
1

Dilated Convolution based CSI Feedback
Compression for Massive MIMO Systems
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Abstract—Although the frequency-division duplex (FDD) mas-
sive multiple-input multiple-output (MIMO) system can offer
high spectral and energy efficiency, it requires to feedback the
downlink channel state information (CSI) from users to the base
station (BS), in order to fulfill the precoding design at the BS.
However, the large dimension of CSI matrices in the massive
MIMO system makes the CSI feedback very challenging, and it
is urgent to compress the feedback CSI. To this end, this paper
proposes a novel dilated convolution based CSI feedback network,
namely DCRNet. Specifically, the dilated convolutions are used to
enhance the receptive field (RF) of the proposed DCRNet without
increasing the convolution size. Moreover, advanced encoder
and decoder blocks are designed to improve the reconstruction
performance and reduce computational complexity as well.
Numerical results are presented to show the superiority of the
proposed DCRNet over the conventional networks. In particular,
the proposed DCRNet can achieve almost the state-of-the-arts
(SOTA) performance with much lower floating point operations
(FLOPs). The open source code and checkpoint of this work are
available at https://github.com/recusant7/DCRNet.

Index Terms—Massive MIMO, CSI feedback, deep learning,
dilated convolutions.

I. INTRODUCTION

As one of the key technologies for the next-generation

wireless communications, massive multiple-input multiple-

output (MIMO) systems can offer high spectral and energy

efficiency by employing numerous antennas at both the

transmitter and receiver. In MIMO system, the base station

(BS) requires the downlink channel state information (CSI)

to fulfill the precoding design. However, in the frequency-

division duplex (FDD) mode, the downlink CSI has to be

estimated by the user equipments (UEs), since it is difficult

for the BS to obtain the CSI information due to the weak

reciprocity. Notably, in massive MIMO systems, the overhead

to feed back the huge CSI matrices increases significantly with

the large number of antennas. Moreover, the transmit power

and uplink bandwidth of users are limited as well. Hence, it is

of vital importance to effectively compress the feedback CSI

for the massive MIMO systems.

To solve this problem, traditional compressed sensing (CS)

methods were proposed to compress the CSI matrix at the

UEs and restore the information at the BS [1]. However, the

CS based methods have several limitations, such as the ideal
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assumption of CSI sparsity, the neglect of channel statistics

during the random project, and the iterative processing leading

to a large latency. Recently, deep learning (DL) has attracted

many research interests and shown the great successes in

many fields. In this direction, a DL based CSI compression

algorithm named CsiNet was proposed in [2], which could

outperform the conventional CS-based schemes. However, its

two 3×3 convolutions failed to offer enough receptive field

(RF), indicating that the neuron in deep layers could not

represent enough region from the original input. Accordingly,

a large size convolution such as 7× 7 even 9× 9 was used to

obtain a large RF in order to enhance the CSI reconstruction

performance, at the cost of the increased computational

complexity [3]–[6].

In this paper, we investigate the problem of CSI feedback

compression for the classical massive MIMO systems under

FDD mode, and propose a novel dilated convolution based

CSI feedback network, namely DCRNet, which can help

compress the CSI feedback efficiently and meanwhile reduce

the computational complexity. In this deep network, the dilated

convolutions are used to enhance the RF of the network

without increasing the convolution size. Moreover, advanced

encoder and decoders blocks are designed to improve the

reconstruction performance and reduce computational com-

plexity as well. Numerical results are finally presented to show

the superiority of the proposed DCRNet over the conventional

networks. In particular, the proposed DCRNet can achieve

almost the state-of-the-arts (SOTA) performance with a much

lower floating point operations (FLOPs).

II. CSI FEEDBACK IN MASSIVE MIMO SYSTEMS

This paper investigates a single-cell FDD massive MIMO-

OFDM system, where there are Nt � 1 transmit antennas at

the BS, and a single antenna at the user with Nc sub-carriers.

The complex-valued received signal at the n-th sub-carrier is

yn = hH
n bnxn + zn, (1)

where hn ∈ C
Nt×1 is the channel gain vector, in which

(·)H denotes the conjugate transpose operation. Notation

bn ∈ C
Nt×1 represents the beamforming vector, xn is the

transmitted symbol and zn denotes the additive white Gaussian

noise (AWGN). The CSI of all sub-carriers can be expressed

by the matrix H = [h1,h2, · · · ,hNc
], where there are 2NcNt

elements in total.

