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Priority-Aware Resource Scheduling for
UAV-Mounted Mobile Edge Computing Networks

Wenqi Zhou, Lisheng Fan, Fasheng Zhou, Feng Li, Xianfu Lei, Wei Xu and Arumugam Nallanathan

Abstract—In this paper, we investigate the joint impact of
task priority and mobile computing service on the mobile edge
computing (MEC) networks, in which one unmanned aerial
vehicle (UAV) provides mobile computing service to help compute
the tasks from users in multiple hotspots where the task priority
is time-varying. For such a system, we firstly measure the system
performance by the computing utility of multiples users, where
the effect of a wide-range task priority is incorporated. We
then analyze the impact of the network wireless bandwidth and
UAV computational capability on the system performance, from
which we optimize the system through UAV hotspot selection
and user task offloading. To solve the optimization problem, we
further employ deep Q-learning algorithm to learn an effective
solution by continuous interaction between the UAV agent and
system environment. Simulations are finally conducted to verify
the superiority of the proposed studies in this paper.

Index Terms—Mobile edge computing, task priority, resource
scheduling, deep Q-learning.

I. INTRODUCTION

With the rapid development of information technologies,

many novel mobile applications such as positioning, autopilot,

virtual reality and augmented reality have emerged. Most of

these applications are computation and latency sensitive tasks,

which impose a severe burden on the latency and energy

consumption of the conventional cloud computing paradigm.

To support these applications, mobile edge computing (MEC)

has been proposed to provide computing services at the

network edge, which can assist the task computing for the

users through wireless offloading [1]–[9]. In this area, the

authors in [1] combined local and data computing into a joint

computation scheme to optimize the total computation effi-

ciency of users, and [2] devised a reinforcement learning based

mobile offloading scheme for edge computing to improve the

utility of mobile devices. In addition, various researches have

been performed to optimize the offloading strategy for the

MEC networks by fully exploiting the system communication

and computing resources, such as transmit power [4], [5],
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[7], wireless bandwidth [8], and computational capability

[9]. However, the system performance is often significantly

affected by the task characteristics such as priority, and thus it

is of vital importance to take into account the priority during

the task computing for the system optimization [10].

Most of existing works on the MEC networks con-

sidered fixed computing resources with limited coverage,

which however cannot flexibly serve users with time-varying

task characteristics in practice. To solve this issue, mobile

computing service provided by mobile edge server such

as unmanned aerial vehicles (UAVs), mobile vehicles and

mobile robots has been equipped in the MEC networks,

which can flexibly exploit the communication and computing

resources to compute the time-varying computing tasks of

users. In this aspect, the authors in [11] studied an UAV-

mounted MEC network and maximized the system reward

through UAV scheduling and user selection to enhance the

system performance. In addition, a vehicle-mounted edge

computing network was investigated in [12], [13] to reduce

the communication overhead, through the path scheduling

and computation offloading. To the best of our knowledge,

there has been little work on the joint impact of task priority

and mobile computing service on the MEC networks, which

motivates the work in this paper. However, there are two

critical challenges in exploiting the task priority and mobile

computing service for optimizing the MEC network. One

challenge is how to quantify and evaluate the performance of

computing different priority tasks, while the other challenge is

how to intelligently make decisions for the mobile server based

on the time-varying task characteristics. These two challenges

motivate the work in this paper.

In this paper, we investigate the joint impact of task priority

and mobile computing service on the MEC networks, in

which the UAV provides mobile computing service to help

compute the tasks from users in multiple hotspots where

the task priority is time-varying. For such a system, we

firstly measure the system performance by the computing

utility of multiples users, where the effect of a wide-range

task priority is incorporated. We then analyze the impact

of the network wireless bandwidth and UAV computational

capability on the system performance, from which we optimize

the system through UAV hotspot selection and user task

offloading. To solve the optimization problem, we employ

deep Q-learning algorithm to learn an effective solution by

continuous interaction between the UAV agent and system

environment. Simulations are finally conducted to verify the

superiority of the proposed studies in this paper.
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Fig. 1. UAV-mounted mobile edge computing network.

