
1

Profit Maximization for Cache-Enabled Vehicular
Mobile Edge Computing Networks

Wenqi Zhou, Junjuan Xia, Fasheng Zhou, Lisheng Fan, Xianfu Lei, Arumugam Nallanathan, and George K.

Karagiannidis

Abstract—In this paper, we investigate a multiuser cache-
enabled vehicular mobile edge computing (MEC) network,
where one edge server (ES) has some caching and computing
capabilities to assist the task computing from the vehicular users.
The introduce of caching into the MEC network significantly
affects the system performance such as the latency, energy
consumption and profit at the ES, which imposes a critical
challenge on the system design and optimization. To solve this
challenge, we firstly design the vehicular MEC network in a
non-competitive environment by maximizing the profit of the
ES with a predetermined threshold of user QoE, and jointly
exploit the caching and computing resources in the network.
We then model the optimization problem into a binary integer
programming problem, and adopt the cross entropy (CE) method
to obtain the effective offloading and caching decision with a low
complexity. Simulation results are finally presented to verify that
the proposed scheme can achieve the near optimal performance of
the conventional branch and bound (BnB) scheme, while sharply
reduce the computational complexity compared to the BnB.

Index Terms—Mobile edge computing, edge caching, compu-
tation offloading, profit maximization, cross entropy

I. INTRODUCTION

With the rapid development of communication systems, an

ever-increasing number of mobile devices and Internet data

have brought a critical challenge on massive communication

and computing. To solve this challenge, one promising

technique is mobile edge computing (MEC), which starts

from cloud computing, and evolves to deploy computational

resources to the nodes nearby the users. This can help reduce

the communication and computation overhead significantly.

In the MEC networks, the quality of experience (QoE) of

users mainly depends on the latency, energy consumption and

payment, which has been extensively studied in the literature

[1]–[5].

Profit is an important performance of metric for resource

providers in MEC networks, which can help encourage

servers providing edge computing services, and enhance

the users’ QoE [6]–[13]. In this direction, the authors in

[6], [7] investigated how to maximize the profit of the

W. Zhou, J. Xia, F. Zhou and L. Fan are with the School of
Computer Science, Guangzhou University, Guangzhou, China (e-mail:
2112006056@e.gzhu.edu.cn, {xiajunjuan,zfs,lsfan}@gzhu.edu.cn).

X. Lei is with the Provincial Key Lab of Information Coding and
Transmission, Southwest Jiaotong University, Chengdu 610031, China, and
also with National Mobile Communications Research Laboratory, Southeast
University, Nanjing 210096, China (e-mail: xflei@swjtu.edu.cn).

A. Nallanathan is with the School of Electronic Engineering and
Computer Science, Queen Mary University of London, London, U.K (e-
mail:a.nallanathan@qmul.ac.uk).

George K. Karagiannidis is with the Wireless Communications and
Information Processing (WCIP) Group, Electrical and Computer Engineering
Department, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
(e-mail: geokarag@auth.gr).

MEC networks through the computational capability allocation

among users, where the users’ QoE was taken into account by

considering different system factors such as the latency, energy

consumption, and user payment. In addition, a three-tire cloud

computing architecture was investigated in [8], where the

profit was maximized for the cloud provider by optimizing

the request scheduling under the constraint of the user service

price and service latency. Moreover, the authors in [9], [10]

investigated the cloud computing system and maximized the

profit of cloud brokers, where the pricing strategy was devised

by jointly taking into account the diversity and cost in the

users’ QoE. In further, the profit maximization problem of the

cloud service provider was studied in [11], [12], where the

fund allocation and server configuration were optimized with

the constraint on the service time of users.

