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Abstract—Random Access CHannel (RACH) procedure in
modern wireless communications are generally based on the
multi-channel slotted-ALOHA (s-ALOHA), which can be op-
timized by flexibly organizing devices’ transmission and re-
transmission. However, due to the lack of information about the
traffic generation statistics and the occurrence of the random
collision, optimizing RACH in an exact manner is generally
challenging. In this article, we first summarize the general
structure of optimization for different RACH schemes, and then
review existing RACH optimization methods based on Machine
Learning (ML) and non-ML techniques. We demonstrate that the
ML-based methods can better optimize RACH schemes compared
with non-ML based methods, due to their capability in solving
high-complexity long-term optimization problems. To further
improve the RACH performance, we introduce a Decoupled
Learning Strategy (DLS) for access control optimization, which
individually execute two sub-tasks: traffic prediction and access
control configuration. In detail, the traffic prediction relies on
an online supervised learning method adopting Recurrent Neural
Networks (RNNs) that can accurately capture traffic statistics
over consecutive frames, while the access control configuration
uses either a non-ML based controller or a cooperatively trained
Deep Reinforcement Learning (DRL) based controller selected
depending on the complexity of different random access schemes.
Numerical results show that the DLS optimizer considerably
outperforms conventional DRL optimizers in terms of higher
training efficiency and better access performance.

Index Terms—Random access, traffic prediction, access control
optimization, machine learning.

I. INTRODUCTION

To achieve effective radio access, the random access tech-
nique has been integrated into multiple access protocol as a key
component of modern wireless communication systems, e.g.
Long-Term Evolution (LTE, a.k.a., 4G), Fifth Generation New
Radio (5G NR) systems, and etc.. Taking 4G/5G cellular net-
works as an example, the random access technique is adopted
by Random Access CHannel (RACH) procedure, which is used
to establish or re-establish connection between unsynchronized
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devices and their associated Base Station (BS) [1]. The rea-
son to adopt RACH is due to its minimum requirements of
priori information, where devices randomly select channels
and transmit preambles/packets to the associated BS without
negotiation. This uncoordinated transmission inevitably brings
uncertainty such that multiple devices may select the same
channel at the same time, which results in collided signals
that generally cannot be decoded by the BS. Severe collisions
occur when massive number of devices simultaneously access
the BS, which results in access delay, packet loss, or even
service unavailability. In massive Internet of Things (mIoT)
scenarios, explosively growing demand for access makes the
network overload becoming even heavier, which motivates us
to concentrate on RACH in this article.

The RACH framework provides the flexibility of designing
access schemes to organize devices’ transmission and re-
transmission. To better manage access, each scheme is aided
by several control parameters that are expected to be properly
selected at BSs according to communication environments and
traffic statistics. However, flexibly selecting these parameters
in an exact manner is generally challenging, since BSs rarely
know the exact pattern of forthcoming traffic and cannot
exactly capture the dynamic of channel. To solve this problem,
prior works [2–9] have devoted substantial efforts in designing
efficient access control optimization techniques by deriving
explicit optimization solutions based on formulated mathemat-
ical models. However, the provided access performances are
generally limited, due to the high complexity of the problem
and the fact that the physics-based model of a RACH system
cannot be accurately captured.

In this article, we first briefly introduce the RACH procedure
and related RACH schemes in cellular-based networks, then
introduce the fundamental mechanism of RACH control as
well as classical works in dynamic RACH control, and finally,
elaborate that Machine Learning (ML) based access control
optimization has potential to better optimize several Key Per-
formance Indicators (KPIs), due to its nature in addressing
problems by learning experiential knowledge from the complex
environment. Specifically, we introduce the-state-of-art model-
free Reinforcement Learning (RL) based RACH control op-
timization [6, 10, 11], which provides single-step solution to
both the traffic prediction and the access control configuration.
Knowing that the training solely relies on the interactions
with network environment, this approach requires relatively
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TABLE I: RACH Protocols and Relevant Optimizations

