (50). (e3) is obtained by
rewriting n; and m; in terms of [X]; ; as

ny =G 2R {0 (X7 5}, my =20 {n]" [ X7}, (55)

where Cf:1+[HA;1]i7i+§R Dopigi Xy [HAJ‘_I]p,q

(X5} g;n:[HAj_Q}ii+% Dopti, q;et[ Iy, [HAJ‘_Q]p,q
[X]q.i}- 77J = LAy NalXl, =
Zl#[HA ] i X ]l; , Vi,j. Moreover, Ai;;, Bi;
and C; ; in (54) are defined as
Avig =) AT, — ()" [TLA 3,
+ (G) ()" = (¢G") ()™,
Bu,; =0y [ILAT?]5, — 0 [TLA ',
Curij =(¢) IAF?)E, — () [ITAS;,
+ 0 (") =0t (n})*, Vi, j. (56)
By substituting (54) into (53), we have
3 { {(HX(IN”« + XHHX)_2)*] '[X]m} (57a)
i,j
Ay 4By X5 4+Ca
—J{ Ll Xk 1’2’][ Lyt ’]}—0, Vi, j. (57b)
ns
j

Then, since {7} = 0 is equal to I{a} = 0 for a real scalar
b, (57b) can be further simplified as

S{A1:;6% + Brje "+ Cruy} (58a)
LAy 5] sin(0, +aig)—Bua| sin(0;;—Bi ) +S{Chis}

(f__z‘)/ Z%,i,j +z§,i,j sin(@i,j +c/>i7j)+%{01,i7j} =0, Vi, 7, (58b)

where (f1) is obtained using Euler’s formula with A, ;; =
|A1,i’j|€JC”'j and Bl,i,j = ‘Bl,i’j|ejﬁi*j, (fg) holds due
to the sum-to-product trigonometric identity with z1;; =

8

| A1,i,] cos(@ij)+[ Bl cos(Bij)s 22,05
|B1,i,j| Sll’l(ﬁi’j) and

=|Ay; |sin(a; j)+

arctan(fij), if 2155 >0,

(T1j>7 lle,i’j<0,

57

iy = Vi, j. (59)

7w — arctan

Based on (58b), the optimal [©]; ;s to Prob.9 are obtained as

C\‘ ..
[©]; ; = — i, +arcsin __S{CLiyy 60)
NEREEN
O s
or T — ¢; ; + arcsin __S{Cuiy) Vi

2 2
Vi T %2,

Remark 2: Since the capacity maximization problem w.r.t.
each user’s analog beamformer X, in the uplink hybrid
analog-digital MU-MIMO system can be formulated in a
similar form to Prob.8 that for the single-user case by sep-
arating X, from other X;,Vi # w [33], its optimal solution
can still be obtained accordmg to (51) by modifying IT as

HY ( S+ Y. HIX X HP)  H,. Moreover, for the
MSE minimization problem in the uplink hybrid analog-digital
MU-MIMO system, the corresponding element-wise phase
derivative also has a similar form to (53) for the single-user
counterpart, thereby leading to the optimal solution obtained
by (60).

Next, we consider a general WMMSE minimization prob-
lem often studied in the downlink hybrid analog-digital MU-
MIMO system for both capacity maximization and MSE
minimization problems, which can be formulated as [21]

U
Prob.10: &ig Z:l (Tr(®, X, I, X — Tr(BYX,)

~Tr(B, X))

s.t. |[Xu]7,,]| = 1? vuaiajv (61)

where X,’s are the analog beamformer for the wuth user.
®, € CNexNeg II, € CNre*Nrs>s and B, € CNexNrsog
denote the corresponding effective channel covariance matrix,
the digital beamforming covariance matrix and the cascade
channel, respectively, which are mathematically modeled as

HY,GE W,Go..
P, = H ~H

Hu,uG G@ uddy,uy
IL, = Fp uFp (62)
B H}! ,G§ ,W.F{, for capacity max problem,

H}\Go . Fi.