To further enhance the performance of the MEC networks,

caching is introduced into the system by pre-storing popular

contents close to the users to reduce the overhead of the

communication and computation. It is of vital importance

to jointly optimize the caching and computing services in

the cache-enabled MEC networks, in order to enhance the

system performance [14]–[17]. In this direction, S. Bi et.al
studied how to devise the cache-enabled MEC networks by

maximizing the QoE of users [14]. The user utility was

maximized in the cache-enabled MEC networks, through

studying the problem of joint service caching and task

offloading under the constraint of the storage, computation

and user budget [15]. In addition, the authors in [16], [17]

studied the cache-enabled Internet of Vehicles (IoV) edge

computing network to minimize the system latency, where the

computation offloading and caching were jointly investigated.

So far, there has been little work on the profit maximization

in the cache-enabled MEC networks, where the joint impact

of caching and computing should be fully taken into account.

This motivates the work in this paper.

In this paper, we study a multiuser cache-enabled vehicular

MEC network with one edge server (ES), where the ES can

assist the task computation of the vehicular users through

its caching and computing resources. For this system, we

firstly design the network in a non-competitive environment

with the goal of maximizing the profit of the ES, while

satisfying the QoE of users. And then, the maximization

problem is modeled into a binary integer programming

problem, and we adopt cross entropy (CE) method to solve

the problem of offloading and caching decisions with a low

complexity. Finally, simulations are conducted to demonstrate

the superiority of the proposed scheme over the traditional

ones.

Page 1 of 13 IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2

Fig. 1. System model of cache-enabled vehicular MEC networks.

II. SYSTEM MODEL

Fig. 1 depicts the system model of a cache-enabled

vehicular MEC network, where there is one ES surrounded

by M vehicular users {um|1 ≤ m ≤M}, and the ES can

download resources from the center cloud through a wired

link. These M users have some computational tasks that

need to be executed by in-car applications. As the users are

generally of limited computational capability, the ES with

a powerful computational capability should help compute

the tasks through wireless links from the users to the ES.

Moreover, the ES is equipped with a storage space of Ω,

which can pre-store some applications in order to speed

up the computation. Specifically, if some frequently used

applications have already been pre-stored in the ES, the user

does not need to offload these applications1 but to send the

contextual information (e.g., the user related parameters, which

are negligible compared to the application itself.) and wait

for the corresponding task computational result from the ES.

Otherwise, the vehicle needs to offload the applications for the

task execution or compute the task locally. In the following

part, we detail the caching model as well as the computation

and communication model.

A. Caching Model
Let I denote the set of applications in the network, and

there are I applications in total. Due to the limited storage

space, only a part of applications can be cached in the ES.

The caching strategy should take into account some factors,

such as the application popularity, caching cost and so on.

For the i-th application, we use xi to present the associated

caching decision, given by

xi =

{
1, If application i is cached in the ES,

0, Else.
(1)

The constraint in the storage space at the ES is

I∑
i=1

xiωi ≤ Ω. (2)

where ωi is the application size in bits. Without loss of

generality, we use the Zipf distribution [18] to model the

application popularity, given by

pi =
i−γ∑I

i1=1 i1
−γ

, (3)

1Vehicles can outsource the in-car applications to the ES for the task
execution [17].

where pi is the popularity of the i-th application, and γ > 0
is an essential parameter of Zipf distribution.

B. Computation and Communication Model

As mentioned before, if the application is not cached in the

ES, then the task has to be computed locally, or computed

by the ES through offloading. Let Im denote the application

set requested by the m-th user to compute their tasks, where

Im ⊆ I. When tasks needed to be computed locally, the local

latency and energy consumption of user m can be written as

Llocal
m =

∑
i∈Im

(1− xi) (1− ym,i)
ωiζ

fm
, (4)

Elocal
m =

∑
i∈Im

(1− xi) (1− ym,i)ωif
2
mζεm, (5)

where ym,i is the binary offloading decision, in which ym,i =
0 corresponds to the local computation while ym,i = 1
indicates the full offloading of the i-th application from user

um to the ES for the task computing. Notation ζ is the

computational workload, fm is the computational capability

of user m, and εm is the energy consumption coefficient of

user m. When tasks are executed through the offloading, the

transmission latency and energy consumption of user m are

Ltrans
m =

∑
i∈Im

(1− xi)ym,i
ωi

rm
, (6)