II. SYSTEM MODEL

Fig. 1 depicts an UAV-mounted mobile edge computing

network, where one UAV exists in the system and provides

some computational services to L hotspots indexed by L =
{1, 2, ..., L} through wireless links. For hotspot l ∈ L, its

location is denoted by the coordinate pl = {xl, yl}, and there

are M user devices (UDs) indexed by M = {1, 2, ...,M}
in each hotspot. In practice, the task characteristics of users

may be time-varying due to dynamical requirements, and

accordingly, the UAV should select one proper hotspot to serve

and design the associated task offloading strategies for the

users. In the following, we will discuss the task offloading

and computing model, as well as the task utility model for the

considered network.

A. Task Offloading and Computing Model

Let cl ∈ {0, 1} indicate the hotspot selection, where hotspot

l is selected to be served by the UAV if cl = 1, or not

otherwise. As the UAV assists only one hotspot to compute, the

indicator cl should satisfy the constraint of
∑L

l=1 cl = 1. After

the hotspot selection, the UAV will fly to the selected hotspot1

and assist the users in the selected hotspot to compute tasks.

In this case, the users in the selected hotspot can offload the

tasks to the UAV via the wireless links or compute the tasks

locally. We use bm,l ∈ {0, 1} to denote the offloading decision,

where bm,l = 1 indicates that the task of user m in hotspot l is

offloaded to the UAV for computing, while bm,l = 0 indicates

the local computing.

When user m in hotspot l selects to offload its task to the

UAV for computing, the data rate and offloading latency are

rm,l = B log2

(
1 +

Pm,l|hm,l|2
σ2

)
, (1)

T trans
m,l =

sm,l

rm,l
, (2)

where B is the wireless bandwidth of each user, hm,l ∼
CN (0, ξ) is the channel parameter of the wireless link from

user m to the UAV, Pm,l denotes the transmit power at user

1In this paper, we assume that the UAV connects to the nearby hotspots
only, as a long-distance service would impose a severe burden of latency and
cost on the system. Therefore, the flying latency of UAV among different
hotspots can be ignored.

m in hotspot l, σ2 is the AWGN variance at the UAV, and

sm,l is user task size in Mbits.

After the task offloading, the UAV helps compute the tasks

from user m, and the computational latency is

Tuav
m,l =

sm,lζ

fuav
, (3)

where ζ is the CPU cycles required to compute per bit of the

task, fuav is the computational capability that the UAV assigns

to the tasks offloaded to the UAV for computing.

On the other hand, when user m of hotspot l selects to

compute its task at local, the computational latency is

T local
m,l =

sm,lζ

fm,l
, (4)

where fm,l is the computational capability of user m.

From (2)-(4), we can obtain the processing latency of user

m in hotspot l as

Tm,l = cl
[
bm,l

(
T trans
m,l + Tuav

m,l

)
+ (1− bm,l)T

local
m,l

]
+ (1− cl)T

local
m,l .

(5)

B. Task Utility Model

Different tasks may have various priorities in the practical

communication and computing. Let vm denote the task priority

of user m, where vm = 1 and vm = 0 indicate the tasks

of high priority and low priority, respectively. In addition

to these two priorities, the medium priority is characterized

by vm ∈ (0, 1). The high-priority tasks occur in some

communication scenarios such as vehicle navigation and road-

sensing, where a strict latency constraint is imposed on the

tasks. On the contrary, the low-priority tasks occur in the

communication scenarios such as entertainment applications

and value-added services, where the computing latency is

tolerant. Besides these two priorities, the medium priority

exists in some communication scenarios such as many public

safety. In this case, the tasks need to be processed in time

if possible, whereas the urgency is not as high as the high-

priority tasks.

For the high-priority tasks with vm = 1, a logarithmic

function can be used to represent the utility of task processing

[10],
UH
m,l = log(1 + τm,l − Tm,l)I(Tm,l ≤ τm,l)

− ΓHI(Tm,l > τm,l),
(6)

where τm,l is the tolerant latency threshold of user m in

hotspot l, and −ΓH is a negative reward that represents the

penalty of failure to complete the high-priority task within the

latency threshold τm,l. Notation I(x) is an indicator function,

equal to 1 if x is true or 0 otherwise.

For the low-priority tasks with vm = 0, the utility of the

task processing is [10]

UL
m,l = ΓLe

−α(Tm,l−τm,l)I(Tm,l > τm,l)

+ ΓLI(Tm,l ≤ τm,l),
(7)

where ΓL is a positive constant to measure the reward

of completing a low-priority task within the given latency

threshold τm,l, and α > 0 is an exponential decay factor.