Comparison of RACH Protocols

Solution KPI Parameters Exact Control Reference
Access Class Barring (ACB) Success Accesses Barring factor and barring time X [4, 5, 10]
Dynamic Resource Allocation (DRA) Time Delay Channels X [6]
Back-Off (BO) Success Accesses Minimum contention window size X [7]
Prioritized Access Success Accesses Access Periodicity × [8]
Distributed Queuing (DQ) Success Accesses Depth and breadth of the tree × [9]

Comparison of Optimization Methods

Type Sub-type Complexity Online Adaptation Training Efficiency Reference

Non-ML based
DA Estimator Low × - [3]
MoM Estimator Low × - [2, 5, 11, 12]
MLE Estimator Low × - [4]

ML based
RL-based optimizer High X Slow [6, 10, 11]
SL-based optimizer∗ Moderate X Fast [12]
DLS-based optimizer High X Fast [13]

less domain knowledge of the communication model, however,
it also suffers from low training efficiency. To solve these
problems, we then introduce a two-step learning framework,
namely, Decoupled Learning Strategy (DLS) [13], for access
control optimization by decomposing the learning process into
two sub-tasks, including traffic prediction and access control
configuration. This framework is proposed based on the fact
that the forthcoming traffic load is the part of hidden state of
the RACH optimization model (to be discussed in Sec. III-B).

The remainder of the article is organized as follows. Section
II illustrates the structure and research challenges of RACH.
Section III discusses the background of RACH control op-
timization and reviews classical RACH control optimization
methods. Section IV proposes ML-based RACH optimization,
including single-step RL-based methods and the DLS frame-
work. Finally, Section V summarizes the conclusion and future
work.

II. RESEARCH CHALLENGES AND RACH SCHEMES

RACH procedure is responsible for establishing or re-
establishing connections between unsynchronized devices and
their associated BSs, which is performed by transmitting a
preamble from the device along with exchanging of three
control signals. The preamble transmission in the first step
of RACH can be conducted via two different modes: 1) the
contention-free RACH for delayed-constrained access requests
(e.g, handover), where the BS distributes one of the reserved
dedicated preambles to a known device; 2) the contention-
based RACH for delay-tolerant access requests, where a device
randomly chooses a preamble from a dedicated preambles
pool. In this paper, we solely focus on the latter case. In
the following, we first introduce the framework and research
challenges of contention-based RACH in the cellular networks,
and then describe the classical RACH schemes.

A. RACH framework and research challenges

The contention-based RACH relies on the slotted-ALOHA
(s-ALOHA) principle, where any device, with a requirement of

data transmission, should request access in the first available
opportunity. The contention-based RACH procedure consists
of 4 successive handshaking steps between a device and its
associated BS. In step 1, an IoT device transmits a ran-
domly selected preamble (i.e., orthogonal pseudo code, such
as Zadoff-Chu sequence) to its associated BS. In step 2, once
a preamble is successfully received, the BS replies a Random
Access Response (RAR, a.k.a., Msg 2) message via dedicated
downlink channel to the device. The BS may not recognize if
more than one device transmitting the same preamble, and an
RAR message will be replied as usual. In step 3, the device
transmits a connection request message (Msg 3) to the BS
using the uplink channel scheduled via Msg 2. Those devices
received the same identity in Msg 2 will still transmit Msg
3 using the same uplink channel. Consequently, a collision
occurs, where the signal of Msg 3 from those devices will not
be correctly decoded by the BS. In step 4, the BS replies a
contention resolution message with a unique device’s identity,
and only the device detected its own identity successfully
accesses to the network.