H, , for capacity max problem,
for MSE min problem,

. Yu.
for MSE min problem,

Generally, the optimal [X,]; ;’s can be obtained when the
element-wise phase derivatives of the objective function of
Prob.10 w.r.t. [Xu]Z ;’s equal zeros, i.e.,

{( ‘I’X H [B*]z,J)[Xu]i,j} = O, Vu,i,j, (63)
29, (Xu)
where [(®X,II)]; ;’s can be rewritten as

(X, IT)); ; = Tr (X, [IT]. ;[®];.)
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=[Xula; [([H], j[q)]i,:)]j’i (64)
+ Z’m#zzn#] u m,n [H]:,j[¢]i,:)]n,m7 V’U,,Z,]
By substituting (64) into (63), we have
S{([(@X. D)) — [B™i ) [Xuliy } (65a)
=3 {(Si,r[B]z;j)* (X g+ (T 5 [@):,)]7, } =0, Ve i,
(65b)

The last term [([IT]. ; [<I>]l)];‘Z is a real scalar since it satisfies
(). ;[®];.)];, = [M];;(®li; = (I0];;(®i:)". Thus, the
optimal [®,,]; ;’s satisfying (65b) for Prob.10 are given by
[©.]i,; =Phase {s;; — [Bli;}
or m + Phase {s; j — [B]; ;}, Vu,1,]. (66)
2) Fully-Passive IRS-aided MIMO System: In the fully-

passive IRS-aided point-to-point MIMO system as shown in
Fig. 2(b), the received signal at the user can be written as

y=Hs+n=(Hy+ HiAegH:)s+n, (67)

where Hy € CN-*Ne, H, € CN-*K and H, € CK*M
represent the BS-user direct channel, the IRS-user channel
and the BS-IRS channel, respectively. Ag € CEXEK is
the diagonal IRS reflection matrix subject to both diagonal
structure constraints and constant modulus constraints [13].
The phase shift vector 8 corresponding to the IRS reflection
matrix Ag is then defined as

[0]; = 6;, [Ae];; =€, Vi. (68)

Firstly, we consider the classical capacity maximization prob-
lem in the fully-passive IRS-aided MIMO system as follows:

Prob.11: max log |[S~'HH"
Ao

s.t. |[A®]i,i‘ = 1, Vi. (69)

By leveraging the KKT optimality conditions, the element-
wise phase derivatives of the objective function of Prob.11
w.rt. [Ae];;’s equal zeros at the optimal [Ae];,’s, i.e.,

%{[HQHHE1(21HHH+INT)_1H1LZ_[A@}M}—O, Vi,

£g9:.i(Ae)
(70)

The left-hand side of (70) can be further rewritten as
3 { (HHYS™ (ST HH"Iy,) 'Hi| [Ae), }

1
—3 { {HQHHE_é (2—%HHH2—% + IN,,)

<= [Nl

W {Tr [ (MF + e T) (MM e M
+ M DT 4 Iy,) | e

(g)s{Tr |:e]6,;1-\iMiH (q,i+e*J0iMiI‘?eJ9iFiMz'I{)_1] —|—Ci}

Under review for possible publication in

(g)g {TI‘ [eﬂeiui'v,}{ (\I/i — aiazH)_l} + Ci}
-1 Hg-l
(94)0 21, ¥, a0, ) .
e W | u;+c; p, Vi, (71
{ ( 1 —all'¥;ta, 70
where (g1) holds by rewriting £~ 2 H in terms of [Ae];; as

St H=[Ao),, I‘rFE_%Ho-i-Zn#i [Ael,,Tn, (72)

AM,

where T'; = [S~2 H;]. ;[H>);... The equality (go) in (71) is
obtained by deﬁning (Pi = MleH + I‘ZFEI + IN,,» Cc; =
Tr {rir? (®; + e M;TH 4 25, MH)
a real scalar independent of the optimal [Ag], ;. The equality
(g3) holds based on a; = e/%iv;—u;, ¥; = <I>Z—|—'u vl tu;ull,
where v; and u; come from the SVD of the rank-one matrix
M;TH ie., M,T! = v;ull. The equality (g4) holds similarly
to (az) in (14). Then, by substituting (71) into (70), we have

1 .
}, where c¢; is

%{[ILIQHHE_l(E_lHHH+INT)1H1} | ‘[A@]m} (73a)

Ay e’ i
=3 {26D+02 n ci} -0, Vi, (73b)
2,i
where
Ay = v 0 (74)

Cy; = le\IIi_luiu?\Ifi_lvi — le\IIi_lviu?\Ili_lui,

Dy ;=2Re {vzH\Ili_lu,;eJei}Jrlf'vZH\Ili_lvifqu\Ili_lui, Vi.