Etrans
m =

∑
i∈Im

(1− xi)ym,i
ωi

rm
Pm, (7)

where Pm is the transmit power of user m, and rm is the

transmission data rate,

rm = Bm log2

(
1 +

Pm|hm|2
σ2

)
, (8)

in which Bm is the wireless channel bandwidth of user m,

hm ∼ CN (0, ξ) is the channel parameter of the link from

user m to the ES, and σ2 is the variance of additive white

Gaussian noise (AWGN) at the ES. After offloading, the ES

can compute the tasks in parallel, where virtual machines are

created to uniformly allocate the computational capability to

the users. Accordingly, the latency and energy consumption of

computing the tasks from user m at the ES are

Les
m =

∑
i∈Im

(1− xi)ym,i
ωiζ

fes/M
, (9)

Ees
m =

∑
i∈Im

(1− xi)ym,i(fes/M)2ωiζεes, (10)

where fes is the computational capacity of the ES, and εes is

the associated energy consumption coefficient. From (9) and

(10), we can obtain the total computational latency and energy

consumption of the ES as,

Les = max(Les
1 , Les

2 , ..., Les
M), (11)

Ees =
M∑

m=1

Ees
m . (12)

Page 2 of 13IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3

Moreover, the total latency and energy consumption of user

m are

Lm = max(Llocal
m , Ltrans

m + Les
m), (13)

Em = Elocal
m + Etrans

m . (14)

III. PROBLEM FORMULATION AND PROFIT MAXIMIZATION

In this section, we firstly formulate the offloading and

caching problem to maximize the server profit while guaran-

teeing the QoE of users, and then employ the CE method to

obtain the offloading and caching decision. We further discuss

the computational complexity of the CE-based method.

A. Problem Formulation

When the server helps accomplish the computational tasks

from the users, it should be awarded some profit due to user

payment, and the profit award from user m is

Rm = β1

∑
i∈Im

(1− xi)ym,iωi + β2

∑
i∈Im

xiωi, (15)

in which β1 and β2 are the price coefficients (Unit:

cents/Mbits) of computing and caching at the ES, respectively.

The total profit award of the ES is

λaward =

M∑
m=1

Rm. (16)

Meanwhile, to assist the computation, the server has to

suffer some profit loss due to computing and pre-storing the

applications. Specifically, the profit loss of the server due to

computing depends on the computational energy consumption

and latency, given by

λcomp = ηeE
es + ηlL

es, (17)

where ηe and ηl are the economic factors (Unit: cents/J,

cents/s) of the energy consumption and latency, which turn

the energy consumption and latency into the economic sense.

In addition, the ES also suffers some profit loss due to the

caching, depending on the size of the application,

λcache = ηs

I∑
i∈I

xiωi, (18)

where ηs ≥ 0 is the economic factor (cents/Mbits) for caching.

Note that the above β1, β2, ηe, ηl, and ηs should

be set according to the specific application scenarios and

requirements. Take β1 as an example to explain the impact

of these coefficients on the system profit. If β1 is set too high,

users may be reluctant to offload tasks to the ES due to high

payment, which may lead to an decreased profit at the ES. On

the contrary, if β1 is set too small, the ES may suffer economic

loss due to little revenue. Hence, the setting of these economic

coefficients including β1 should jointly take into account the

user payment and the ES profit.

By jointly taking into account the award and loss, we obtain

the overall profit of the server (Unit: cents) as

λES = λaward − λcomp − λcache. (19)

On the other hand, by jointly considering the latency, energy

consumption and the computational payment, we can write the

QoE of user m as

Um = ηeEm + ηlLm + ηpRm, (20)

where ηp ∈ [0, 1] is a factor to indicate the importance of

the price for users. For the entire system, we can formulate

the system design by maximizing the server profit and

guaranteeing the QoE of users meanwhile, given by

P : max
{xi,ym,i}

λES

s.t. C1 : Um < Uth, ∀m ∈ [1,M],

C2 : xi ∈ {0, 1}, ∀i ∈ I,

C3 :
I∑

i=1

xiωi ≤ Ω,

C4 : ym,i ∈ {0, 1}, ∀m ∈ [1,M], ∀i ∈ Im,

(21)

where Uth is a predetermined threshold of the QoE, and

the optimization variables come from the caching variables

{xi|i ∈ I}, and the offloading variables {ym,i|1 ≤ m ≤
M, i ∈ Im}.

