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Abstract—The mobile and flexible unmanned aerial vehicle
(UAV) with mobile edge computing (MEC) can effectively re-
lieve the computing pressure of the massive data traffic in
5G Internet of Things. In this paper, we propose a novel
online edge learning offloading (OELO) scheme for UAV-assisted
MEC secure communications, which can improve the secure
computation performance. Moreover, the problem of information
security is further considered since the offloading information of
terminal users (TUs) may be eavesdropped due to the light-of-
sight characteristic of UAV transmission. In the OELO scheme,
we maximize the secure computation efficiency by optimizing
TUs’ binary offloading decision and resource management while
guaranteeing dynamic task data queue stability and minimum
secure computing requirement. Since the optimization prob-
lem is fractionally structured, binary constrained and multi-
variable coupled, we first utilize the Dinkelbach method to
transform the fractionally structured problem into a tractable
form. Then, OELO generates the offloading decision based on
deep reinforcement learning (DRL) and optimizes the resource
management in an iterative manner through successive convex
approximation (SCA). Simulation results show that the proposed
scheme achieves better computing performance and enhances the
stability and security compared with benchmarks.

Index Terms—UAV, MEC, secure computation efficiency, online
edge learning offloading, resource management.

I. INTRODUCTION

The developing evolution of 5G Internet of Things (5GIoT)

has brought great convenience to human life and production,

which also causes tremendously data traffic [1]–[3]. To

quickly process the massive data of 5GIoT, mobile edge

computing (MEC) is an efficient method to offload the data

traffic to the edge for computation, which can effectively

alleviate the pressure of data growth and improve the data

computing efficiency [4]–[10]. Mao et al. investigated that

MEC can assist terminal users (TUs) with limited resource to
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enable latency-critical and computation-intensive applications,

and promote the achievement of 5GIoT [7]. Li et al. studied

the online trusted collaboration offloading method for MEC

systems by considering the cooperative trust risk and the

variation in completion delays [8]. A model-free configuration

scheme to achieve the MEC system’s quality of service (QoS)

was proposed by in Zhao et al. [9]. Guo et al. investigated that

MEC can overcome the limitation of the multi-user system and

increase the computation capability [10].

With the advantage of high mobility and flexibility, un-

manned aerial vehicles (UAVs) can assist the MEC systems in

5GIoT to rapidly deploy in computation-intensive areas, and

improve the quality of wireless communication links. UAV-

assisted MEC system can not only extend the coverage of

MEC computing service, but also save installation costs [11]–

[13]. Qi et al. in [11] investigated the efficiency enhancement

of the UAV-assisted MEC system by optimizing UAV trajec-

tory and resource management. Han et al. investigated that

UAV-assisted MEC can enhance the computation capability

performance in IoT systems [12]. Du et al. investigated a

resource management method by considering the UAV com-

puting ability and the basic QoS demands of 5GIoT systems

[13].

Although UAV-assisted MEC systems can provide high

computation performance for multiple TUs, the offloading

information of TUs may be more easily eavesdropped during

the light-of-sight (LoS) transmission. Physical layer security

can provide secure wireless communication through utilizing

communication channels and data information transmitting

modes [14]–[18]. Lu et al. investigated the secure computation

capacity optimization in the UAV-MEC system, where one

UAV assists TUs in offloading while the other UAV eavesdrops

TUs offloading task data [14]. Zhao et al. proposed a secure

optimization scheme to adjust the resource management for

secure UAV-assisted MEC systems, where one UAV acts as

an eavesdropper to threaten the data offloading [15]. Bai et al.
proposed a secure computation enhancement scheme in UAV-

MEC systems with passive and active eavesdroppers [16].

Lu et al. studied a secure computation capacity improve-

ment scheme through considering the uncertain position of

the eavesdropping UAV in NOMA-based UAV-assisted MEC

systems [18].

However, most of the above works require multiple itera-

tions to solve the formulated problem, which requires high

computational complexity. Edge learning offers an alternative
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2

way to solve the problem with real-time online offloading com-

puting, which can satisfy some online services with high real-

time requirement, e.g., football live broadcast [19]–[21]. Lim

et al. pointed out that the convergence of artificial intelligence

(AI) and edge computing has facilitated the development of

edge learning and the efficient deployment of AI [20]. Yang et
al. proposed a multi-agent resource management scheme with

privacy-preserving asynchronous federated learning frame-

work for a multi-UAV-enabled network [21]. Deep reinforce-

ment learning (DRL) is utilized in [22]–[28] to generate online

offloading actions from time-varying system parameters. Jiang

et al. investigated an effective online offloading scheme for

MEC systems, which includes resource management, position

optimization and user association [22]. Liu et al. studied the

DRL-based offloading decision and resource optimization to

improve the computational performance of UAV-MEC systems

[23]. Chen et al. in [24] studied a multi-task DRL method

to allocate the MEC system resource considering the task

characteristics and the MEC state. Bi et al. investigated a

joint optimizing scheme on offloading decision generation

and resource management based on DRL to maximize the

computation rate [25]. Min et al. proposed a learning-based

offloading method to achieve good computation performance

with low complexity for 5GIoT systems in [26]. Nguyen et
al. proposed a parallel learning method to reduce the energy

consumption and latency of multi-UAV systems [27]. Wang et
al. proposed an online decision generation scheme with lower

complexity in the randomly time-varying UAV-assisted MEC

system based on DRL [28].

However, to our best knowledge, online edge learning

offloading (OELO) for improving the secure computation

performance in the UAV-assisted MEC system is not studied.