Similar to (49b), since C5;’s, D2 ;’s and ¢;’s are real scalars,

the optimal [6],’s satisfying (73b) for Prob.11 are given by
6], = Phase { A3 ;} or w+ Phase {45}, Vi. (75)

Additionally, we consider the MSE minimization problem
in the fully-passive IRS-aided point-to-point MIMO system,
which is formulated as

Prob.12: win Tr | (S~ HH" + Iy,) |
[S]

Since the element-wise phase derivatives of the objective
function of Prob.12 w.r.t. [Ag], ;’s equal zeros at the optimal
solution, we have

%{ [HQHHz—l(z—lﬂHH+IN,,)’2H1] | ,[A@]M} =0, Vi.

égm(A@))
77

The left-hand side of (77) can be further rewritten as
3 { [HHYS™ (ST HHY + Iy,) " Hi| [A@]m}
“la,alw ! |
Wy [ttt (g1 4 Yi @i Wi
1 —all®a,
v la;a H\Il
X ‘I’ 1 + ! u; + Ci}
( 1-— aH'I’ a; )

6]0 znl i+ dzn2 i+ d € + bl 7 TO,i)\i)
(2Re {\;ei} + d)*
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e~ 10 (()\f)2€1 + bgyi — 7“0,1‘)\:()
(2Re {\;e?i} + d)*
2d;ATe; + A+ Ainei — boi — 10,id;
(2Re {\;e?i} + d)*

(78)

+ Ci} y VZ,

where (h) holds similarly to (71) and we have
)\i j)fl‘:[’l_lu“ E; :’UlH\I’i_Q’U,i, d1 = 17’1}51‘1’;1’01- 7“’%{‘1’1'_111’7;7
M = vh W2 (wul +volt) U,

Mo = viW ! (wul + v0l!) U,
bo,; = ’UZH\Ili_l (uzu? + vivzH) \Ili_Qviu?\Ili_lui

+ 'uiH\Il;lviu?\Il;2 (u,u? + vi'le) W;lui7

b =00 (wuf + o)) U2 (wu)! + o)) Oy,

+ol T (O ] o o O Pl ) O g,
ba; = vZ-H\Ilflviu?\Iljzviu?lP;lui, (79)

Hg—1,, ., Hg—2 Hgy—2,, . Hgy—1 .
roi =v; Y, vuy W + v O tvu W w, Vi

By substituting (78) into (77), we have

S{[HgHHE_l(E_lHHH—i—INr)2H1L [A@]m} (80a)

32

D3 ;

)

As ;€% + By e % 4 Oy,
:s{ 3407+ Usie 7 H Gy, —|—ci}:O7 Vi,  (80b)

where
Az =dim i + dina,; + diei + by — 70\,
Bs; :()\?)261' +bos — 04N,
Cs; =2d; Mg + AN+ Aima,i —
Ds; = (2Re { N’} +d;)?, Vi (81)

It is noted that (80b) has the same form as (57b) for Prob.9.
Thus, the optimal [6],’s to Prob.12 can be obtained similarly.