Besides the above two priorities with vm = 1 and vm = 0,

a much wider range of priority, i.e., vm ∈ (0, 1), exists to
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measure the practical task processing. To measure the task

processing utility of the medium priority, a linear interpolation

method is used for user m in hotspot l as,

Um,l = vm,lUH
m,l + (1− vm,l)UL

m,l. (8)

In particular, when the task priority becomes high, the utility

Um,l converges to UH
m,l, while the utility Um,l converges to

UL
m,l when the task priority becomes low. From the above

utilities, we can summarize the system utility of the M users

to process the L tasks as

Usys =
M∑

m=1

L∑
l=1

Um,l. (9)

III. PERFORMANCE ANALYSIS AND PROBLEM

FORMULATION

From (9), we can find that there are many factors that affect

system utility, such as the wireless bandwidth, computational

capability at the UAV, as well as the hotspot selection and

task offloading strategy. In this section, we firstly analyse the

impact of the wireless bandwidth and computational capability

at the UAV on the system utility, based on which we design

the system optimization problem by optimizing the hotspot

selection and offloading strategy.

From (1)-(5), we can rewrite the task processing latency of

user m in hotspot l as

Tm,l = cl

[
bm,l

(
sm,l

B log2
(
1 +

Pm,l|hm,l|2
σ2

) + sm,lζ

fuav

)

+ (1− bm,l)
sm,lζ

fm,l︸ ︷︷ ︸
G1

]
+ (1− cl)

sm,lζ

fm,l︸ ︷︷ ︸
G2

, (10)

which decreases with a larger wireless bandwidth B and

computational capability fuav at the UAV. In particular, when

fuav becomes sufficiently large, Tm,l can be asymptotically

approximated by

Tm,l � cl

[
bm,lsm,l

B log2
(
1 +

Pm,l|hm,l|2
σ2

) +G1

]
+G2. (11)

Then, by substituting (11) into (9), the asymptotic expression

of the system utility can be obtained in (12), which shows that

the impact of fuav on the system utility of task processing

almost disappears. Therefore, we can obtain the following

insights,

Remark 1: When fuav is sufficiently large, the task

computational latency at the UAV can be negligible and

the offloading latency becomes dominant in task processing

latency, leading to that the impact of fuav on the system utility

of task processing becomes marginal.

When B becomes sufficiently large, Tm,l can be asymptot-

ically approximated by

Tm,l � cl

(
bm,lsm,lζ

fuav
+G1

)
+G2. (13)

By substituting (13) into (9), the system utility can be

asymptotically approximated by (14), which shows that the

impact of B on the utility of task processing can be

approximately ignored. Hence, we have the following insights,

Remark 2: When B is large enough, the task offloading

latency is very small, and the task processing time mainly

depends on the computational latency, thus the impact of B
on the system utility of task processing can be ignored.

When fuav and B both become sufficiently large, Tm,l can

be asymptotically approximated by

Tm,l � clG1 +G2, (15)

and we can obtain the asymptotic expression of the utility by

substituting (15) into (9), as shown in (16), which shows that

the impact of fuav and B on the utility of task processing can

be approximately ignored, and then we have the following

insight,

Remark 3: When fuav and B become sufficiently large, the

task offloading and computational latency at the UAV is small.

Hence, the impact of fuav and B on the system utility can be

almost ignored, and the system performance is thus dependent

on the hotspot selection and the task offloading.

According to the above analysis result, we further design

the system optimization problem by maximizing the utility

Usys, through optimizing the hotspot selection and offloading

strategy, formulated by

P1 : max
{bm,l,cl|1≤m≤M,1≤l≤L}

Usys, (17)

s.t. C1 : bm,l ∈ {0, 1}, ∀m ∈M, ∀l ∈ L, (17a)

C2 : cl ∈ {0, 1}, ∀l ∈ L, (17b)

C3 :
L∑

l=1

cl = 1, (17c)

where C1 and C2 are the constraints on the task offloading

and hotspot selection, respectively, and constraint C3 ensures

that the UAV can only select one hotspot to serve.