Thus, in this paper, we propose a novel OELO scheme for

the UAV-assisted MEC secure communication system. In the

proposed OELO scheme, we maximize the secure computation

efficiency through optimizing the binary offloading decision

and resource management of TUs, including time allocation,

local computation allocation and power allocation, under the

conditions of guaranteeing the stability of dynamic task data

queues and the minimum secure computing requirement. The

key advantages of the proposed OELO are that OELO not

only achieves better secure computation efficiency with lower

complexity, but also maintains the stability of the task data

queues with random dynamic change in the UAV-assisted

MEC secure communication system. The main contributions

are summarized as follows.

• We propose a UAV-assisted MEC secure communication

scheme, in which the task data queues of TUs change

dynamically in each time frame. The UAV Server (USV)

assists TUs in computing the offloading task data, and the

UAV Eavesdropper (UEV) eavesdrops on the offloading

data information of TUs during the flight. In order to

disturb the eavesdropping of UEV, ground jammer (GJ)

generates jamming signals.

• By considering the constraints of peak transmit power

of TUs, the computing capacity of USV and TUs, the

minimum secure computing requirements, the causality

Fig. 1. The UAV-assisted MEC secure communication system model.

of TUs’ task data queues computation, and the stability

of TUs’ task data queues, we formulate an optimization

problem to maximize the secure computation efficiency

of the UAV-assisted MEC secure communication system

by optimizing binary offloading decision and resource

management for TUs, which includes time allocation,

local computation allocation and power allocation.

• The optimization problem is fractionally structured, bina-

ry constrained and multivariable coupled. We first trans-

form the fractionally structured problem as a tractable

form based on Dinkelbach method. Then, the proposed

OELO scheme learns offloading decision from past ex-

perience and utilizes the deep neural network (DNN) and

noisy order-preserving (NOP) to generate TUs’ offloading

decision, and resource management is optimized in an

iterative manner through SCA.

The rest of the paper is summarized as follows. Section

II introduces the UAV-assisted MEC secure communication

system model. Section III formulates the secure computa-

tion efficiency maximization problem. Section IV studies the

optimization for maximizing secure computation efficiency.

Section V presents simulation results. Simulation results are

presented in Section V. Section VI presents the conclusion of

this paper.

II. SYSTEM MODEL

Fig. 1 shows the considered UAV-assisted MEC secure

communication system, where K TUs have randomly dynamic

task data queues arriving in each frame. Mobile USV assists

TUs in task information computation. Mobile UEV eavesdrops

on the task information sent by TUs to USV. In order to disturb

UEV eavesdropping behavior, GJ broadcasts artificial interfer-

ence signal. Since both GJ and USV belong to the legitimate

network, USV knows GJ’s jamming signal in advance, USV

can subtract the artificial interference signal from its received

signals to ensure that it will not be affected by the interference

signal [14]. However, UEV does not know the presence of GJ.

It will regard the signals it received as the offloading signals

sent by TUs. Thus, the signals broadcasted by GJ will cause

the interference to UEV.
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3

TABLE I
NOTATIONS

Notation Description
σt The frame size

qs[n] Location of USV
qe[n] Location of UEV
Hs Flying Altitudes of USV
He Flying Altitudes of UEV
K Number of TUs
wj Location of GJ
wk Location of TUk

Ak[n] Arrival task data queue of TUk

G Rayleigh factor
β0 Path loss at reference distance
Pj GJ transmit power

Pmax Peak transmit power of TUs
B Bandwidth of transmit links

pk[n] Transmit power of TUk

τk[n] Time allocating factor of TUk

σ2
s , σ2

e Noise power received at USV and UEV
γk[n] Offloading decision of TUk

ck CPU cycles required for TUk to compute one bit task data
lloc,k[n] Local computing bits of TUk

Fmax
k TUk maximum CPU computation frequency
cs CPU cycles required for USV to compute one bit task data

Fmax
s USV maximum CPU computation frequency
vu Communication overhead
Qm Each TU minimum secure computing requirement
kk TUk CPU capacity coefficient

Smax Maximum capacity of TUs’ data queue storage

Define the horizonal coordinates of USV and UEV with

continuous time t as qs(t) and qe(t). Assume that USV and

UEV perform their respective tasks by flying at the fixed

altitudes Hs and He. For the sake of discussion, we discretize

continuous time, i.e., one time frame is σt. The horizonal

coordinates of USV and UEV are qs[n] = (xs[n], ys[n])
T

and qe[n] = (xe[n], ye[n])
T in the frame n, n ∈ {1, 2, ...,∞},

respectively. The horizonal coordinates of GJ and TUk, k ∈
{1, 2, ...,K} are defined as wj = (xj , yj) and wk = (xk, yk),
respectively.

Note that TUk has a new arrival task data in every frame.

Define Ak[n] as the arrival task data queue that reaches the

original data queue of TUk in frame n. It is assumed that

the arrival task data queue follows a bounded second-order

distribution, i.e., E
[
(Ak[n])

2
]
= ψk < ∞, k = 1, ...,K. The

value of ψk is deterministic, which can be estimated from

past observations. We assume that both of USV and UEV

already know the location of all TUs and the channel status

information of all channels in advance by means of synthetic

aperture radar, etc. The detailed notations in this paper are

shown in Table I.