Similarly, the capacity maximization and MSE minimization
problems in the uplink fully-passive IRS-aided MU-MIMO
system have the same forms as these in the single-user case,
thus their corresponding optimal solutions can be attained
directly. Moreover, it is essential to investigate the general
WMMSE minimization problem mostly considered in the
downlink fully-passive IRS-aided MU-MIMO system, which
is formulated as

Prob.13: min Tr(®PAeIIAS) —Tr(B"Ag)—Tr(BAD)
e

bo,; — 70,idi,

s.t. |[A®]i,i‘ = 1, Vi. (82)

Since the element-wise phase derivatives of the objective
function w.rt. [Ae], ;’s are zeros at the optimal solution, i.e.,

s{[<¢A@H)*LJ[A@]M} —%{[B*]Z.J[A@]i’i}:o, Vi, (83)

£g::(Ae)

referring to (54), the optimal solution to Prob.13 can be easily
derived as

[6], =Phase {5 - [B},;$i}
or m + Phase {s, — [B]”} , Vi, (84)

where s; = Zm;éi[AQ]’nwn [([TT]. 5 [@]s,)] -

10

Algorithm 1 A Novel AO Algorithm for Solving Problems
under Constant Modulus Constraints

Initialize: Arbitrary five feasible solutions 5(\(7,9 ), m =
1,--.,b; iteration index ¢ = 0; convergence threshold e.
1: repeat
2: fori=1to Ny, j=1to N,y do
3: Calculate g;_; (Xfﬁ)), m =1,---,5 and the auxiliary
vector w(t) as in (87)
() )

4 Update [©®)]. . as in (89) and obtain [X®]; ;
according to (38).

5:  end for

6. Update X4 = X® for an arbitrary m € [1,5].

7. t=t+1.

8: until The increment/decrement of the objective function

value between two consecutive iterations is less than e.
9: return X.

In a nutshell, a series of optimization problems in the
wireless systems associated with constant modulus constraints
are investigated in this subsection, whose optimal solutions are
available using the proposed element-wise phase derivatives.

C. A Novel AO Algorithm

It follows from Sec. III-B that these element-wise phase

derivatives associated with Prob.8~Prob.13 can be mainly
classified into two forms. Moreover, each form always has
two zero-derivative points. The optimal one in these two zero-
derivative points can be determined by an elegant function, as
summarized in the following proposition.
Proposition 1. For different types of objective functions,
the element-wise phase derivatives under constant modulus
constraints can be mainly summarized as the following two
general forms, i.e., the linear form and the conjugate linear
form, which are shown as

%{A%,j [(XTi,, —i—C’inj} , Vi, j, for trace-linear;
trace-quadratic, log-determinant functions, (85a)
S{AT X+ By IXT, + Gy} Vi g,

for trace-inverse function, (85b)

9i.5(X)=

where A{j i’s AlCJL ’s, Blch ’s and CSJL ’s are all complex scalars
and CZ-Ijj ’s are real scalars. In particular, the linear element-
wise phase derivative in (85a) can be regarded as a simplified
case of its conjugate linear counterpart by setting BZCJL =0
and %{C’ZC]L = 0,Vi,j in (85b). Moreover, there are two

points {[Xl]” , [Xg]”} satisfying g; ;(X) = 0,Vi, j, from
which the optimal solution can be determined by the following
conjugate linear function

[XOPtL}J' = AELx], LX), ) (86)

%{A?JL (X, —BSJL [X]ZJ}Z 0, for min problem, Vi i
%{A?JL [(X1i.; —BEJL [X];,j}< 0, for max problem,

Proof. The detailed proof is shown in Appendix A.

Based on proposition 1, it is seen that the optimal [X]; ;’s
are obtained by aligning their phase-shifts with the corre-
sponding counterparts jointly determined by AEJL’S, BZ%L’S
and C{/”’s, which are all related to [X],n’s, m # i,n # j
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and need to be frequently calculated in each iteration of
updating [X]; ;’s. In addition, the calculations of Ag}’s,
BEls and C1’s all involve complicated matrix inversion
with complexity of O (Nf) and SVD with complexity of
O (2N, N} 4+ N2). It is evident that this complexity will
become enormous as N,. and V; increases. In order to avoid
the frequent calculations of Af>’s, B{’’s and C}*’s, we next
derive the optimal solution directly based on the functions
9i,;(X)’s associated with the original element-wise phase
derivatives, which is shown in Proposition 2.