Note that in practice, the task characteristics and wireless

channels may dynamically vary with time, and the hotspot

selection and task offloading are both discrete actions, which

gives much difficulty to solve the optimization problem P1 by

using the traditional method such as convex optimization. Al-

though we can use the conventional branch and bound (BnB)

method to obtain the optimal solution, it will produce huge

computational complexity in practical applications. Hence, we

turn to use the deep Q-learning to optimize the problem P1,

as it can provide an effective solution through the interaction

between the UAV agent and the system environment, and

makes the UAV to adaptively complete the tasks to further

realize the purpose of commercial use. In the next section, we

will detail how to optimize the problem P1 by employing the

deep Q-learning algorithm.

IV. OPTIMIZATION WITH DEEP Q-LEARNING ALGORITHM

In this section, we use the deep Q-learning to optimize the

system problem P1 in (17). In particular, we firstly use the

Markov decision process (MDP) to model the process between

the agent and system environment, based on which we employ

the deep Q-learning to tackle the problem P1.
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Usys �
L∑

l=1

M∑
m=1

[
vm,l log

(
1 + τm,l − clbm,lsm,l

B log2
(
1 +

Pm,l|hm,l|2
σ2

) − clG1 −G2

)
+ (1− vm,l)Γ

L

]
× I

[
clbm,lsm,l

B log2
(
1 +

Pm,l|hm,l|2
σ2

)
+ clG1 +G2 ≤ τm,l

]
+

[
(1− vm,l)Γ

L × exp

(
− α

(
cl

(
bm,lsm,l

B log2
(
1 +

Pm,l|hm,l|2
σ2

) +G1

)
+G2 − τm,l

))
− vm,lΓ

H

]

× I

[
cl

(
bm,lsm,l

B log2
(
1 +

Pm,l|hm,l|2
σ2

) +G1

)
+G2 > τm,l

]
.

(12)

Usys �
L∑

l=1

M∑
m=1

[
vm,l log

(
1 + τm,l − clbm,lsm,lζ

fuav
− clG1 −G2

)
+ (1− vm,l)Γ

L

]
× I

[
cl

(
bm,lsm,lζ

fuav
+G1

)
+G2 ≤ τm,l

]

+

[
(1− vm,l)Γ

L exp

(
− α

(
cl

(
bm,l

sm,lζ

fuav
+G1

)
+G2 − τm,l

))
− vm,lΓ

H

]
× I

[
cl

(
bm,lsm,lζ

fuav
+G1

)
+G2 > τm,l

]
.

(14)

Usys �
L∑

l=1

M∑
m=1

[
vm,l log(1 + τm,l − clG1 −G2) + (1− vm,l)Γ

L
]× I(clG1 +G2 ≤ τm,l) +

[
(1− vm,l)Γ

L

× exp
(− α(clG1 +G2 − τm,l)

)− vm,lΓ
H
]× I(clG1 +G2 > τm,l).

(16)

We firstly design the state space, action space and reward

according to the MDP model, which can be characterized by

the S(t), A(t) and R(t). Specifically, we define the state space

as

S(t) = {s(t)|s(t) = {pl(t), bm,l(t)}}, (18)

for l ∈ {1, 2, ..., L}, and m ∈ {1, 2, ...,M}, where pl(t) is the

coordinate of the hotspot chosen by the UAV at time slot t,
and bm,l(t) is the offloading strategy at time slot t. Then, we

define the action space, consisting of the hotspot selection of

the UAV and the task offloading strategy of users, given by

A(t) = {a(t)|a(t) = {asl (t), aom,l(t)}}, (19)

where asl (t) ∈ {0, 1} is the action of hotspot selection,

aom,l(t) ∈ {0, 1} indicates the task offloading action. We

further describe how to select an action. In general, ε-greedy

algorithm is used to discover which action yields the most

reward through trial and error, given by

a(t) =

{
random, w.p.ε,

argmax
a

Q(S(t), a;θ), w.p.1− ε.
(20)

where ε ∈ [0, 1] is the probability of randomly selecting

an action, θ is the weighted parameter, and Q(S, a;θ) is

the Q function, which represents the accumulative reward

of performing an action a. When the action a(t) ∈ A(t) is

performed, the state S(t) changes to S(t + 1), and we can

obtain a reward from the utility accordingly, given by

r(t) =

⎧⎪⎨
⎪⎩

δ1, If Usys(t+ 1) > Usys(t),

−δ2, If Usys(t+ 1) = Usys(t),

−δ3, If Usys(t+ 1) < Usys(t),

(21)