The beamforming and precoding design at the BS requires

the feedback of the CSI matrix H , which however causes

a severe communication overhead due to a large number

of elements, especially in the practical massive MIMO
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Fig. 1. Structure of the CSI feedback in massive MIMO system.

systems. To solve this problem, the CSI matrix H should be

compressed and fed back to the BS, where the CSI feedback

model is shown in Fig. 1. Specifically, the CSI matrix H
is firstly transformed into the angular and delay domains, by

using the discrete Fourier transformation (DFT), given by

H̃ = FcHFt, (2)

where Fc, Ft are Nc × Nc and Nt × Nt DFT transfor-

mation matrices, respectively. The matrix H̃ is sparse and

compressible, and it can be divided into two parts. One part

is Ha which has Na rows composed of non-zero elements

(Na < Nc), while the other part contains the rest Nc − Na

rows composed of near-zero elements. In this way, we can

compress the CSI matrix H , by using the matrix Ha, with a

negligible information loss.

To further compress the CSI matrix, deep autoencoder based

compression and recovery strategies should be used, where an

encoder is employed in Fig. 1 to compress the CSI and output

a codeword vector with a smaller size, given by

v = E(θ1,Ha), (3)

in which E(·) represents the compression operation and θ1
denotes the encoder’s parameters. The compressed CSI will

be fedback to the BS via the dedicated channel, and the BS

can recover the received CSI matrix through a decoder, given

by

Ĥa = D(θ2,v), (4)

where D(·) and θ2 represent the recovery operation and model

parameters, respectively. The aim of the CSI feedback is to

minimize the average reconstruction error, given by

min
(θ1,θ2)

E||Ha − Ĥa||2. (5)

III. DILATED CONVOLUTIONS BASED CSI FEEDBACK

In this section, we will firstly describe the structure of the

proposed DCRNet, and then give the critical design on the

dilated encoder and decoder blocks which can extract features

from the block-sparse CSI matrices efficiently.

A. Structure of the proposed DCRNet

Inspired by the fact that the CNN-based autoencoder can

efficiently extract the spatially local correlation in the CSI

matrices [2], we devise the DCRNet by using a dilated CNN-

based autoencoder, whose architecture is shown in Fig. 2.

Specifically, the input matrix of the encoder is Ha with the

dimension of 2 × Na × Nt, where the first two independent

channels represent the real and imaginary parts of the CSI

matrix, respectively. We then use a 5× 5 head convolution to

extract the features from the input CSI matrix and fuse the

information from the real and imaginary parts. The output of

the 5×5 head convolution is passed through an encoder block,

which can help extract a deep abstract information. Unlike

the ACRNet which uses two encoder blocks, the DCRNet

only uses one encoder block to reduce the implementation

complexity. After passing though the encoder block, the

2 ×Na ×Nt will be reshaped to a 1-D vector, and the fully

connected (FC) layers are used to compress the vector into a

codeword with a compression rate of η ∈ (0, 1). After that,

the codeword will be transmitted to the decoder at the BS via

the wireless channel.

When the decoder receives the codeword, it will restore the

CSI matrix’s dimension through the FC layers and a reshape

operation. Then, a head convolution with a kernel size of 5×5
is employed to enhance the recovery performance. Afterwards,

two sequential dilated decoder blocks are in charge of recover-

ing the compressed information. Note that batch normalization

(BN) and parametric rectified linear unit (PReLU) activation

functions are appended to all the convolutions. The PReLU

activation with a learnable parameter α can be expressed as

PReLU(x) =

{
x, x ≥ 0
αx, x < 0.

(6)

B. Critical design on dilated encoder and decoder blocks

To increase the RF for enhancing the CSI reconstruction

performance and meanwhile avoiding the increase in the

computational cost, we design a novel encoder and decoder

blocks composed of a series of DConvs. Different from the

standard convolution, Dconv extracts features with a specific

interval d, which is also called as dilated rate. Formally, the

2D-dilated convolutional operation without bias can be written

as

(I �K)[i, j] =
∑
u

∑
v

I[i+ du, j + dv] ·K[u, v], (7)

where �, I and K represent the DConv operator, 2D input

and convolution kernel, respectively. In addition, u and v are

the indices of convolution kernel K. The effective kernel size

of DConv with dilated rate d can be expressed as

k′i = ki + (ki − 1)(d− 1), (8)

