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Chase Decoding of Linear Z4 Codes at Low to Moderate Rates
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Abstract— A free Z4 code C may be decoded by decoding its
canonical image C over Z2 twice in succession. Hence, a Chase
decoder for C could employ as its hard-decision (HD) decoder, a
two-stage decoder which performs HD decoding on C in each
stage. Alternatively, one could have a two-stage soft-decision
decoder by employing a Chase decoder for C in each stage.
We demonstrate that the latter approach can offer a significant
reduction in complexity over the other, with little or no price
to pay in terms of word error rate performance, particularly at
low to moderate code rates.

Index Terms— BCH codes, Chase decoding, Z4 codes.

I. INTRODUCTION

CHASE decoding [2] is a suboptimal decoding technique
which can provide substantial coding gains over conven-

tional hard-decision (HD) decoding with significant reduction
in decoding complexity compared to maximum-likelihood de-
coding. Of particular interest to coding theorists are techniques
enabling a Chase decoder to employ fewer test patterns with
little sacrifice in performance – see e.g. [1], [3]. In [4], the
word error rate (WER) performance of Chase decoding when
applied to a t-error correcting, free1 (n, k) Z4 code C of design
distance 2t+1 on an AWGN channel with QPSK modulation,
was investigated. The HD decoder considered there was a two-
stage decoder based on the algorithm in [6, Section III] where
each stage was a conventional (errors-only) HD decoder acting
on the canonical image C of C over Z2, as depicted in Fig.
1(a). It was shown that with such a HD decoder, a Chase
decoder utilizing about 2t−1 test patterns can yield a better
WER over one that uses a conventional HD decoder and 2t

test patterns.
An alternative, and obvious, way of realizing Chase-like

decoding of the code C is to employ in each stage of the
algorithm in [6, Section III], a Chase decoder for C, as
depicted in Fig. 1(b), with each Chase decoder employing a
conventional HD decoder. It is however not obvious whether
this alternative approach offers any advantage over the Chase
decoder advocated in [4]. Indeed, no insight is offered there
in this regard. The purpose of this letter is therefore to fill
that void. Specifically, we demonstrate that the latter approach
can offer a significant reduction in complexity over the other,
with little or no price to pay in terms of WER performance,
particularly at low to moderate code rates.
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1From [5, Corollary 4.7(i)], if there is a linear Z4 code which is not free,

there exists a free Z4 code of the same length and minimum Hamming
distance but of higher rate. For this reason, it suffices to limit our study
to free codes.

HD decoder
for binary

image of C

HD decoder
for binary

image of C

Pre-
processor 
for Stage 

2

Stage 1 S tage 2

Channel 
output

Codeword 
estimate

Two-stage HD decoder

Chase decoder for C with two-stage HD decoder

(a)

Channel 
output

Cascaded Chase decoder for C

(b)

Chase decoder
for binary

image of C

Chase decoder
for binary

image of C

Codeword 
estimate

Stage 1 S tage 2

Pre-
processor 
for Stage 

2

Fig. 1. (a) The Chase decoder with two-stage HD decoder; (b) the cascaded
Chase decoder.

Henceforth, we refer to the decoders depicted in Fig. 1(a)
and 1(b) as the non-cascaded Chase decoder (NCD) and
cascaded Chase decoder (CCD), respectively. We proceed with
a more detailed description of the CCD.