A cellular system may be expected to offer connectivity for
massive devices. When they access simultaneously via RACH
procedure, the network may suffer from a high collision rate.
To solve this problem, the BS can organize devices’ transmis-
sion and re-transmission in a way by using overload control
schemes. Recent works [4–9] on s-ALOHA networks have
designed effective RACH schemes and optimization techniques
to tackle the overload problem. To evaluate the the performance
of the novel techniques, a list of KPIs are presented as follows:

• Access success probability: a probability mapping devices
to complete RACH within a limited number of attempts.

• Access delay: the time elapsed from the start of RACH
to the time receiving the confirmation of success.

• Energy consumption: the total energy consumed during
RACH, which is mainly affected by the re-access times.

B. Random Access Schemes

To support massive and diverse access requirements, existing
literature have proposed RACH solutions in various wireless
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networks, including, but not limited to, LTE, 5G NR, Narrow-
Band IoT (NB-IoT), etc.. These solutions are based on the s-
ALOHA framework, and share the same purpose of providing
more efficient access by alleviating collisions during RACH.
In general, the key idea of these solutions is overcoming the
channel resource under-provision by intelligently organizing
devices’ transmission and re-transmission. A classification of
existing RACH schemes are summarized in table I and are
concluded as follows:

1) Access Class Barring (ACB): devices are forbidden to
transmit preamble according to a barring factor within
a barring period chosen by BS to alleviate network
congestion [4, 5].

2) Dynamic Resource Allocation (DRA): BS allocates a
number of channels for RACH according to the require-
ments during congestion [6].

3) Binary Exponential Back-off (BEB): a device postpones
its RACH attempt for a period uniformly selected in ran-
dom from a range, where its upper bound exponentially
increases with the number of RACH failures [7].

4) Prioritized access: devices are splitting into several
classes, where the devices from one class are allowed
to perform access only in the dedicated access cycle [8].

5) Distributed Queuing (DQ): devices perform access based
on a tree splitting algorithm to resolve the collisions by
organizing the re-transmission of colliding devices into
several distributed queues [9].

III. CONVENTIONAL RANDOM ACCESS OPTIMIZATION

Despite that each scheme introduced in Sec. II-B has its
own mechanism to control access overload, these schemes are
intrinsically based on s-ALOHA protocol, which formulates
a general discrete time stochastic control process. In detail,
each scheme would divide time into frames, and allows a
limited number of devices to execute access using a limited
number of channels in each frame. A BS organizes devices’
transmission and re-transmission in a centralized manner to
facilitate overload control in various traffic scenarios. Taking
the ACB scheme as an example, the BS alleviates traffic load
by broadcasting a barring probability and a barring period, and
some of backlogged devices are forbidden to attempt RACH
within a period according to the received barring factors.

A. Research Challenges of Random Access Optimization

RACH optimization targets to identify the optimal strategy
of selecting RACH control parameters in real-time to optimize
one or more KPIs. This optimal strategy of each RACH scheme
is determined by an agent at the BS. More precisely, the
agent makes decision at each frame according to observations,
which is a set of previous transmission receptions during
the RACH, including, but not limited to, the numbers of
channels’ state in success/collision/idle at the end of each
frame. The output of the agent is a set of overload control
parameters that will be performed in the forthcoming frame to
maximize KPIs. However, obtaining an exact mapping between

each observed transmission reception and its optimal RACH
configuration strategy is challenging. To tackle these problems,
the optimization can be divided into two successive sub-tasks,
including (a) traffic load prediction for the forthcoming frame;
and (b) RACH control configuration based on the predicted
traffic load. Taking the adaptive ACB scheme as an example,
by predicting the forthcoming traffic statistic, the number of
access success devices can be maximized by choosing the
barring factor that yields the forthcoming RACH attempts
equal to the number of channels.

1) Traffic Prediction: Traffic prediction can be the most
critical problem in s-ALOHA based network, due to the fol-
lowing two challenges: (i) the statistics of forthcoming traffic
are generated in a pattern represented by one or mixtures
of different traffic types, e.g., periodic, bursty, multimedia
streaming, etc., which are hardly captured; (ii) the statistics
of accumulated traffic are also hardly captured, since those
backlogged devices, either experienced collisions or deferred
transmissions based on a RACH scheme’s mechanism, are not
observable in a BS.