where ki and k′i are the used and effective kernel sizes of

convolution, receptively. Fig. 3 shows the dilated convolution

with several dilated rates d. Specifically, when the dilated rate

d is 1, the dilated convolution degenerates into the standard

convolution. In contrast, when d > 1, the DConv operation can

offer larger RF compared to the standard convolution with the

same kernel size. This can achieve a sparse sampling for the

block-sparse CSI matrix. In the following, we will describe

the design details of the dilated encoder and decoder.
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Fig. 2. Architecture of the proposed DCRNet, where (a) and (b) illustrate the structures of the encoder and decoder of DCRNet. In addition, the structures
of the encoder block and decoder block in (a) and (b) are illustrated in (c) and (d) with Na = Nt = 32, respectively. In general, the encoder block and the
decoder block are the main components of DCRNet, where BN layers, activation functions and reshape operations are omitted for brevity.

1) Encoder block design: Although the RF in the Dconv

becomes larger with an increased dilated rate, the sequential

use of Dconvs with equal dilated rates will cause the

gridding effect and information loss [7]. Inspired by the

technique of hybrid dilated convolutions (HDC) [7] and

asymmetric convolution [3], this paper employs asymmetric

3×3 convolutions with d = 1, d = 2 and d = 3 in the encoder

block, as shown in Fig. 2. One can readily verify that the

proposed encoder block can obtain RF with the size of 13×13,

which is equal to the size in CsiNet+ [4]. This can not only

help the encoder block extract large-scale information, focus

on the local details without occurring the gridding effect, but

also decrease the computational complexity.

Since concatenating the features from different convolutions

can yield the multi-resolution of CSI to enhance the system

performance, we next perform the concatenation operation for

the proposed encoder block. Specifically, we adopt a standard

3 × 3 filter as a complement to the Dconv, where the input

of the encoder block will pass through two parallel branches.

In particular, one branch is the aforementioned Dconv, while

the other branch is a standard 3 × 3 convolution. Then, the

outputs are concatenated with the size of 4 × Na × Nt and

the number of channels will be reduced to 2 by the last 1× 1
convolution. In further, the residual learning is used, so that

the identity of the input can be added to the output of the last

1× 1 convolution.

2) Decoder block design: Following the design principle

of the encoder block, we design the decoder block by using

two parallel branches and an identity map. Specifically, in

the first branch, a 3 × 3 dilated convolution with d = 2 is

used to increase the feature dimension to 8ρ, where ρ ≥ 1 is

the network width expansion rate. By adjusting the expansion

rate ρ, we can make DCRNet-ρ× suitable for devices with

different computational capacities. Then, group convolutions

are used where 3×1 and 1×3 DConvs with d = 3 replace the

standard 9×9 convolution, which can reduce the computational

complexity of the decoder significantly. Afterwards, a 3 × 3
convolution is used to reduce the feature dimension to 2.

In the second branch, we use the group convolution and

width expansion operation, instead of using only one standard

convolution in the second branch of encoder blocks. This is

because that the computational resources of BS are usually not

as limited as UEs and width expansion operation is important

for CSI feedback as well [5]. In detail, 1 × 3 and 3 × 1
filters are used to increase and reduce the feature dimensions,

respectively. 5 × 1 and 1 × 5 group convolutions are similar

to those in the first branch. The outputs of the two branches

will be concatenated together and passed through a 1 × 1
convolution. Due to the use of Dconv and multi-resolutions,

DCRNet is much wider than ACRNet [5] with lower FLOPs.

This makes the decoder of the proposed DCRNet achieve

a fine trade-off between the performance and computational

complexity.

IV. NUMERICAL RESULTS AND ANALYSIS

A. Experimental settings

1) Data generation: Following the experimental setting in

[2], the system model of COST 2100 [8] is applied to obtain

the training and test samples, where we use two types of

scenarios including indoor with 5.3GHz and outdoor with

300MHz bandwidth. There are Nt = 32 uniform linear

array (ULA) antennas as the BS and Nc = 1024 sub-

carries. Accordingly, the original 2 × 32 × 1024 CSI matrix

is transformed into the angular-delay domain and then be

truncated to the 2× 32× 32 matrix. The number of training,

validation and test sample are 100,000, 30,000 and 20,000,

respectively.
2) Training setting: We use the Kaiming initialization to

generate weights for each convolution layer and FC layer,

where the Adam optimizer is used to update the weights.
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Fig. 3. Demonstations of the dilated convolution operations with different
dilated rates, where solid and shadow areas represent the effective operations
and RF, respectively. When d = 1, the dilated convolution degenerates into
the standard convolution. When d > 1, the dilated convolution is able to
obtain a larger RF while it still involves the same computational complexity
as the standard convolution.