Proposition 2. Define arbitrary five feasible solutions satis-
fying constant modulus constraints, i.e, Xp, m = 1,---,5
and calculate their corresponding g; ;(X,)’s, we have

w; ; :R;jlti’j with Ri’j (S (C5X5, ti’j S (C5><17 Vi,j, (87)
where
Ryl — [s{[xmh,j}—[ti,ﬂm%{[xm

i Jm S Xomlig b —S{[Xomli s} — [t
Rl — [t S o], 1}
[tijlm = tan(Zgi ;(Xom)), Vi, j,m. (88)

Jii b R{Xmlig}
AR Xonlis )

Then, we obtain the optimal solutions of optimization problems
with conjugate linear element-wise phase derivatives as

— arctan (?—‘l) + arcsin | ——oiils
21,4, NG

or ﬂ—arctan(?'i’?)—i—arcsin —J“’% ’
21,i,j ,/zllj+z21J
ile N 0 Vi ja
—m + arctan (32—’1) + arcsin _%L
Zl,t,] W
i35 i,j
[wi 5
> = b
V Zii,j"'zg,i,j
if 2145 <0, Vi, j,
(39)

or arctan (zz L ) + arcsin (
1,2,5

where El,i,j [wi’j]l - [wi’j]g and /Z\Q’Z‘J [wi’j]g +
[w; j]4,Vi, 4. In particular, for the special case of the
linear element-wise phase derivatives, we have w;; =
[[w; 1, [wi j]2,0,0,0] and z1 ; j does not affect the optimal

i
Proo} The detailed proof is shown in Appendix B.

Based on Proposition 2, we next aim to develop a novel
AO algorithm with the aid of five arbitrary feasible solutions
to determine the optimal solutions of all above optimization
problems under constant modulus constraints, which is sum-
marized in Algorithm 1.

Remark 3: In fact, the element-wise phase derivatives for
different optimization problems with constant modulus con-
straints can be roughly summarized as a general (conjugate)
linear form, and the corresponding optimal solutions can be
determined from two potential solutions based on a concise
conjugate linear function. Based on this, a novel AO algorithm
with the advantages of the low complexity and guaranteed
performance is developed. Moreover, for the optimization
problems that have other nonconvex constraints such as the

Under review for possible publication in

TABLE III

COMPUTATIONAL COMPLEXITIES OF ALL STUDIED ALGORITHMS

Algorithm

Computational complexity

Proposed novel AO algorithm

O (KN?)

Element-wise BCD algorithm

O (2KN2ZN; + 3KN3)

MM-based algorithm

RCG-based algorithm

(
@] (TMMK2)
O (K2 + Trca (K3))

fractional functions (e.g., signal-to-interference-plus-noise ra-
tio) [34] or the difference of convex functions (e.g., secrecy
rate) [35], the proposed novel AO algorithm can also be
used to derive the closed-form solutions. Specifically, we
simultaneously employ the successive convex approximation
technique to handle the nonconvex constraints and the La-
grange multiplier method to reformulate the objective function.
The corresponding Lagrangian belongs to one of the four
types of the considered functions in Sec. II-A and thus can be
efficiently solved by the proposed algorithms. However, dual
variables are introduced and need to be further determined by
the subgradient method.

D. Convergence and Complexity Analysis of the Novel AO
Algorithm

In this subsection, we firstly demonstrate the convergence of
the proposed novel AO algorithm to a locally optimal solution.
By leveraging the element-wise phase derivative, the proposed
algorithm firstly decouples the original nonconvex problem un-
der constant modulus constraints into multiple unconstrained
subproblems associated with each matrix element, and then
derives their optimal closed-form solutions since it satisfies
the first-order KKT optimality condition in each subproblem.
Thus, the objective function is monotonically non-increasing
over the iterations. Moreover, the objective function is lower
bounded since the feasible region of the original problem is
closed. Therefore, the proposed algorithm is guaranteed to
converge to a stationary solution for the original problem. That
is to say, its local optimality is thus ensured [36].

Then, taking the capacity maximization problem in the
fully-passive IRS-aided MIMO system as an example, we
analyze and compare the computational complexities of the
proposed novel AO algorithm and the advanced algorithms for
constant modulus constrained problem, which is summarized
in Table III. It is observed that the computational complexity
of the proposed novel AO algorithm is dominated by the
matrix inversion for calculating g; ; (X, ), Vm, 4, j, which is
computed as O (KN?).