2) RACH Control Configuration: Even with known pre-
dicted traffic statistics, maximizing long-term KPIs for RACH
in an exact manner is typically challenging, since most KPIs
are not only determined by the current configuration, but
also correlated with the future configurations. Most non-ML
works only optimize the immediate KPI at the next frame,
where they ignored the dependency among the RACH control
configurations of multiple consecutive frames over the long-
term KPI. This simplified assumption of traffic is made due to
the limitation in mathematical tool to capture these complex
long-term correlation over traffic and the RACH control con-
figurations. For the schemes introduced in Sec. II-B, with the
aim of optimizing the number of success access devices, the
ACB scheme [5], the resource allocation scheme [6], and the
BEB scheme [7] offer exact closed-form solutions, whereas the
prioritized access scheme [8], the distributed queuing scheme
[9], and the mixture of them only have approximate solutions.

B. Conventional Traffic Estimators

Given a known RACH control configuration strategy, the
traffic prediction problem can be cast as a Bayesian probability
inference problem, requiring the calculation of the probability
for each possible traffic statistics under given previous ob-
servation. However, due to the lack of a priori probabilistic
model for traffic generation, it is impossible to compute the
exact probability of each occurring status. In the following,
the existing methods of traffic estimation are concluded as:

1) Drift Analysis (DA) estimator: Given an s-ALOHA
system with the stabilized traffic, and a retransmission
policy that is geometrically distributed, the evolution of
traffic load statistics can be formulated as a Markov chain
[3]. The probability that the channel unjams before the
backlog increases to a value can be approximately calcu-
lated, which yields a maximal backlog value that holds
a steady state of the network. However, this fixed step
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size scheme is not suitable for networks with unstable
traffic, e.g., bursty.

2) Method of Moment (MoM) estimator: MOM has been
widely used to estimate traffic load values in s-ALOHA
networks [2, 5, 11, 12]. Given a specific traffic load value,
the expected numbers of idle, success, and collision
channels (i.e., moments) can be easily calculated, and
a MoM estimator aims at finding a traffic load value
that minimizes the discrepancy between the calculated
expectations and its respective observations. For instance,
one could calculate the mean absolute error between
expectations and observations to yield the MOM-based
estimator [12].

3) Maximum Likelihood Estimator (MLE): MLE calculates
the maximum likelihood of the optimal Bayes estimator
with respect to each traffic load value under each given
current observation. This is done in [4] by assuming
that, in a frame, devices sequentially and independently
select channels one after another, rather than selecting
channels simultaneously. This sequential channel selec-
tion can be represented by a Markov chain, where the
maximum likelihoods for each traffic load statistics of
all observations can be calculated using the steady-state
probability vector of the Markov chain.

IV. LEARNING-BASED ACCESS CONTROL OPTIMIZATION

According to the high complexity of access control opti-
mization, ML is a potential tool to provide better optimization
performance than conventional methods. Different from the
non-ML based algorithms introduced in Sec. III-B, which
relies on producing explicit optimization instructions, ML-
based access control optimization expects to perform the
RACH access control optimization by relying on patterns and
inference. These patterns and inference are obtained by training
a “machine”, also known as a hypothesis class, to discover
regularities in data by using computational approach, rather
than acquiring domain knowledge via the constructed physics-
based model. In the following, we first introduce conventional
single-step RL-based access control optimization, and then
introduce two-step DLS framework.