In the frame n, n ∈ {1, 2, ...,∞}, the distance between

TUk, k ∈ {1, 2, ...,K} and USV, TUk and UEV, GJ and UEV

are expressed as

dk,s[n] =
√
||wk − qs[n]||2 +H2

s , (1)

dk,e[n] =
√
||wk − qe[n]||2 +H2

e , (2)

dj,e[n] =
√
||wj − qe[n]||2 +H2

e . (3)

We consider the channel coefficient follows Rician fading

channel model [11], the channel coefficient between TUk and

USV in frame n is given by

hk,s[n] =

√
β0

(G+ 1)d2k,s[n]

⎛
⎝√Gej 2πλ dk,s[n]

+ fk,s[n]

⎞
⎠

=

√
G

G+ 1

√
β0

||wk − qs[n]||2 +H2
s

ejθk,s[n]

+

√
1

G+ 1

√
β0

||wk − qs[n]||2 +H2
s

fk,s[n], (4)

where G represents the Rayleigh factor, β0 represents the path

loss at the reference distance of 1m, θk,s[n] =
2π

λ
dk,s[n]

represents the phase of the LoS channel, λ represents the

wavelength and fk,s[n] ∼ CN(0, 1).
Similarly, the channel coefficients between TUk and UEV,

GJ and UEV are hk,e[n] and hj,e[n], which are expressed as

hk,e[n] =

√
G

G+ 1

√
β0

||wk − qe[n]||2 +H2
e

ejθk,e[n]

+

√
1

G+ 1

√
β0

||wk − qe[n]||2 +H2
e

fk,e[n], (5)

hj,e[n] =

√
G

G+ 1

√
β0

||wj − qe[n]||2 +H2
e

ejθj,e[n]

+

√
1

G+ 1

√
β0

||wj − qe[n]||2 +H2
e

fj,e[n]. (6)

In the frame n, the transmit power of TUk, pk[n], cannot

exceed to the peak transmit power Pmax,

0 ≤ pk[n] ≤ Pmax. (7)

III. PROBLEM FORMULATION

In the UAV-assisted MEC secure communication system,

TUs offload task information to USV with time division

multiple access (TDMA) mode, where one frame is divided

into K sub-frames. Define τk[n] as the time allocating factor,

the time allocated to TUk is τk[n]σt, which satisfies

0 ≤ τk[n] ≤ 1, (8a)

K∑
k=1

τk[n] ≤ 1. (8b)

A. Communication Model

As mentioned above, USV can separate the interference

signal broadcasted by GJ from the received signals since both

GJ and USV belong to the legitimate network. However, UEV

will regard the signals it received as useful signals since

UEV does not know the presence of GJ. Thus, signal-to-

interference-and-noise-ratio (SINR) of USV and UEV in frame

n are written as

rk,s[n] =
pk[n]|hk,s[n]|2

δ2s
, ∀k, n, (9)
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4

rk,e[n] =
pk[n]|hk,e[n]|2
Pj |hj,e[n]|2 + δ2e

, ∀k, n, (10)

where δ2s and δ2e are the Gaussian noise at UEV and USV,

respectively. Pj represents GJ’s transmit power.

Thus, the task data offloading rate from TUk to USV in

frame n is given by

Rk,s[n] = τk[n]log2 (1 + rk,s[n]) . (11)

The task data eavesdropping rate from TUk to UEV is given

by

Rk,e[n] = τk[n]log2 (1 + rk,e[n]) . (12)

Thus, the achievable secure computation rate from TUk to

USV is written as

Rk,sec[n] = [Rk,s[n]−Rk,e[n]]
+
, (13)

where [x]
+

means max(x, 0).

B. Computation Model

In this paper, TUs adopt a binary offloading strategy. Define

γk[n] as the offloading decision of TUk, which should satisfy

the following constraint

γk[n] ∈ {0, 1} , (14)

where γk[n] = 0 represents that TUk chooses to execute the

computing task data locally, and γk[n] = 1 represents that

TUk chooses to offload the task data to USV for computation.

Denote ck as the CPU cycles required for TUk to compute

one bit task data, lloc,k[n] as the local computing bits of

TUk in frame n, and Fmax
k as maximum CPU computation

frequency of TUk. The computing bits of TUk locally cannot

exceed its own maximum computing capacity, which should

satisfy

cklloc,k[n] ≤ Fmax
k σt, ∀k, n. (15)

Furthermore, the energy consumption when TUk computes

locally in frame n is given by

Eloc,k[n] =
(lloc,k[n])

3
ck

3kk
σ2
t

, ∀k, n, (16)

where kk represents the effective capacitance coefficient of

TUk.

Denote cs as the CPU cycles required for USV to compute

one bit task data, Fmax
s as maximum CPU computation

frequency of USV. Similarly, the computing bits of USV

cannot exceed USV’s maximum computing capacity [18],

[25], which should satisfy

cs
BσtRk,sec[n]

vu
≤ Fmax

s τk[n]σt, ∀k, n, (17)

where vu represents the communication overhead, and B is

the bandwidth.

Furthermore, the energy consumption by TUk in the trans-

mission of offloading information in frame n is expressed as

Eoff,k[n] = pk[n]τk[n]σt. (18)

Therefore, the amount of secure computation bits and ener-

gy consumption of TUk in frame n are written as

Lk[n] = (1− γk[n]) lloc,k[n] + γk[n]
BσtRk,sec[n]

vu
, (19)

Ek[n] = (1− γk[n])Eloc,k[n] + γk[n]Eoff,k[n]. (20)

Denote Qm as minimum secure computing requirement of

TUs in each frame. In order to ensure that TUs have a basic

secure computing requirement, we have

Lk[n] ≥ Qm, ∀k, n. (21)

Define Qk[n] as the task data queue of TUk at the beginning

of frame n. Thus, the dynamic queue of TUk is given by

Qk[n+ 1] = Qk[n]− Lk[n] +Ak[n], ∀k, n. (22)

According to the causality of the task data queue computa-

tion, we have

Lk[n] ≤ Qk[n], ∀k, n. (23)

To guarantee the stability of TUs’ task data queues, the task

data queues of TUs cannot be allowed to accumulate for a long

time, which should satisfy

Qk[n] ≤ Smax, ∀k, n, (24)

where Smax represents the maximum value of data queue

storage in TUk.