II. THE CCD

A. Decoder Description

Consider encoding the message block m as the codeword
v := mG of C where G is a generator matrix for the code.
Writing the 2-adic expansions of m, v and G as 2m1 + m0,
2v1 + v0 and 2G1 + G0, respectively, one readily sees that
v0 = m0 � G0 ∈ C while v1 = m0 � G1 ⊕ m1 � G0 ∈ Z

n
2

where � and ⊕ denote the respective operations over Z2.
Suppose v is QPSK modulated such that each pair

(vj,1, vj,0) is mapped to the signal point given by
(2vj,1 − 1, 2vj,0 − 1) and then transmitted, where v0 :=
(v1,0, . . . , vn,0) and v1 := (v1,1, . . . , vn,1). Evaluating the
sign of the corresponding 2n unquantized detector out-
puts (r1,1, r1,0, r2,1, r2,0, . . . , rn,1, rn,0) yields the HD re-
ceived word h := (h1,1, h1,0, h2,1, h2,0, . . . , hn,1, hn,0) ∈
Z

2n
2 . It is convenient to define r0 := (r1,0, . . . , rn,0),

r1 := (r1,1, . . . , rn,1), h0 := (h1,0, . . . , hn,0) and h̃ :=
(h̃1, . . . , h̃n) ∈ Z

n
4 such that the 2-adic expansion of h̃j is

2hj,1 + hj,0.
Now, let {e1,j , . . . , e2sj ,j} be a set of 2sj binary test

patterns of length n and Hamming weight at most sj where
the ones are restricted to the sj least reliable positions in
rj . For each i, 1 ≤ i ≤ 2s0 , the first Chase decoder of the
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CCD computes h0 ⊕ ei,0 and feeds it to a (conventional) HD
decoder2 which outputs an estimate v̂0 := (v̂1,0, . . . , v̂n,0) of
v0. The output v̂∗

0 of the first Chase decoder is the estimate
v̂0 of v0 that maximizes the correlation −∑n

j=1(−1)v̂j,0rj,0

between r0 and the modulated version of v̂0. This completes
the description of the first decoding stage of the CCD.

Next, denote by m̂∗
0, the message corresponding to v̂∗

0 .
The task of the pre-processor for the second decoding stage
indicated in Fig. 1(b) is to compute h1 := (h̃ − m̂∗

0G −
(h0 ⊕ v̂∗

0))/2 ∈ Z
n
2 where − here denotes subtraction over

Z4. Following [6, Step i in Section III], h1 is the hard-
decision “received word” to be fed to the HD decoder in
the second Chase decoder after modification by the ei,1’s.
That is, for each i, 1 ≤ i ≤ 2s1 , the second Chase decoder
computes h1 ⊕ ei,1 and feeds it to a HD decoder which
outputs an estimate m̂1 � G0 of m1 � G0 ∈ C. The output
m̂∗

1�G0 of the second Chase decoder is the estimate m̂1�G0

that maximizes −∑n
j=1(−1)v̂j,1rj,1 where (v̂1,1, . . . , v̂n,1) :=

m̂∗
0 � G1 ⊕ m̂1 � G0. The estimate of m computed by the

CCD is therefore given by 2m̂∗
1 + m̂∗

0.
Hereafter, take CCD(s0, s1) to mean the CCD employing

2s0 and 2s1 test patterns in the first and second stage, respec-
tively. The complexity of CCD(s0, s1) will be measured in
terms of the total number of test patterns used, or equivalently,
the total number of calls made to the HD decoder for C.

B. Choice of s0 and s1

Turning our attention now to choosing s0 and s1, observe
that errors of values 1 and 3 are “visible” to the first decoding
stage of the CCD while errors of values 2 and 3 are “visible” to
the second. Thus, a reasonable choice of value for s0/s1 is the
ratio of the average number of errors of values 1 and 3, to the
average number of errors of values 2 and 3, in h̃. Assuming
transmission on an AWGN channel with QPSK modulation
and all codewords are equally likely, we therefore have from
[4],

s0

s1
≈ n

n + 2−kB′(1)

where B′(x) is the first-order derivative of the weight enu-
merator of C with respect to x.