A. single-step Reinforcement Learning Based Access Control
Optimization

The dynamic optimization of RACH schemes can be for-
mulated as discrete Partially Observed Markov Decision Pro-
cesses (POMDPs), which is described as a six-tuple {states,
transaction probabilities, actions, observations, observation
probabilities, reward}. Given an agent located at BS aiming
at selecting RACH parameters, the agent interacts with the
network environment within a sequence of discrete time steps
(slots). At each slot, the agent assesses the traffic overload
condition of the network relying on environment states, and
selects an action (RACH parameters) on that basis. With a
delay of one slot, the network present a new states according
to the transaction probabilities, a reward can be obtained by

evaluating the selected action. The partial observation here
refers to that, at each slot, only a limited observation can be
known by the BS, instead of the exact states.

RL technique is a potential solution in addressing discrete
POMDPs, due to its capability and scalability in addressing the
“curse of dimensionality” in such complex control problems,
and its reliance on interacting with the environment without
requirements of constructing an accurate environment model
[14]. One of the most common applications of RL is in the
area of robotics control, which aims at building interactive
and goal-seeking RL agents to control robots in complex
environments. In general, robot control tasks can be highly
time-correlated, where the agent needs to be farsighted to take
into account future rewards, e.g., a walking robot maintaining
long-term balance requires to consider not only the current
status, but also the future statuses. In contrast, dynamic RACH
configuration is less complex in the temporal domain due to its
target on the relatively immediate reward, while it suffers from
much larger action size when multiple RACH schemes being
employed at the same time. In these cases, the complexity of
dynamic RACH configuration is no less than control problems
in robotics. Taking RACH optimization in NB-IoT networks as
an example [11], devices are split into three coverage enhance-
ment groups to execute RACH by sharing the same channel,
where each group adapts correlated RACH factors including
repetition values, preamble numbers, and RACH opportunities.
Due to the inter-dependency among all RACH factors, only
optimizing each factor in an cooperative manner, instead of
independent, can maximize RACH performance, while this
results in an discrete action space containing more than fifty
thousands possibilities that could much larger than a control
problem in robotics. This type of optimization requirement in
RACH motivates the utilization of RL.

The RL algorithms have proven to be useful in several
applications in the area of RACH control optimization [6, 10,
11, 13]. Recent works [6, 10] have proposed tabular Q-learning
methods for the ACB and the resource allocation schemes,
which aimed at selecting optimal (action) to minimize conges-
tion. Unfortunately, access optimization of one or several other
RACH schemes can be more complex than that of the single
resource allocation scheme, thus a direct application of the
tabular RL algorithms is not feasible due to its low training
efficiency. To solve it, Deep Reinforcement Learning (DRL)
was adopted to enable learning over a large state space inspired
by intelligent game playing [14], while the action space can be
broken down into several action variables to be cooperatively
trained by multiple agents that solves the oversize action space
problem [11]. Moreover, several RACH control parameters are
with the continuous action space, e.g., barring factor in the
ACB scheme, while straightforwardly adapting Q-learning to
solve them by discretizing the action space may degrade access
performance. To address this problem, one may use a policy
gradient method, e.g., deep deterministic policy gradient, to
directly learn policies from the continuous domain of action
space [13].
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B. Supervised Learning (SL)-Based Traffic Prediction with
Conventional RACH Control Configuration

Adopting single-step DRL based access control optimization
methods proposed in Section IV-A still face several challenges
including: a) the DRL agent is less interpretable and reliable
due to the “black box” characteristic; and b) the DRL agent is
expected to be updated in an online manner, but the conver-
gence is really slow due to the complexity of the value function
as well as the tradeoff between exploration and exploitation.
Given a non-ML based RACH control configuration strategy,
we can focus on solving the traffic prediction using learning-
based method to improve the access performance, namely, SL-
based optimizer [12]. This SL-based traffic predictor adopts
a modern Recurrent Neural Network (RNN) model, where,
different from those conventional methods, the input of the
predictor utilizes several previous observations to capture the
time-varying trend of traffic for better prediction accuracy.