Thus, the long-term secure computation efficiency of the

UAV-assisted MEC secure communication system is obtained

as

Ueff =

K∑
k=1

∞∑
n=1

(
Lk[n]

Ek[n]

)
. (25)

C. Problem Formulation

To maximize the long-term secure computation efficiency

of the considered UAV-assisted MEC secure communication

system, offloading decision γk[n], time allocating factor τk[n],
local computing bits lloc,k[n] and transmit power pk[n] are

optimized. The original problem is formulated as

(P1) : max
{γk[n],τk[n],pk[n],lloc,k[n]}

Ueff (26)

s.t.(7), (8), (14), (15), (17), (21), (23), (24).

The arrival task data queue Ak[n] in frame n is random and

unknown. It is difficult to satisfy the long-term computation

constraints when offloading decision is optimized in each

frame without knowing the future realizations of task data

queue. Thus, we convert the optimization objective from long-

term secure computation efficiency to secure computation

efficiency η[n] =
K∑

k=1

(
Lk[n]

Ek[n]

)
in each frame, so as to

approximately achieve the objective of maximizing the UAV-

assisted MEC secure communication system’s long-term se-

cure computation efficiency [15].

Our optimization objective is to maximize the secure com-

putation efficiency maximization of the UAV-assisted MEC

secure communication system in each frame under the con-

dition of ensuring the stability of dynamic task data queues
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5

and the minimum secure computing requirement of TUs, the

original problem (P1) is transformed as

(P2) : max
{γk[n],τk[n],lloc,k[n],pk[n]}

η[n] (27)

s.t.(7), (8), (14), (15), (17), (21), (23), (24).

IV. OPTIMIZATION FOR MAXIMIZING SECURE

COMPUTATION EFFICIENCY

In this section, the secure computation efficiency optimiza-

tion problem of the UAV-assisted MEC secure communi-

cation system will be solved by the proposed OELO. The

problem (P2) is fractionally structured, binary constrained

and multivariable coupled, which is intractable. To overcome

this challenge, we first transform the fractionally structured

problem as a tractable form based on Dinkelbach method

[29]. Then, based on OELO, we decompose the transformed

problem (P2) into two sub-problems, namely offloading deci-

sion generation and resource management. Specifically, OELO

learns offloading decision from past experience and utilizes

the DNN to generate relaxed offloading actions. Candidate

decisions are generated based on the relaxed offloading actions

through NOP. Resource management is optimized with given

the candidate decisions in an iterative manner through SCA.

A. Dinkelbach-based Problem Reconstruction and Solution

Based on Dinkelbach method, the fractional problem can be

transformed as a parametric programming form. Denote the

maximum secure computation efficiency as η∗[n] in frame n.

We can obtain η∗[n] = max
{γk[n],τk[n],lloc,k[n],pk[n]}

K∑
k=1

(
Lk[n]

Ek[n]

)
.

Lemma 1: The maximum secure computation efficiency

of the UAV-assisted MEC secure communication system is

obtained if and only if the following formula is established:

max
{γk[n],τk[n],lloc,k[n],pk[n]}

K∑
k=1

(Lk[n]− η∗[n]Ek[n]) = 0. (28)

Proof: Please refer to [29].

Problem (P2) is difficult to solve because the objective

function of (P2) is fractional. In order to solve (P2) more

flexibly, based on Lemma 1, parameter α[n] is introduced to

transform the problem (P2) into (P3)

(P3) : max
{γk[n],τk[n],lloc,k[n],pk[n]}

K∑
k=1

(Lk[n]− α[n]Ek[n])

(29)

s.t.(7), (8), (14), (15), (17), (21), (23), (24).

Since objective function is non-convex, constraints (17),

(21), (23) and (24) are also non-convex, and constraint (15) is

binary and incoherent, (P3) is difficult to solve directly.

Therefore, we introduce the auxiliary variables

u, u1,k[n], u2,k[n] to simplify (P3), which is transformed as

(P4) : max
{γk[n],τk[n],lloc,k[n],pk[n]}

u (30a)

s.t.(7), (8), (14), (15),

u ≤
K∑

k=1

((1− γk[n]) lloc,k[n] + γk[n]loff,k[n]) (30b)

− α[n]
K∑

k=1

(Ek[n]), ∀k, n,

u1,k[n] ≤ log2

(
1 +

pk[n]|hk,s[n]|2
σ2
s

)
, ∀k, n, (30c)

u2,k[n] ≥ log2

(
1 +

pk[n]|hk,e[n]|2
Pj |hj,e[n]|2 + σ2

e

)
, ∀k, n, (30d)

csloff,k[n] ≤ Fmax
s τk[n]σt, ∀k, n, (30e)

(1− γk[n]) lloc,k[n] + γk[n]loff,k[n] ≥ Qm, ∀k, n, (30f)

(1− γk[n]) lloc,k[n] + γk[n]loff,k[n] ≤ Qk[n], ∀k, n, (30g)

Qk[n]− ((1− γk[n]) lloc,k[n] + γk[n]loff,k[n]) +Ak[n]

≤ Smax, ∀k, n, (30h)

where loff,k[n] =
τk[n]σtB(u1,k[n]−u2,k[n])

vu
. Variable u is

introduced to represent the lower bound value of the objective
K∑

k=1

(Lk[n]− α[n]Ek[n]). Then, the optimization target is rep-

resented by u, which is expressed by (30a) and (30b). Variable

τk[n]u1,k[n] is introduced to represent the lower bound value

of Rk,s[n], which is expressed by (30c). Variable τk[n]u2,k[n]
is introduced to represent the upper bound value of Rk,e[n],
which is expressed by (30d). Then, the achievable secure com-

putation rate Rk,sec[n] is expressed by τk[n](u1,k[n]−u2,k[n]).
Therefore, constraint (17), (21), (23) and (24) are rewritten as

(30e), (30f), (30g) and (30h), respectively.