Now, it is well-known that among the three versions of the
Chase decoder in [2], the second one, i.e., [2, Algorithm 2],
has the best performance/complexity trade-off and utilizes 2t

test patterns. For this reason, we fix

s1 = t (1)

and in turn,

s0 =
[

nt

n + 2−kB′(1)

]
(2)

where [·] denotes rounding-off to the nearest integer.
It is interesting to note that codes whose canonical images

over Z2 satisfy B′(1) = 2k−1n do exist. Indeed, the codes
used in our computer simulations all have this property. In this
case, with s0 and s1 as specified by (1) and (2), the complexity
of CCD(s0, s1) is therefore about 22t/3+2t. On the other hand,

2Since C is free, C is consequently a linear code over Z2. Hence, decoding
C need not be a hard task as compared to the problem of decoding a nonlinear
binary code.
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Fig. 2. WER’s of CCD(s0, 3) and NCD(3) when applied to (63, 45) BCH
code for s0 = 2, 3.
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Fig. 3. WER’s of CCD(s0, 5) and NCD(5) when applied to (63, 36) BCH
code for s0 = 3, 4, 5.

the NCD(t), i.e., the NCD employing 2t test patterns, incurs
2t+1 calls3 to its HD decoder for C. Thus, for sufficiently large
t, e.g. t > 9, the complexity of CCD(s0, s1) is close to half
of that of NCD(t).

We next present our simulation results which focus on this
special case.

III. SIMULATION RESULTS

We begin by comparing the WER performance of
CCD([2t/3], t) and NCD(t) on an AWGN channel with QPSK
modulation. Three codes whose canonical images over Z2

satisfy B′(1) = 2k−1n are considered, namely, a (63, 45),
(63, 36) and (63, 24) BCH code, for which t is 3, 5 and 7,
respectively.

From Figs. 2 and 3, we see that for the high and moderate
rate codes, NCD(t) performs better than CCD([2t/3], t) in the

3Note that for the NCD, each test pattern leads to two calls to the HD
decoder for C. Therefore, for a fair comparison to be made between the
complexity of CCD and that of NCD, we measure the complexity of NCD in
terms of the number of calls made to the HD for C, rather than the number
of test patterns used.
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Fig. 4. WER’s of CCD(s0, 7) and NCD(7) when applied to (63, 24) BCH
code for s0 = 5, 6, 7.

WER region of practical interest although only marginally,
particularly for the latter code. From Fig. 4 however, we see
that for the low rate code, CCD([2t/3], t) performs better
than NCD(t) over the entire SNR range considered. On the
other hand, the complexity of CCD([2t/3], t) is only 75%
(respectively, 62.5%) that of NCD(t) for the high rate code
(respectively, moderate and low rate codes).

The WER performance of CCD(s0, t) for [2t/3] < s0 ≤ t is
also given so that additional comparisons can be made between
the two decoders. Observe that CCD(t, t) and NCD(t) have
the same complexity. Thus as s0 increases, the reduction in
complexity that CCD(s0, t) offers over NCD(t) diminishes.

Not surprisingly, as Figs. 2 to 4 show, the performance
of CCD(s0, t) improves as s0 increases. In particular, Fig.
3 shows that for the moderate rate code, CCD(t − 1, t) and
NCD(t) essentially have identical performance in the WER
region of practical interest. The complexity of the former
decoder however is only 75% that of the other.

IV. CONCLUDING REMARKS

Through our computer simulations, we have demonstrated
that for codes whose canonical images over Z2 satisfy B′(1) =
2k−1n, CCD(s0, t) can offer a significant reduction in com-
plexity over NCD(t) for [2t/3] ≤ s0 < t, with little or no
price to pay in terms of WER performance (within the WER
region of practical interest at least), particularly at low to
moderate rates. It would be interesting to see if CCD(s0, t)
will continue to offer similar performance/complexity trade-
offs in cases where B′(1) �= 2k−1n.

Finally, we note that there are obviously several ways to
further improve the performance of CCD(s0, s1). One way
is for the first decoding stage to pass a list of two or more
codeword estimates to the second stage, instead of just one.
However, we have found that the performance improvements
this approach brings is too small to warrant the corresponding
large increase in complexity.
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