The RNN predictor is trained by leveraging a novel approx-
imate labeling technique that is inspired by MoM estimators
given in Sec. IV. This approximate labeling technique enables
online training in the absence of feedback on the exact car-
dinality of collisions. This online adaptation allows RNN to
adapt to the traffic statistics in runtime. In details, RNN is
progressively fed with a finite set of observations to produce
the forthcoming traffic value for a slot. With one or several
slots delay, the traffic value can be estimated by using any
heuristic estimator described in Sec. III-B aided by the exact
transmission receptions. In this way, the weights of the RNN
can be adjusted in order to minimize the error of the former
traffic value by prediction with respect to the latter traffic value
by estimation.
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Fig. 1: The actual and predicted backlog of each predictor.

Numerical results are given in Fig. 1 and Fig. 2, which
simulated by using Python. In simulations, we set the number
of channels as 54, the retransmission constraint as 10, and
the traffic as the time limited Beta profile with parameters
(3, 4) repeated every 10 frames (The following results in Sec.
V.B are also based on these network parameters). Fig. 1 plots
the actual and predicted backlog of each predictor, where the
SL-based result is employed an RNN with the Long Short-
Term Memory (LSTM) architecture. We observe that only SL-
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Fig. 2: The average number of success access devices per episode of each optimizer in
the ACB scheme.

LSTM can predict the backlog spikes coming from periodic
bursty traffic, due to their capability in capturing previous
trends of time-varied traffic. Fig. 2 plots the average number
of devices which successfully access the network per episode
(each containing 100 slots) with the MoM optimizer, the ML
optimizer, the SL-based optimizer using LSTM RNN, and
the “Genie-aided ACB” (i.e., referring to the ACB scheme
aided by actual backlog). Each optimizer solely controls the
barring probability, and remains the barring time as 1 slot.
It is seen that the SL-based optimizer outperforms the other
optimizers, due to its better prediction accuracy. However, it
should be emphasized that each optimizer relies on the exact
ACB configuration solution. Once the RACH scheme becomes
complex (e.g., the hybrid ACB and Back-Off (ACB&BO)
scheme and the DQ scheme), the access performance may be
degraded due to the ineffectiveness of non-ML based access
control configuration.

C. SL-Based Traffic Prediction with RL-Based Access Control
Configuration

Given a complex RACH scheme without exact control
solution, a DLS has been proposed in [13], which individu-
ally executes the RNN traffic prediction and the DRL-based
access control configuration as shown in Fig. 3. This method
integrates domain knowledge from the communication, that is
“the historical and present traffic statistics in the network are
directly correlated with the future performance”, into learning
agents. In details, at each slot, the traffic statistic is first
predicted by an RNN predictor as a belief state, and then
fed the state into several DRL agents employed in parallel to
configure RACH parameters for each RACH scheme. Both the
RNN predictor and the DRL agent are updated in an online
manner, where the former one relies on the estimated label
given in Sec. IV-B, and the latter one uses reward received
from observations.

Fig. 4 compares the average number of devices that suc-
cessfully access the network per episode of the DRL-based
optimizer and the DLS-based optimizer for the ACB&BO
scheme. It can be seen that the DLS-based optimizer slightly
outperforms the DRL-based optimizer due to the fact that



6

⋮⋮ ⋮

⋮

Softmax

Ot-To+1 Ot-1 Ot

...RNN RNNRNN

[Ot-To+1,...,Ot-1,Ot]

SL-based Predictor RL-based Configurator

ErrorLoss ∆L

Network Environment
BS

Device

Predicted
Traffic Nt+1

New 
Observation 
Ot+1

Ot

Nt+1

Estimated
Traffic Nt+1

Update SL-based predictor using loss ∆L
Reward Rt

Feedforward

Feedback

Information from 
Environment

t            Time Frame

Access 
Control 
Factors

E.g., ACB 
factor, BO 
factor

Ot+1

~

‸

‸

Traffic Estimator:
 MLE, MoM, DA……

Fig. 3: Illustration of the feedforward and the online adaptation of the multi-step DLS optimizer.
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Fig. 4: The average number of success access devices per episode of DRL-based optimizer
and DLS-based optimizer in the ACB&BO scheme.