Note that problem (P4) is still non-convex. (P4) is firstly di-

vided into two sub-problems to obtain the optimizing solution.

A novel OELO scheme is proposed to solve (P4). According

to the communication links of the UAV-assisted MEC secure

communication system and the task data queues of TUs, Mn

candidate offloading decision γm
k
[n],m ∈ {1, 2, ...,Mn} are

generated by the DNN and NOP. Then, the corresponding

resource management is optimized through SCA and block

coordinate descent with given {γmk [n]}, which includes time

allocating factor {τk[n]}, local computing bits {lloc,k[n]} and

transmit power {pk[n]}. Finally, we choose the corresponding

offloading decision and resource management of the maximum

target value as the joint optimization action in the frame n.

Denote ξ[n] =
{
h[n], {Qk[n]}Kk=1

}
as the input parameter

of OELO, which is consisted of the time-varying channel

coefficient h[n] =
{
{hk,s[n], hk,e[n]}Kk=1 , hj,e[n]

}
and task

data queue {Qk[n]}Kk=1. Denote G (γ[n], ξ[n]) as the target

value obtained by optimizing resource management with given

offloading decision γ[n] and the input parameter ξ[n]. The key

point to solve problem (P4) is to find the optimized offloading
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6

decision,

(P5) : (γ∗[n]) = argmax
{γ[n]∈{0,1}K}

G (γ[n], ξ[n]) , (31)

where γ[n] = {γ1[n], γ2[n], ..., γK [n]}. Moreover, it is worth

noting that we need to compute 2K candidate actions if we

want to obtain the optimal offloading decision (γ∗[n]), which

causes high complexity and seriously affects online offloading.

Thus, we propose the OELO scheme to generate candidate

offloading decision and optimize resource management with

low complexity.

B. Algorithm Description

The proposed OELO algorithm is shown in Fig. 2. We

observe that the relaxed offloading action γ̂[n] = {γ̂k[n]}Kk=1

can be generated by the DNN. We quantize γ̂[n] into Mn

binary actions through NOP. Then, an efficient method is pro-

posed to obtain the optimizing resource management y[n] =
{τk[n], lloc,k[n], pk[n]}Kk=1.

OELO is consisted by four modules. Actor module takes

ξ[n] as its input and outputs Mn candidate offloading actions

γ[n] = {γk[n]}Kk=1. Critic module selects the best offloading

decision γ∗[n] through substituting the candidate actions into

the objective function. Policy update module updates the

DNN’s training set over frame. To improve the secure com-

putation efficiency of the system, queueing module updates

the task data queue state {Qk[n]}Kk=1 of the system after

preforming offloading actions and resource management. The

details of the four modules are as follows.

Actor module: Actor module includes the DNN and the

quantizer for candidate actions. We aim to design an offload-

ing decision function πθ[n] (ξ[n]) to generate the optimized

offloading action γ[n] ∈ {0, 1}K quickly. The initialized

parameters of the DNN θ[1] is randomly obtained, which

follows standard normal distribution. In frame n, the relaxed

offloading action function is denoted as

πθ[n] : ξ[n]→ γ̂[n]. (32)

The sigmoid function is utilized as the output layer of

the DNN. Thus, the output, the relaxed offloading action,

is continuous and follows [0, 1]K . We adopt NOP to quan-

tify offloading actions, which can generate Mn,Mn ≤ 2N
candidate decisions. Specifically, the first candidate decision

γ1[n] = [γ1,1[n], γ1,2[n], ..., γ1,K [n]] is given by

γ1,k =

{
1, γ̂k[n] > 0.5
0, γ̂k[n] ≤ 0.5

(33)

To generate the next
Mn

2
− 1 decisions, we first sort the

distance between γ̂k[n] and 0.5, i.e., |γ̂(1)[n]−0.5| ≤ |γ̂(2)[n]−
0.5| ≤ ... ≤ |γ̂(k)[n]− 0.5| ≤ ... ≤ |γ̂(K)[n]− 0.5|. The m-th

candidate decision is given by

γm,k =

⎧⎪⎪⎨
⎪⎪⎩

1, [γ̂k[n] > γ̂m−1[n]],
1, γ̂k[n] = γ̂m−1[n] ∩ γ̂m−1[n] ≤ 0.5,
0, γ̂k[n] = γ̂m−1[n] ∩ γ̂m−1[n] > 0.5,
0, γ̂k[n] < γ̂m−1[n],

(34)

Next,
Mn

2
candidate decisions are derived from the original

relaxed actions and Gaussian noise δ
′
. The relaxed action with

noise
�
γ [n] is denoted as sigmoid

(
�
γ [n] + δ

′
)

. Then, the last

Mn

2
candidate decisions can be obtained by applying (33) and

(34) with replacing γ̂[n] as
�
γ [n].