Currently, three effective algorithms are widely utilized
to optimize the constant modulus constrained problems, i.e.,
the element-wise BCD algorithm [18], the MM-based algo-
rithm [21] and the Riemannian conjugate gradient (RCG)-
based algorithm [38]. Similarly, the computational complexi-
ties of these advanced algorithms can be elaborated as below.
Specifically, the element-wise BCD algorithm has a high
complexity of O (2K N2N, + 3K N?), which mainly comes
from operations of matrix inversion and SVD. Moreover, the
computational complexity of the MM-based algorithm is given
by O (TMMK 2) with Ty denoting the number of itera-
tions. The RCG-based algorithm primarily comprises three
components, i.e., the computation of Riemannian gradient, the
retraction operator and the Armijo backtracking line search,
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Fig. 3. The capacity and MSE performance comparison in the two systems considered in Sec. II.

whose complexity is calculated as O (K? + Trea (K?))
with Trce being the line search times. In conclusion, since
K > {N,,N,}, the proposed novel AO algorithm achieves
a significant reduction in the computational complexity as
compared to the advanced algorithms. Therefore, it is more
suitable for practical applications.

IV. SIMULATIONS AND DISCUSSIONS

In this section, numerical simulation results are provided to
evaluate the performance of the derived optimal closed-form
solutions based on complex matrix derivatives in Sec. II-B
(also referred to as CMD-based algorithm), and the novel AO
algorithm in Algorithm 1, which are respectively proposed for
tackling the optimization problems under diagonal structure
constraints and constant modulus constraints.

A. Diagonal Structure Constraints

We firstly consider the uplink MU-SIMO system, where
K = 2,3 and 4 single-antenna users transmit signals to the
BS equipped with N; = 6 antennas, respectively. Moreover,
the maximum transmit power of each user is assumed to be
P, = 28 dBm, 26 dBm and 25 dBm for K = 2, 3 and 4
users, respectively, and the maximum sum power is set as
P = 30 dBm. Under the assumption that the channel follows
the circularly symmetric complex Gaussian distribution with
unit noise variance, i.e. H ~ CN (0,In,k), the SNR is
defined as SNR = 1010g10(U—P2), where noise power o2
varies with SNR. All the results are obtained by averaging
over 100 channel realizations. Firstly, Fig. 3(a) compares
the capacity and MSE performance achieved by the CMD-
based algorithm and the CVX toolbox [37] versus SNR under
different numbers of users. For each considered number of
users, it is clearly observed that the CMD-based algorithm
achieves almost the same capacity and MSE performance as
the numerical CVX optimization with a lower complexity.
Specifically, the complexity of the CMD-based algorithm is
dominated by matrix inversion with the complexity of O (K 5) ,
while the numerical CVX optimization adopting the interior-
point method has a complexity of O ((K + N;K)*5 + K?).
Moreover, as expected that with the expansion of the number
of users, the capacity and MSE performance are further
enhanced due to the increasing system degrees of freedom.
Thus, the global optimality and low complexity of the CMD-
based algorithm are demonstrated.

Then, the amplitude-adjustable IRS-aided MIMO system
is taken into account, where the BS equipped with N; = 6
antennas and N,.; = 4 RF chains communicates with the user

equipped with N, = 4 antennas, while K = 16,48 and 64-
element IRSs are deployed to enhance the point-to-point com-
munication, respectively. The path loss setting is the same as
that in [17] and other parameter settings are the same as those
in the uplink MU-SIMO system. Fig. 3(b) illustrates that the
capacity and MSE performance attained by the CMD-based
algorithm and the numerical CVX optimization as the function
of SNR. We find that the CMD-based algorithm attains almost
the same optimal performance as the numerical CVX toolbox.
Also, the increase in the number of IRS elements results in
the improved capacity and MSE performance.