Note that the above optimization problem is a binary integer

programming problem, which is hard to be solved by the

conventional method such as convex optimization. Although

it can be solved by the branch-and-bound (BnB) algorithm, its

huge complexity makes it difficult for practical applications.

In many practical vehicular MEC networks, vehicles have

to complete the task within the timescale of millisecond, in

order to give a quick response on the vehicle operation. To

meet this requirement, we turn to use the CE method to

solve the problem, which is a heuristic algorithm and widely

used in integer nonlinear programming problems thanks to its

advantages of implementation simplicity and fast convergence

[19]–[21].

B. CE-Based Offloading and Caching Scheme
In this part, we employ the CE algorithm to solve the

binary caching and offloading decision in (21). Let J =
I +

∑M
m=1 Im, where Im is the number of the applications

in Im, and a J-dimensional vector z = [z1, z2, ..., zJ] can be

constituted, where it consists of {xi|i ∈ I} and {ym,i|m ∈
[1,M], i ∈ Im}. In particular, zj ∈ {0, 1} for j ∈ [1, J], and

the first I elements represent the caching decision, while the

rest elements denote the offloading decision. The idea of using

the CE algorithm to solve the problem in (21) lies in that we

try to learn a distribution of caching and offloading decision,

which is close to the true distribution of the optimal decision.

Specifically, we use q(z,μ) to denote the true distribution

of the optimal caching and offloading decision, and g(z,μ)
represents a theoretically-tractable distribution that needs to

be learned, where μ = [μ1, μ2, ..., μJ] denotes the mean of

the distribution. For the two distributions, the cross entropy is

given by

H(q, g) = −
∑

q(z,μ) ln g(z,μ), (22)

which represents the distance between the two distributions.

From H(q, g), we aim to learn g(z,μ) by iterative training,

Page 3 of 13 IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4

in order to minimize the cross entropy. For the binary integer

programming problem in (21), we firstly choose Bernoulli

distribution as a feasible solution of g(z,μ), expressed by

g(z,μ) =

J∏
j=1

μ
zj
j (1− μj)

1−zj , (23)

where uj ∈ [0, 1] is the mean of element zj , i.e., Pr(zj = 1) =
uj . We then generate some samples of caching and offloading

decision for the learning, according to the distribution g(z,μ).
Let N denote the set of feasible samples. In iteration k ∈
[1,K], we repeatedly generate the sample zn according to

(23), where n ∈ N . In detail, the element zj in zn is parallelly

generated according to the Bernoulli distribution of Pr(zj =
1) = uj and Pr(zj = 0) = 1 − uj . Meanwhile, the sample

zn that does not satisfy the constraint C1 and C3 in (21)

is removed during the process of producing samples. After

we obtain N samples for the set N , the sample generation at

iteration k is completed. Based onN , we further learn the μ of

g(z,μ) to minimize the cross entropy. As the decision samples

in the set N are independent, we can obtain q(z,μ) = 1
N , and

write the minimum of cross entropy as

minH(q, g) = max
1

N

N∑
n=1

ln g(zn,μ). (24)

As the optimal caching and offloading decision in (21) is to

maximize λES , the feasible samples of the decision in N are

sorted in descending order according to the value of λES at

each iteration. The first Nelite decisions are selected as elite

decisions to update the parameters μ, which is written as

μ∗ = argmax
μ

1

N

Nelite∑
n=1

ln g(z(n),μ), (25)

where z(n) indicates the n-th elite decision. According to [20],

we can obtain the value of μ∗ at iteration k, where the element

μ∗j of μ∗ is obtained by

μ∗j =
1

Nelite

Nelite∑
n=1

z
(n)
j . (26)