Critic module: The best action γ∗[n] is selected by

γ∗[n] = arg max
γ[n]∈{{γm[n]}Mm=1}

G(γ[n], ξ[n]). (35)

With given candidate offloading decision, the resource man-

agement problem is solved in Section IV.C.

Policy update module: The proposed OELO utilizes

(ξ[n], γ∗[n]) as the labeled samples of to update the DNN’s

offloading policy. Specifically, an empty replay memory with

limited capacity q is maintained. First, the labeled samples

are collected when the amount of the labeled samples is less

than
q

2
. Then, the DNN is trained when the amount of the

labeled samples is more than
q

2
. To avoid over-fitting, the

DNN is periodically trained with ωT frames. In frame n, if

mod (n, ωT ) = 0, we randomly select a batch of training sam-

ples from the replay memory. The DNN’s network parameter

θ[n] can be updated through using the Adam optimizer, the

loss function is expressed as

LS (θ[n]) =
−1
|S[n]|

∑
i∈S[n]

(
(γ[i])

T
log fθ[i] (ξ[i])

+(1− γ[i])T log
(
1− fθ[i] (ξ[i])

))
, (36)

where |S[n]| represents the size of the labeled samples batch.

Queueing module: After solving the resource management

problem, the optimizing offloading decision and resource man-

agement are obtained. We execute the joint action to obtain

the queueing module,

ξ[n+ 1] = {h[n+ 1], Qk[n+ 1]}Kk=1 . (37)

The details of OELO optimization algorithm for solving

(P1) are summarized in algorithm 1.

C. Resource Management

In the proposed OELO, the resource management problem

is solved with given the offloading decision γk[n]. Problem

(P4) is transformed as

(P6) : max
{τk[n],lloc,k[n],pk[n],u1,k[n],u2,k[n]}

u (38)

s.t.(7), (8), (15), (30b)− (30h).

Problem (P6) is non-convex because of the non-convexity of

the constraints (30b) and (30d). Specifically, the right side of

constraint (30b) is related to Lk[n]. Lk[n] is composed of mul-

tiple optimization variables, e.g., γk[n], τk[n] and pk[n], which

makes (30b) non-convex. The right side of the constraint (30d)

is concave, which makes it non-convex. We approximately

solve it by applying SCA, in which time allocation τk[n], local

computation allocation lloc,k[n] and power allocation pk[n] can

be obtained by considering the others as given [30].
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7

Fig. 2. The proposed OELO algorithm.

Algorithm 1: The OELO optimization algorithm

Input: Feasible points
{
τ rk [n], l

r
loc,k[n], p

r
k[n]

}K

k=1
, total

frames N , the channel coefficient and {h[n]} the

amount of candidate actions Mn, training interval

ωT .

Output: The joint optimizing action (γ[n], y[n]).
1 Initialization: The initial task data of TUk {Qk[0]}Kk=1,

random parameters θ1 of the DNN and the empty replay

memory;

2 for n = 1, 2, ..., N do
3 Observe the input ξ[n] = {h[n], Qk[n]}Kk=1;

4 Generate the relaxed offloading decision function

γ̂[n] = π (ξ[n]) with the DNN;

5 Quantize γ̂[n] into Mn binary decision by using

NOP;

6 Optimize resource management to compute

G (γm[n], ξ[n]);
7 Select the best solution of the resource management

γ∗[n] = arg max
γm[n]

G (γm[n], ξ[n]) and execute the

joint optimizing action (γ∗[n], y[n]);
8 Update the replay memory through adding the joint

optimizing action (γ∗[n], y[n]);
9 if mod (n, ωT ) = 0 then

10 Randomly select training samples from the replay

memory to train DNN and update θn through

using the Adam algorithm;
11 end
12 n = n+ 1;

13 Update {Qk[n]}Kk=1 according to the joint action

(γ∗[n− 1], y[n− 1]) and arrival task data queue

{Ak[n− 1]}Kk=1.
14 end

1) Time allocation: With given the local computing bits

and the transmit power of TUs, the time allocation problem is

formulated as

(P6.1) : max
{τk[n],u1,k[n],u2,k[n]}

u (39)

s.t.(8), (30b)− (30h).

Note that the constraints (8), (30b)-(30h) in the (P6.1) are

linear, (P6.1) is convex. We can use standard optimization

techniques, e.g., CVX to solve it [31].

2) Local computation allocation: With given the time allo-

cating factor and transmit power of TUs, the local computation

problem is formulated as

(P6.2) : max
{lloc,k[n],u1,k[n],u2,k[n]}

u (40)

s.t.(15), (30b)− (30h).

(P6.2) is convex due to the constraints (15), (30b)-(30h) in

(P6.2) are convex. We can use CVX to solve it.

3) Power allocation: With given the time allocating factor

and local computing bits of TUs, the transmit power problem

is formulated as

(P6.3) : max
{pk[n],u1,k[n],u2,k[n]}

u (41)

s.t.(7), (30b)− (30h).

Due to the constraints of (30c) and (30d) in (P6.3) are non-

convex, (P6.3) is difficult to solve directly. With SCA method,

we approximate (P6.3) into a convex form in each iteration.

Then, the solution of (P6.3) can be obtained by updating it

iteratively.