B. Constant Modulus Constraints

In the point-to-point hybrid analog-digital MIMO system,
the BS equipped with N; = 6 antennas and N,y = 4 RF
chains serves a user equipped with NV, = 4 antennas. Other
parameter settings are the same as those of the uplink MU-
SIMO system. Moreover, we compare the proposed novel AO
algorithm with the following benchmark schemes: BCD: The
authors of [20] propose an element-wise BCD algorithm for
optimizing the analog beamforming matrix. MM: The authors
of [21] equivalently reformulate the original problem into the
WMMSE minimization problem, and then optimize the analog
beamforming matrix using the MM-based algorithm. RCG:
The RCG-based algorithm is applied to effectively solve the
corresponding optimization problem [38].

Taking the capacity maximization problem as an example,
we firstly depict Fig. 4(a) to show the convergence behavior
of all studied algorithms, where SNR= —2 dB. As can be
seen, the proposed novel AO algorithm obviously outperforms
the MM-based and RCG-based algorithms in terms of the
convergence speed and capacity performance. Moreover, both
the proposed algorithm and the element-wise BCD algorithm
converge within 20 iterations, while the proposed algorithm
shows a little higher capacity and a faster speed than the
element-wise BCD algorithm.

Next, we demonstrate the effectiveness of the proposed
novel AO algorithm in Fig. 4(b), where three sets of different
feasible solutions satisfying constant modulus constraints are
generated randomly to calculate the optimal solutions of the
capacity maximization and MSE minimization problems for
different numbers of BS antennas, respectively. The same
capacity and MSE performance are attained for different
feasible solutions under each antenna number setting and these
two performance are enhanced with the increasing number of
BS antennas, implying the stability and effectiveness of the
proposed novel AO algorithm.

Fig. 4(c) compares the capacity and MSE performance of
the proposed novel AO algorithm and benchmark schemes
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versus SNR. Obviously, the proposed novel AO algorithm
consistently performs better than the MM-based and RCG-
based algorithms, since both benchmark schemes do not
directly act on the original objective function. To be specific,
the MM-based and RCG-based algorithms respectively adopt
the surrogate function and the gradient projection to tackle
constant modulus constraints, respectively, whose performance
depends on the choice of the initial point and the descending
step size. Moreover, the proposed novel AO algorithm attains
nearly identical performance to the element-wise BCD algo-
rithm, since both the two algorithms derive the optimal closed-
form solution associated with each matrix element.

Furthermore, we consider the fully-passive IRS-aided
MIMO system with the same parameter settings as the
amplitude-adjustable IRS-aided MIMO system. In Fig. 5(a),
the capacity and MSE performance of the proposed novel AO
algorithm are respectively compared with that of benchmark
schemes in the hybrid analog-digital MIMO system. Notice
that the above three benchmark schemes, i.e., the element-wise
BCD algorithm [18], [19], the MM-based algorithm and the
RCG-based algorithm, have also been widely adopted in most
existing IRS related works and thus are still considered here.
The observed trend in Fig. 5(a) indicates that the proposed
novel AO algorithm is able to achieve better performance than
the MM-based and RCG-based algorithms, and almost the
same performance as the element-wise BCD algorithm while
maintaining a lower complexity.

Then, taking the capability maximization problem as an
example, we compare the proposed novel AO algorithm and
benchmark schemes versus the numbers of BS antennas and
IRS elements in Fig. 5(b), where SNR= —2 dB. It is naturally
seen that the capacity performance becomes better with the
increasing sizes of BS antennas and IRS elements. Moreover,
the performance gap between the proposed novel AO algo-
rithm and benchmark schemes becomes more significant with

the increase of the system size. For example, for N; = 12,
when the number of IRS elements increases from K = 64
to K = 256, there is 1.4% capacity increment achieved by
the proposed algorithm relative to the MM-based algorithm.
Moreover, the proposed algorithm always achieves almost
the same performance as the element-wise BCD algorithm
while maintaining a lower complexity. Therefore, the proposed
algorithm’s scalability and optimality are ensured.