Moreover, cosine annealing learning rate is exerted to improve

the performance according to [3], [5]. In addition, the initial

learning rate varies between γmin = 5e−5 and γmax = 2e−3,

and the process can be expressed as

γt = γmin +
1

2
(γmax − γmin)

(
1 + cos

( t− Tw

T − Tw
π
))

, (9)

where t is the index of training epoch, γt is the current learning

rate, and Tw and T are the number of warm up epochs and

total epochs, respectively. In this paper, Tw and T are set to

30 and 2500, respectively.

3) Evaluation criteria: We use normalized mean square

error (NMSE) between the input CSI matrix Ha and the

output matrix Ĥa restored by decoder to evaluate the

performance, which is given by

NMSE = E

{∥∥∥Ha − Ĥa

∥∥∥2
2

/‖Ha‖22
}
. (10)

In addition, the FLOPs and number of parameters are also

measured in the experiment.

B. Performance of the proposed DCRNet

We compare the proposed DCRNet with the conventional

DL-based CSI feedback networks, which are divided into the

following two groups,

• Low-complexity networks, such as the famous CsiNet [2],

CRNet [3], ACRNet-1× [5] and the proposed DCRNet-

1×. The FLOPs of this group are all less than 5M.

• High-performance networks, such as the proposed

DCRNet-10×, DS-NLCsiNet [9], the SOTA CsiNet+ [4]

and ACRNet-10× [5]. The FLOPS in this group are much

higher than those in the first group.

Table I lists the performance comparison of the mentioned

several CSI feedback networks, where the compression rate

η is set to 1/4, 1/8, 1/16 and 1/32, respectively. All the

best results are presented in bold font. From the first group

of Table I, we can find that the proposed DCRNet-1× has

the lowest computation complexity and fewest parameters. In

particular, when the compression rate is 1/4, the proposed

DCRNet-1× can reduce the FLOPs of CsiNet, CRNet and

ACRNet-1× by 26%, 21%, 12%, respectively. Moreover, the

proposed DCRNet-1× can achieve the SOTA performance

for various compression rates under indoor scenario. Under

TABLE I
COMPARISON OF NMSE AND COMPLEXITY OF DIFFERENT METHODS.

Complexity NMSE (dB)

η Methods FLOPs Parameters Indoor Outdoor

1/4

CsiNet 5.41M 2103K -17.36 -8.75
CRNet 5.12M 2103K -26.99 -12.70
ACRNet-1× 4.64M 2102K -27.16 -10.71
DCRNet-1×(ours) 4.01M 2102K -28.04 -12.58

DS-NLCsiNet 11.30M 2108K -24.99 -12.09
CsiNet+ 24.57M 2122K -27.37 -12.40
ACRNet-10× 24.40M 2123K -29.83 -13.61
DCRNet-10×(ours) 17.57M 2115K -30.61 -13.72

1/8

CsiNet 4.37M 1054K -12.70 -7.65
CRNet 4.07M 1054K -16.01 -8.04
ACRNet-1× 3.60M 1054K -15.34 -7.85
DCRNet-1×(ours) 2.96M 1053K -16.26 -7.95

DS-NLCsiNet 10.25M 1059K -17.00 -7.96
CsiNet+ 23.52M 1073K -18.29 -8.72
ACRNet-10× 23.36M 1074K -19.75 -9.22
DCRNet-10×(ours) 16.52M 1066K -19.92 -10.17

1/16

CsiNet 3.84M 530K -8.65 -4.51
CRNet 3.55M 530K -11.35 -5.44
ACRNet-1× 3.07M 529K -10.36 -5.19
DCRNet-1×(ours) 2.44M 528K -11.74 -5.60

DS-NLCsiNet 9.72M 534K -12.93 -4.98
CsiNet+ 23.00M 549K -14.14 -5.73
ACRNet-10× 22.82M 549K -14.32 -6.30
DCRNet-10×(ours) 16.00M 542K -14.02 -6.35

1/32

CsiNet 3.58M 268K -6.24 -2.81
CRNet 3.28M 267K -8.93 -3.51
ACRNet-1× 2.81M 267K -8.60 -3.31
DCRNet-1×(ours) 2.18M 266K -9.05 -3.47

DS-NLCsiNet 9.46M 272K -8.64 -3.35
CsiNet+ 22.74M 286K -10.43 -3.4
ACRNet-10× 22.50M 287K -10.52 -3.83
DCRNet-10×(ours) 15.74M 279K -9.88 -3.95

outdoor scenario, the proposed DCRNet-1× can still achieve

almost the SOTA performance with the lowest FLOPs.