Denote {prk[n]} as TUk’s transmit power after the r-th

iteration. Convex function can be a first-order Taylor expansion

of the global lower bound. Therefore, (30c) is approximated
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8

into

u1,k[n] ≤ log2

(
1 +

prk[n]|hk,s[n]|2
σ2
s

)

+
1

In2

|hk,s[n]|2
σ2
s

(pk[n]− prk[n])(
1 +

prk[n]|hk,s[n]|2
σ2
s

) , ∀k, n . (42)

Similarly, for (30d), we have

u2,k[n] ≥ log2

(
1 +

prk[n]|hk,e[n]|2
Pj |hj,e[n]|2 + σ2

e

)

+
1

In2

|hk,e[n]|2
Pj |hj,e[n]|2 + σ2

e

(pk[n]− prk[n])(
1 +

prk[n]|hk,e[n]|2
Pj |hj,e[n]|2 + σ2

e

) , ∀k, n .

(43)

Then, problem (P6.3) ia rewritten as

(P6.3.1) : max
{pk[n],u1,k[n],u2,k[n]}

u (44)

s.t.(7), (30b), (30e)− (30h), (42), (43).

Since the constraints (7), (30b), (30e)-(30h), (42) and (43)

in (P6.3.1) are convex, (P6.3.1) can be solved by CVX.

In conclusion, we obtain the optimizing solution of the

resource management problem (P6) by alternately solving

(P6.1), (P6.2), and (P6.3.1). The solution of (P6) is summa-

rized in the algorithm 2.

Algorithm 2: The resource management optimization al-

gorithm

1 Initialize: Give feasible points

γrk[n], τ
r
k [n], l

r
loc,k[n], p

r
k[n], set initial iteration r = 0 and

maximum number of iterations rmax, set accuracy ε > 0;

2 Repeat Solve problem (P5.1) and obtain the solution

τk[n] with given
{
γrk[n], l

r
loc,k[n], p

r
k[n]

}
;

3 Solve problem (P5.2) and obtain the solution lloc,k[n]
with given {γrk[n], τ rk [n], prk[n]};

4 Solve problem (P5.3.1) and obtain the solution pk[n]

with given
{
γrk[n], τ

r
k [n], l

r
loc,k[n]

}
;

5 Update

τ rk [n]← τk[n], l
r
loc,k[n]← lloc,k[n], p

r
k[n]← pk[n];

6 Update r ← r + 1;

7 Until The algorithm converges to ε or r is equal to rmax;

8 Output: The optimizing actions

{τk[n], lloc,k[n], pk[n], u, u1,k[n], u2,k[n]}.

D. Complexity of OELO

We first analyze the complexity of algorithm 1. The OELO

optimization algorithm mainly consists of offloading decision

generation and offloading decision update. Offloading decision

generation is executed in each frame. However, offloading de-

cision update is not always executed and it can be executed in

parallel with offloading decision generation. Thus, we mainly

analyze the complexity of offloading decision generation in

each frame. It is concentrated in the resource management

of algorithm 2. Since Mn candidate actions are generated,

algorithm 1 needs to perform the resource management of

algorithm 2 Mn times per frame.

Then, we analyze the complexity of algorithm 2, which is

related to 3K optimization variables. Thus, the complexity of

the resource management optimization algorithm is approx-

imately I1O

(
(3K)

3.5
log2

(
1

ε

))
, where I1 represents the

number of the iterations.

In conclusion, the complexity of OELO is approximately

MnI1O

(
(3K)

3.5
log2

(
1

ε

))
.

V. SIMULATION RESULTS

In this section, the simulation results are presented to

evaluate the performance of OELO. In the OELO scheme, 5
TUs are randomly placed in 400m×400m area. USV and UEV

fly in a circle centered at (0, 0) with the radius of ρs = 50m
and ρe = 60m, respectively. Other parameters of the UAV-

assisted MEC secure communication system are shown in

Table II.

TABLE II
THE UAV-ASSISTED MEC SECURE COMMUNICATION SYSTEM

PARAMETERS SETTING

Parameters Values

The frame size σt = 0.5s

Flying altitudes of USV and UEV Hs = He = 100m

Path loss at the reference distance β0 = −60dB
Bandwidth of transmit links B = 1MHz

Noise power received at USV and
UEV

σ2
s = σ2

e = −110dBm

GJ transmit power Pj = 20dBm

Peak power of TUs Pmax = 20dBm

TUk maximum CPU computa-
tion frequency

Fmax
k = 1GHz

USV maximum CPU computation
frequency

Fmax
s = 10GHz

Required CPU cycles of TUk and
USV for computing one bit

ck = cs = 1.0× 103cycles/bit

CPU capacity coefficient of TUs κk = 10−27

Maximum capacity of TUs’ data
queue storage

Smax = 4Gbits

The DNN model in OELO is a four-layer fully connected

multilayer perceptron, which consists of one input layer, two

hidden layers with 256 and 128 neurons respectively, and one

output layer. The learning rate is set to 0.01, the training

interval ωT is set to 10 and the memory size is set to 1000.

Fig. 3 shows the secure computation efficiency variation

versus time frames with different ρs when the initial task data

queue of TUk is 0bits and the arrival task data queue of

TUk Ak[n] is 2Mbits in frame n. We can find out that the

secure computation efficiency of the UAV-assisted MEC secure

communication system increases and gradually converges with

the increase of the time frames. It is because that the DNN

training gradually adapts to the system environment. However,

it will fluctuate because the channel coefficients between

USV and TUs changes in each frame. In addition, the secure

computation efficiency will vary with the difference of USV’s

flight radius ρs. Since the distance between USV and TUs are
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9

different, the channel coefficient of the links between USV and

TUs are different, which affects the communication quality

between USV and TUs.
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Fig. 3. Secure computation efficiency variation versus time frames with
different ρs.