Finally, in order to demonstrate the low-complexity ad-
vantage of the proposed AO algorithm, we depict Fig. 5(c)
to intuitively compare its average CPU runtime with that of
benchmark schemes for solving the capacity maximization
problem, where SNR= 5 dB and N, = 8. We firstly
observe that the proposed novel AO algorithm has the lowest
average CPU runtime, since it avoids the complicated matrix
operation. Moreover, it shows a sharp decrease of the average
CPU runtime relative to the element-wise BCD algorithm.
For example, at Ny = 96, there is 98% CPU runtime
decrement achieved by the proposed algorithm implying its
low-complexity advantage. Whereas, the element-wise BCD
algorithm suffers from the highest time overhead which also
increases as the number of BS antennas increases, since the
dimension of the involved matrix inversion is the same as the
number of BS antennas.

V. CONCLUSIONS

In this paper, we investigated complex matrix derivatives
for two special matrices, i.e., diagonal structured matrices
and constant modulus structured matrices. Under the diagonal
structure constraints, the optimal closed-form solutions of the
capacity maximization problem, the MSE minimization prob-
lem and their variants can be obtained using complex matrix
derivatives. Whereas for constant modulus constraints, the
optimal solutions of these classical optimization problems are
derived utilizing element-wise phase derivatives. Further, in
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order to avoid the complicated matrix operations, we explore
the inherent structure of the element-wise phase derivatives,
and develop a novel AO algorithm with the aid of several
arbitrary feasible solutions. Finally, numerical simulations
demonstrate the global optimality and low complexity of the
proposed novel AO algorithm.

APPENDIX
A. Proof of Proposition 1

Based on Sec. III-B, we can easily conclude that for both ca-
pacity maximization problems (i.e. Prob.8, Prob.11) with log-
determinant functions and WMMSE minimization problems
(i.e. Prob.10, Prob.13) with trace-linear and trace-quadratic
functions, the corresponding element-wise phase derivatives
have the same linear forms as in (85a). Whereas, for the
MSE minimization problems (i.e. Prob.9, Prob.12) with trace-
inverse functions, the element-wise phase derivatives satisfy
the conjugate linear forms in (85b).

Furthermore, in order to determine the optimal solution
from two zero-derivative points {[X ;5 [Xa2l;, j} satisfying
9i,;(X) = 0,Vi,j, we resort to the second-order derivative
of the corresponding objective function f(X) w.rt. [©], ;’s.
Specifically, by taking the conjugate linear element-wise phase
derivatives as an example, we have

0?f(X) _ 0gi4(X)
0 [@]2 9 [g]i,j

.9

=2jR{ASTX]; ;- BOVIX]rH. 9D

According to the optimization theory, it is readily inferred

that these two zero-derivative points are local minimum when
2

07 f(X) > 0 holds. In contrast, they become local maximum

5oL,
2% f(X)
ool

when < 0 holds [25]. This completes the proof.

B. Proof of Proposition 2

It follows from Proposition 1 that the derivation of the

optimal X; ;’s is based on A%L’s, BS}’S and CS}"S. Thus,
we firstly define a 5-dimensional vector as follows.

T

wij =[[wi;]1, [wijla, -, [wijls] (92)

_[RAASH) S{ASH) R{BEH} (B} (O

R{CTT} RO} RO RO RCE:

, Vi, g

Moreover, by recalling Prob.12, A%’s, BE]L’S and CSJL’S are
closely related to the functions g; ;(X)’s associated with the
original element-wise phase derivatives as (90), as shown at the
top of this page. Note that the equations in (90) can be further
rewritten as the following homogeneous linear equations, i.e.,

[wi, ;) (%{)/Em} - taﬂ(égi,j(fm))%{me
il (R} + tan( L, (X)) 3(X,0) )

~fwils (S{Xon} + tan(Zg;5 (X)) R{Xon})
il (R{Xon} — tan(Zgi; (X)) ${Xom})
+w, ;)5 — tan(Zg; ;(Xn)) =0, m=1,---,5.  (93)

It follows from (93) that the optimal w; ;’s can be obtained by
jointly solving its involved five homogeneous linear equations,
whose closed-form structures are further shown in (87) and the
proof of Proposition 2 is completed.
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