From the second group of Table I, we can find that the

proposed DCRNet-10× has the second lowest computational

complexity, and its FLOPs are about 7M less than the SOTA

CsiNet+ and ACRNet. Moreover, the proposed DCRNet-10×
outperforms the other networks when the compression rates

are 1/4 and 1/8 under both indoor and outdoor scenarios.

With high compression rate such as 1/16 and 1/32, the

proposed DCRNet-10× can outperform the other networks

under outdoor scenario, and it can also achieve almost

the SOTA result with a marginal performance gap of less

than 0.7dB under indoor scenario. These results in Table I

demonstrate that the proposed DCRNet-1× and DCRNet-10×
can achieve almost the SOTA performance with much lower

FLOPs.

Fig. 4(a) depicts the channel reconstruction performance

versus the FLOPs, where the indoor scenario is investigated

and η is 1/4. In order to meet the need of the UEs with

different computational capacities, the width expansion ratio ρ
of ACRNet and the proposed DCRNet are set to 1, 4, 8, 10 and

12. From Fig. 4(a), we can find that the curve of the proposed

DCRNet is at the bottom left. Specifically, the DCRNet-8×
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Fig. 4. NSME performance versus FLOPs under indoor scenario when the
compression rates are 1/4 and 1/16.

achieves the same performance as the ACRNet- 12× with only

a half computational complexity. This demonstrates the high

efficiency of the proposed DCRNet.

Fig. 4(b) illustrates the NMSE performance versus FLOPs

under indoor scenario, where the compression rate is 1/16 in-

dicating that it is much more difficult to restore the CSI matrix

from the codeword vector. From this figure, we can find that

the curve of the proposed DCRNet is still at the bottom left,

which further demonstrates the advantages of the DCRNet.

In particular, compared with the CRNet and ACRNet-1×, the

DCRNet-1× can achieve the best performance with the lowest

computational complexity. Moreover, the proposed DCRNet-

4× achieves -13.52dB NSME and 6.69M FLOPs, which

outperforms the -12.93dB NSME and 4.98M FLOPs of DS-

NLCsiNet. In further, the proposed DCRNet-8× and DCRNet-

10× achieve -14.02dB and -14.18dB NSME, respectively, and

there is a marginal gap between them and -14.32dB NSME

of the ACRNet-10×. However, the FLOPs of DCRNet-8×
and DCRNet-10× are much lower than those of the ACRNet-

10×. In a word, by adjusting the width expansion rates, the

proposed DCRNet can achieve a fine trade-off between the

NSME performance and computational complexity.

C. Ablation experiments

In order to further demonstrate the validity of the dilated

convolution and large receptive field, we replace the original

TABLE II
COMPARISON OF NMSE WHEN COMPRESSION RATE IS 1/16.

Baseline DCRNet-M1 DCRNet

Indoor -11.28 -11.41 -11.74
Outdoor -5.46 -5.55 -5.60

dilated convolution in the proposed DCRNet. In particular,

we use the standard convolution to replace all the dilated

convolutions in both the encoder and decoder as a baseline.

Besides, we use the dilated convolution in the encoder only,

to generate another network called by DCRNet-M1. The

NMSE comparison results are given in Table II, where the

compression rate is 1/16. From this table, we can find that

the proposed DCRNet can achieve the best reconstruction

performance thanks to the joint use of dilated convolution

in both the encoder and decoder. Moreover, the DCRNet-M1

outperforms the baseline, due to the use of dilated convolution

in the encoder.

V. CONCLUSIONS

In this paper, we proposed a novel DL-based CSI feedback

network for massive MIMO systems named DCRNet, which

employed dilated convolution to increase the RF and mean-

while reduce the computational complexity. Simulation results

have been demonstrated to show the efficiency and flexibil-

ity of DCRNet. Specifically, DCRNet-1× outperformed the

competitive lightweight networks with limited computational

resources. As well, DCRNet-10× achieved almost the SOTA

reconstruction performance with a much lower computational

complexity than the conventional networks.
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