To analyze the secure computation efficiency performance

of the UAV-assisted MEC secure communication system, we

define the average secure computation efficiency of the system

as
1

N

N∑
n=1

(
K∑

k=1

(Lk[n])− α[n]
K∑

k=1

(Ek[n])

)
. Fig. 4 shows the

average secure computation efficiency of the UAV-assisted

MEC secure communication system versus TUk’s arrival task

data queue Ak[n] with different Pmax when the initial task

data queue of TUk is set to 10Mbits. It is observed from

Fig. 4 that the average secure computation efficiency increases

firstly with the larger of Ak[n]. Note that TUs have more

task data that can be calculated with the increase of Ak[n],
and the computing resources of both local computation and

secure offloading computation can be fully utilized at this

time. Then, the average secure computation efficiency tends

to be stable when Ak[n] continues to increase. Because the

computing power of the UAV-assisted MEC secure commu-

nication system is limited. In addition, we can see that the

average secure computation efficiency of the UAV-assisted

MEC secure communication system increases with the larger

of Pmax. Because more energy can be obtained by TUs to

offload the task information to USV for computing.

In order to fully reflect the role of UAV-assisted MEC to

help TUs to compute the offloading task data, the data queue

of every TU over time frames is shown in Fig. 5. We set

the initial task data queue of TUs is 4Gbits and the arrival

task data queue is 0.7Mbits. It can be observed from Fig. 5

that the data queue of each TU continues to decline even if

there are new queues arriving in each time frame, which shows

that UAV-assisted MEC plays an important role in assisting

computing.

Furthermore, we set the initial task data queue to 10Mbits
and arrival task data queue to 1.0Mbits in Fig. 6. From Fig. 6,

it is observed that most data queues of TUs in the UAV-assisted
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Fig. 4. Average secure computation efficiency variation versus Ak[n] with
different Pmax.
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Fig. 5. Data queue variation of TUs versus time frames when the initial task
data queue of TUs is 4Gbits.

MEC secure communication system are computed over time,

which shows that the proposed OELO can quickly help the

secure computation UAV-assisted MEC system to compute the

task data.

Fig. 7 shows the average secure computation efficiency

variation of the UAV-assisted MEC secure communication

system versus Pmax with different arrival task data queue

Ak[n] when the initial task data queue of each TU is 0bits.
From Fig. 7, it is observed that the average secure computation

efficiency increases with the increase of the peak transmit

power of TUs Pmax, because TUs can obtain more energy

to transmit task offloading information when Pmax is larger.

Fig. 8 shows the average secure computation efficiency

versus Pmax with different CPU cycles required for TUk

to compute one bit task data ck. We can observe that the

average secure computation efficiency of the UAV-assisted

MEC secure communication system decreases with larger

ck. This is because when the required CPU cycles of TUk
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Fig. 6. Data queue variation of TUs versus time frames when the initial task
data queue of TUs is 10Mbits.
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Fig. 7. Average secure computation efficiency versus Pmax with different
Ak[n].

for computing one bit is larger, its computation speed will

decrease. When TUk selects local computation, the local com-

puting bits will be reduced. Therefore, the UAV-assisted MEC

system’s average secure computation efficiency decreases.

To demonstrate the effectiveness of the proposed OELO,

we compare the average secure computation efficiency per-

formance of the UAV-assisted MEC secure communication

system with three benchmarks in Fig. 9.

Scheme 1: The average secure computation efficiency is

maximized by optimizing offloading decision, local compu-

tation and transmit power based on OELO while the time

allocating factor of TUs is equally allocated.

Scheme 2: The average secure computation efficiency is

maximized by optimizing offloading decision, time allocating

factor and local computation based on OELO while the

transmit power is fixed with equal value.

Scheme 3: The offloading decision is optimized in an

iterative manner, where the candidate offloading decisions are
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Fig. 8. Average secure computation efficiency versus Pmax with different
ck .

obtained by performing the modulo-two addition operation on

the initial offloading decision of TUk [6].

We can see from Fig. 9 that the average secure computation

efficiency performance of the OELO scheme is much better

than that of scheme 1 and scheme 2 versus Ak[n]. This

is because the resource management of the OELO includes

the time allocation, local computation allocation and pow-

er allocation. Since scheme 3 traverses many situations in

generating candidate offloading decisions, it can bring good

performance. However, scheme 3 brings high complexity,

which is not suitable for online offloading scenarios. As can

be seen from Fig. 9, OELO achieves nearly as good average

secure computation efficiency performance as scheme 3 with

lower complexity, which is benefit of the high efficiency of

edge learning in the OELO.
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Fig. 9. Average secure computation efficiency comparison with different
schemes versus Ak[n].
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VI. CONCLUSION

In this paper, we considered a UAV-assisted MEC secure

communication system, where the offloading information of

TUs will be eavesdropped by UEV when USV assists in the

computation of TUs with dynamic arrival task data queue.

To maximize the secure computation efficiency, TUs’ binary

offloading decision and resource management was jointly op-

timized while guaranteeing dynamic task data queues stability

and minimum secure computing requirement. A novel OELO

scheme was proposed to solve the optimization problem.

Firstly, the fractionally structured problem is transformed as

a tractable form based on Dinkelbach method. Then, OELO

generated offloading decision based on DRL and optimized

resource management in an iterative manner through SCA.

Simulation results showed that the proposed scheme achieves

better computing performance and enhances the stability and

security of the system compared with benchmarks. In the

future work, we will extend to our research into using DRL

to generate resource management to reduce the complexity

and optimizing the trajectory of USV to improve the secure

computation performance.
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