where δ1, δ2 and δ3 are three positive values. Note that Usys(t)
and Usys(t + 1) are the system utility at time slot t and

t+ 1, respectively. We further employ the deep Q-learning to

solve the problem by two deep neural networks. One network

is the evaluation network, which can obtain the action-state

value Q(S, a;θ) by inputting the current state, where θ is the

weighted factor of the evaluation network. The other network

is target network, which is copied from the evaluation network

and helps update the evaluation network. In the deep Q-

learning, we use temporal different (TD) approach to update

the network, and the loss function is

L(t) = (Z(t)−Q(S(t), a(t);θ))2, (22)

where the target value function Z(t) is given by

Z(t) = r(t) + ηmax
a

Q̂(S(t+ 1), a; θ̂), (23)

where η is a discount parameter and θ̂ is the weighted factor

of the target network. In addition, the target network copies

the weighted parameter from the evaluation network every Tu

time slot to update itself. After several epochs of training,

the system will obtain an effective hotspot selection and

offloading strategy. The whole procedure of deep Q-learning

for the hotspot selection and task offloading is summarized in

Algorithm 1.

V. SIMULATION RESULTS AND DISCUSSIONS

In this part, we provide simulation results to verify the

proposed studies. The wireless links in the network experience

Rayleigh fading with the average channel gain of unity. The

transmit power of users and the variance of AWGN are set

to 2W and 1 × 10−2W, respectively. Moreover, we set the

Page 4 of 24IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

Algorithm 1 Deep Q-learning based hotspot selection and task

offloading scheme.

Input: B, fm,l, fuav
1: Initialize experience replay buffer E;

2: Randomly initialize the weight θ of the evaluation

network;

3: Initialize the weight θ̂ = θ of the target network;

4: for Epoch = 1 : K do
5: Initialize vm,l, sm,l hm,l;

6: Randomly initialize state S(t);
7: for t=1:T do
8: Obtain state S(t) and select an action by (20);

9: Take action a(t) to obtain new state S(t+ 1) and

reward r(t);
10: Save transition (S(t), S(t+ 1), a(t), r(t)) in E;

11: Randomly sample mini-batch (S(t), S(t +
1), a(t), r(t)) from E;

12: Calculate loss function L(t) by (22);

13: Set θ̂ = θ every Tu time slot;

14: end for
15: end for
Output: pl, bm,l

0 50 100 150 200 250 300

Number of epochs

-2

-1

0

1

2

3

4

U
til

ity

Proposed
RHS
RTO
RHT

Fig. 2. Utility convergence of four schemes versus the training epoch.

computational workload ζ to 5cycle/bit, and the computational

capability of each user is 1 × 107cycle/s. In further, the task

size of each user in hotspot l follows uniform distribution of

sm,l ∼ U(5l, 5(l + 1)), and the priority of tasks in hotspot l
follows uniform distribution of vm,l ∼ U(l/L, (l + 1)/L). If

not specified, we set the number of hotspots to 6, the number

of users in each hotspot to 5, the computational capability of

the UAV to 6×108cycle/s, and the wireless bandwidth of each

user to 30MHz.

Fig. 2 shows the utility convergence of several schemes

versus the training epoch, where the number of epochs changes

from 0 to 300. For comparison, we plot the utility of three

competing schemes: random hotspot selection (RHS) which

employs the deep-Q learning to optimize the task offloading

while randomly selects the hotspot for the UAV, random

task offloading (RTO) which employs the DQN algorithm to

optimize the UAV hotspot selection while randomly offloads

the tasks for users, and random hotspot selection and task

offloading (RHT) which randomly selects the hotspot for

the UAV and offload tasks of users. We can find from the

figure that, except for the RHT, the utility of the other three

schemes increases as the number of epochs increases until

it converges. Specifically, the utility of the proposed scheme

increases sharply from -1.3 to 3.6 and converges at epoch

around 85, the utility of the RHS scheme increases from -

1.5 to 0.3 and converges at epoch about 90, the utility of

the RTO scheme increases from -1.4 to 1.5 and converges at

epoch around 85, while the utility of RHT remains unchanged

around -1.5. This is because that the deep Q-learning algorithm

of RHS, RTO and the proposed scheme can exploit effective

hotspot selection and the offloading strategies to improve the

task utility of the system, while the RHT can not output

an useful strategy and results in a poor system performance.