We update μ(k) based on μ(k−1) and μ∗(k) of iteration k − 1
and k by

μ(k) = bμ∗(k) + (1− b)μ(k−1), (27)

where b ∈ [0, 1] is the learning rate, which can be set in

the range of [0.4, 0.9] to achieve a fine result [21]. After K
iterations, we can finally obtain the estimate of the caching and

offloading decision. The overall CE-based learning algorithm

is summarized in Algorithm 1.

C. Complexity Analysis

In this part, we provide some analysis on the computational

complexity of the CE method. For the J-dimensional binary

integer programming problem, CE method needs to update

the parameters of the J elements in K iterations. Therefore,

the computational complexity of CE method is O(JK). In

contrast, the computational complexity of the conventional

Algorithm 1 CE-based joint offloading and caching scheme

Input: N = [], μ(0) = 0.5× 1J×1

1: for k = 1 : K do
2: while |N | < N do
3: generate zn based on g(z,μ) under constraints C1

4: and C3

5: end while
6: Calculate the function (19) of N samples

7: Sort {λES(zn)}Nn=1

8: Select the first Nelite samples as elites

9: λmax
ES = Average{λES(zn)}Nelite

n=1

10: Update μ(k+1)

11: end for
Output: λmax

ES , z

BnB is close to that of the exhaustive method, as it is

performed sequentially. Although pruning can be carried out in

the process of BnB to reduce the complexity, its computational

complexity is still about O(2J). Obviously, the computational

complexity of CE method is much lower than that of BnB,

which is about JK
2J

of the BnB. Moreover, BnB requires a large

memory for storage, especially when the problem dimension

increases. Therefore, CE algorithm shows more advantages

with the increase of the problem dimension J , and it is much

more readily to be implemented in a parallel way.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this part, we provide some simulation results to verify the

proposed studies. If not specified, there are 500 applications

in the network which are of the same size, and each user

requests 10 applications for the task computing, according to

the Zipf distribution with γ = 2. The size of the application

is 80Mbits, and the storage space is 30Gbits. Moreover, the

wireless links in the network experience Rayleigh block fading

with the average channel gain of unity, and the wireless

bandwidth of each user is 40MHz. The transmit power of

users is 2W, and the variance of AWGN is σ2 = 1× 10−2W.

In further, the computational workload ζ is set to 2cycle/bit,

and the CPU cycle frequencies of the users and ES are set to

400MHz and 800MHz, respectively. The energy consumption

coefficients of the users and ES are set to 1 × 10−26 and

1×10−28, respectively. Furthermore, the price coefficients β1

and β2 are set to 1cent/Mbits and 5cents/Mbits, respectively.

The economic factors ηe, ηl, and ηs are set to 100cents/J,

100cents/s, and 10cents/Mbits, respectively. Such setting of

economic coefficients can make the award and loss of the ES

at the same magnitude, which can help analyze the impact of

the system parameters on the profits. The profit of the ES in

the simulation is in 104.

In order to show the performance of the proposed CE-based

method, we demonstrate the convergence of the proposed

CE-based scheme in a small-scale experiment, and give the

profit of the BnB as a benchmark for comparison, where

there are two users in the network, the total applications is

20, and the storage space is 1200Mbits. Fig. 2 shows the

convergence of the proposed scheme versus the number of

Page 4 of 13IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5

0 10 20 30 40 50

Number of iterations

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Pr

of
it

BnB
N=1000,N

elite
=500

N=1000,N
elite

=10

N=100,N
elite

=10

N=50,N
elite

=10

30 35 40
0.1

0.12

0.14

Fig. 2. Profit of the proposed CE-based scheme versus the number of
iterations.