the decoupling simplifies the complexity of the problem. Fig.
5 plots the evolution (averaged over 200 training trails) of
the average success accesses per frame as a function in the
online phase for “DLS-based ACB&BO (Pre-trained)”, “DLS-
based ACB&BO (Pre-trained)”, and “DRL-based ACB&BO”.
Here, the “DLS-based ACB&BO (Pre-trained)” refers to that
its DRL-agent for access control configuration has been pre-
trained, while “DLS-based ACB&BO” is without any pre-
training. The approximated converging point of each scheme
is highlighted by circles. It is seen that the pre-training can
help the DLS-based ACB&BO optimizer to be fairly faster
to converge than the one without pre-training. It can also be
observed that the training speed of “DLS-based ACB&BO
(Pre-trained)” (consumes about 2 episodes) is substantially
faster than the DRL-based optimizer (consumes about 170
epochs), which sheds light on its capability of its efficient
adaptation.

Due to the milliseconds level requirement of the RACH
response time [1], it is highly recommended to employ off-
policy learning algorithms in RACH optimization, which de-
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Fig. 5: The required number of episodes for each ML-based optimizer that converges to
an efficient solution, where each optimizer has the same hidden layers of neural network
and the same hyperparameters for training.

couples feedforwarding and training (all introduced algorithms
in this section are off-policy). By doing so, only feedfor-
warding requires to be processed locally, while the training
and updating processes can be deployed at the cloud or an
edge by gathering samples from multiple BSs, which would
greatly save computational resource. Accordingly, we demon-
strate the computational cost of each algorithm in terms of
processing time, which simulates on a personal computer with
an Intel Core i5-9600K processor. In the simulations, the
processing time for one frame of the MOM and the MLE
predictor are about 0.007 and 0.043 ms, respectively, whereas
that of the LSTM RNN predictor, the DQN optimizer, and
the DLS optimizer are about 0.477, 0.677, and 0.734 ms,
respectively. Apparently, the ML-based algorithms are more
resource-hungry than the non-ML ones. Hence, we evaluate
that, even targeting to solve a simple problem, utilizing ML
aided by neural networks would still consume much more
computational resource than domain-specific solutions, thus
we suggest only considering ML techniques for multiple-
factors access control problems or single-factor access control
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problems without optimal analytical solution. Fortunately, in
RACH optimization, the execution time of learning agents is
much fewer than 5 ms, which is the minimal period of RACH
opportunities in most cellular networks, including LTE, NB-
IoT, 5G NR, etc..

V. CONCLUSION AND FUTURE WORK

In this article, we elaborated ML techniques to be applied
in access control optimization for RACH schemes, which has
the potential to play an essential role in realizing efficient
access in future wireless networks. The conventional single-
step DRL-based optimizer is shown to outperform the non-
ML based optimizers in terms of the number of successfully
accessed devices, due to that it is capable of learning to master
the challenging optimization task. However, the single-step
DRL-based optimizer suffers from low training efficiency and
the requirement of huge computational resources. To solve
this problem, we proposed a two-step DLS-based optimization
methods to individually learn the traffic prediction and the
RACH control configuration, which considerably improved the
training efficiency.

Our results revealed that ML techniques have great potential
to revolutionize access control optimization. Compared with
the conventional DRL-based method, the proposed DLS-based
method can achieve higher training efficiency and better access
performance, and can be applied for access optimization of
other networks, e.g., grant-free access. Furthermore, we have
identified the following future research directions: 1) develop
transfer learning and meta-learning for online updating to
improve training efficiency; 2) develop distributed learning at
devices and BSs to cooperatively guide the transmission deci-
sions; and 3) exploit learning based priority-aware optimization
for heterogeneous applications.
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