Moreover, we can see that the utility of the proposed scheme

is higher than that of the three competing schemes, as the

proposed scheme can explore both the effective actions of

hotspot selection and offloading decision. In particular, the

performance of the proposed scheme is at least 58.3% superior

to that of the three competing schemes, which verifies that

the proposed mathod can effectively improve the system

performance.

Fig. 3 illustrates the impact of the user number on the

utility of the four schemes, where the number of users ranges

from 2 to 12. Observing from the figure, we can find an

interesting phenomenon that the utility of the proposed scheme

and RTO scheme increases with the number of users, while

that of RHS and RHT decreases along with the number of

users. The major reason is that the proposed scheme and RTO

can exploit the effective hotspot selection policy to select

the hotspot that needs to be served by the UAV. Once the

UAV determines the urgent hotspot that need to be served, the

average system utility is positive, so that the average utilities of

the proposed scheme and RTO increase with a larger number

of users. In constrast, the other two schemes cannot effectively

select the emergency hotspot, which results in the failure of

computing the emergency tasks due to time-out and leads to a

large negative penalty. Therefore, the average system utilities

of RHS and RHT decreases with a larger number of users.

Moreover, we also see that the proposed scheme is superior

to the three competing schemes. For example, when the task

number is 12, the utility of the proposed scheme is at least

48.9% larger than that of the three competing schemes, which

proves the superiority of the proposed method to explore the

hotspot selection and offloading strategy.

Fig. 4 presents the effect of the UAV computational

capability on the utility of the four schemes, where the com-

putational capability at the UAV ranges from 2× 108cycles/s

to 10 × 108cycles/s. The results of this figure show that the

system utility grows with the UAV computational capability,

but the improvement rate gradually vanishes. The reason is

that, when the UAV computational capability is small, the

task computational latency becomes dominant in the task

execution time, and thus the utility increases significantly
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Fig. 3. Impact of number of users on the utility of
the four schemes.
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Fig. 4. Effect of the UAV computational capability
on the utility of the four schemes.
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Fig. 5. Utility of the four schemes versus the
wireless bandwidth.

with the UAV computational capability. However, when

the UAV computational capability becomes large, the task

computational latency can be negligible, and the improvement

of the system utility with the UAV computational capability

becomes marginal. These phenomena justify the insights in

Remark 1. Moreover, we observe that the utility of the

proposed scheme is always better than that of the other

three schemes because of its superior ability to output the

hotspot selections and offloading strategies. Specifically, the

proposed scheme is at least 58.1% better than the three

competing schemes when the computational capability of the

UAV is 10×108cycles/s, which attests the effectiveness of the

proposed scheme.

Fig. 5 shows the utility of the four schemes versus the

wireless bandwidth, where the bandwidth ranges from 10MHz

to 50MHz. By observing this figure, we can find that the

system utility improves with the increased bandwidth, but

the improvement rate gradually decreases. This is because

that, when the system bandwidth is small, the task offloading

latency is dominant in the task execution latency, and

therefore the system utility enlarges significantly along with

the bandwidth. However, when the bandwidth becomes large,

the task offloading latency is very small, and the improvement

of the system utility from the increased bandwidth becomes

marginal. These phenomena justify the insights in Remark 2.

Moreover, we find that the utility of the proposed scheme is

always superior to that of the other three schemes due to the

effective hotspot selections and offloading strategies explored

by deep Q-learning algorithm. Specifically, the proposed

scheme is at least 56.5% better than the other three schemes

when the bandwidth is 50MHz, which proves the superior

performance of the proposed scheme.

VI. CONCLUSIONS

In this paper, we studied the UAV-mounted MEC network,

where some tasks with time-varying priority in several

hotspots need to be executed by the UAV. For such a

system, we analyzed the impact of the wireless bandwidth

and computational capability of the UAV on the system

performance, from which we optimize the system through

UAV hotspot selection and user task offloading. We further

employed the deep Q-learning algorithm to solve the system

optimization problem to promote the system performance.

Simulation results were finally verified the effectiveness of

the proposed method that it can exploit the benefits of UAV

hotspot selection and task offloading, and improve the system

performance compared to the other schemes.
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