0 10 20 30 40 50 60 70 80

Application size (Mbits)

0

20

40

60

80

100

120

140

Pr
of

it

M=200

M=300

Proposed scheme
Random scheme
Pop scheme

Fig. 3. Profit of the three schemes versus the application size.

iterations under different settings of N and Nelite, where the

number of iteration varies from 0 to 50. We can observe from

this figure that for different settings of N and Nelite, the

proposed scheme can converge to the optimal or near optimal

profit of BnB, and the convergence speed is affected by the

specific values of N and Nelite. In particular, the convergence

rate is fast when Nelite is small with respect to N , and the

proposed CE-based method is much easier to converge with

a larger N at the cost of the increased complexity. Therefore,

the proposed method can provide a flexible tradeoff between

the performance and complexity by using different values

of N and Nelite. Moreover, the computational complexity

of the BnB is about O(240), while that of the CE based

scheme is about O(40 × 50), which is about 0.2% of the

conventional BnB algorithm. These results indicate that the

CE based scheme can achieve the near-optimal performance

with a significantly reduced complexity.

Fig. 3 depicts the profit of the proposed scheme versus

the application size, where there are 200 or 300 users in

the network and the size of the application varies from 0 to

80Mbits. For comparison, we plot the profits of the random

100 200 300 400 500

Number of users

0

50

100

150

200

250

Pr
of

it

Proposed scheme
Random scheme
Pop scheme

ω=60Mbits

ω=80Mbits

ω=80Mbits

ω=60Mbits

Fig. 4. Impact of the user number on the profit of the three schemes.

Storage space (Gbits)

0

50

100

150

Pr
of

it

Proposed scheme
Random scheme
Pop scheme

M=200

M=200

M=300

M=300

403020100

Fig. 5. Effect of the storage space on the profit of the three schemes.

scheme which randomly selects the offloading and caching

decisions, and we also plot the profit of the popularity based

caching scheme (pop scheme) which always selects the most

popular applications to cache. From this figure, we can see

that the profit of the three schemes increases with a larger

application size, as more payment is incurred from the caching

and computing. Moreover, the proposed scheme is superior

to the other two schemes. In particular, when the application

size is 80Mbits and the user number is 300, the profit of the

proposed scheme is about 25.6% and 48.7% higher than that

of the pop scheme and random scheme, respectively. This

is because that the proposed scheme can effectively select

some applications for caching and offloading, while the other

two schemes fail. In further, for the three schemes, the profit

with M=300 is higher than that with M=200, as more users

result in a larger payment. The results in Fig. 3 attests the

effectiveness of the proposed scheme.

Fig. 4 portrays the impact of the user number on the profit

of three schemes, where the user number varies from 100 to

500 and the application size is 60Mbits or 80Mbits. From this

figure, we can observe that the profit of the three schemes

Page 5 of 13 IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6

increases with a larger number of users, as more users result

in a larger number of requests, and the payment to the ES

increases accordingly. Moreover, for various values of M ,

the proposed scheme is shown to outperform the other two

schemes. In particular, when the number of users is 500 and

application size is 80Mbits, the profit of the proposed scheme

is about 66.3% and 15.1% better than that of the random

scheme and pop scheme, respectively. This indicates that the

proposed scheme can reasonably decide which applications

to be cached and offloaded. On the contrary, the other two

schemes can not make the decision flexibly, which results in a

lower profit. In further, when the application size is 60 Mbits,

the profit of the three schemes is lower than that with 80

Mbits, as a larger application size leads to more payment. The

results in Fig. 4 verify the superiority of the proposed scheme

in large-scale networks.

Fig. 5 illustrates the effect of the storage space on the profit

of the three schemes, where there are 200 or 300 users and

the storage space of the ES changes from 0 to 40Gbits. We

can observe from this figure that the profit of the proposed

scheme increases with the storage space when the space is in

the low region. This is because that caching can help improve

the computation and meet the QoE of users. However, when

the space is larger than 10Gbits, the profit of the proposed

scheme remains almost unchange. In contrast, the profit of the

pop scheme decreases with the space. This is because that,

unlike the other two schemes, the proposed scheme always

selects an appropriate caching decision to maximize the profit

of ES, rather than caches more applications as the storage

space increases. Therefore, the profit of the proposed scheme

can outperform the other schemes. In particular, when the

storage space is 40Gbits and user number is 300, the profit

of the proposed scheme improves by 33.6% and 48.7% over

that of the pop scheme and random scheme, respectively. In

further, the profit of the three schemes with M=300 is higher

than that of the schemes with M=200. These results in Fig.

5 further demonstrate that the proposed scheme is effective in

large-scale networks.

V. CONCLUSIONS

In this paper, we investigated a cache-enabled vehicular

MEC network, and designed the network in a non-competitive

environment by maximizing the profit of the ES while

satisfying the QoE of users. The optimization problem was

modeled into a binary integer programming problem, and the

CE method was used to obtain the effective offloading and

caching decisions with a low complexity. Simulation results

were finally provided to demonstrate the effectiveness of the

proposed scheme. In particular, the proposed scheme can

achieve almost the same performance as the conventional BnB

algorithm, while sharply reduce the computational complexity

compared to the BnB. In future works, we will study the cache-

enabled MEC networks with multiple servers, and investigate

the joint impact of caching and collaboration among servers

on the system profit.

REFERENCES

[1] Q. Gu, Y. Jian, G. Wang, and R. Fan, “Mobile edge computing via
wireless power transfer over multiple fading blocks: An optimal stopping
approach,” IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 10 348–10 361,
2020.

[2] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wirel. Commun., vol. 17, no. 3, pp. 1784–1797, 2018.

[3] J. Kang, X. Li, J. Nie, Y. Liu, M. Xu, Z. Xiong, D. Niyato, and
Q. Yan, “Communication-efficient and cross-chain empowered federated
learning for artificial intelligence of things,” IEEE Trans. Netw. Sci. Eng.,
vol. 9, no. 5, pp. 2966–2977, 2022.

[4] F. Zhou and R. Q. Hu, “Computation efficiency maximization in
wireless-powered mobile edge computing networks,” IEEE Trans. Wirel.
Commun., vol. 19, no. 5, pp. 3170–3184, 2020.

[5] J. Kang, Z. Xiong, X. Li, Y. Zhang, D. Niyato, C. Leung, and C. Miao,
“Optimizing task assignment for reliable blockchain-empowered fed-
erated edge learning,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp.
1910–1923, 2021.

[6] X. Huang, B. Zhang, and C. Li, “Platform profit maximization on service
provisioning in mobile edge computing,” IEEE Trans. Veh. Technol.,
vol. 70, no. 12, pp. 13 364–13 376, 2021.

[7] Q. Wang, S. Guo, J. Liu, C. Pan, and L. Yang, “Profit maximization
incentive mechanism for resource providers in mobile edge computing,”
IEEE Trans. Serv. Comput., vol. 15, no. 1, pp. 138–149, 2022.

[8] P. Cong, G. Xu, J. Zhou, M. Chen, T. Wei, and M. Qiu, “Personality-
and value-aware scheduling of user requests in cloud for profit
maximization,” IEEE Trans. Cloud Comput., vol. 10, no. 3, pp. 1991–
2004, 2022.

[9] P. Cong, Z. Zhang, J. Zhou, X. Liu, Y. Liu, and T. Wei, “Customer
adaptive resource provisioning for long-term cloud profit maximization
under constrained budget,” IEEE Trans. Parallel Distributed Syst.,
vol. 33, no. 6, pp. 1373–1392, 2022.

[10] J. Mei, K. Li, Z. Tong, Q. Li, and K. Li, “Profit maximization for cloud
brokers in cloud computing,” IEEE Trans. Parallel Distributed Syst.,
vol. 30, no. 1, pp. 190–203, 2019.

[11] K. Li, J. Mei, and K. Li, “A fund-constrained investment scheme for
profit maximization in cloud computing,” IEEE Trans. Serv. Comput.,
vol. 11, no. 6, pp. 893–907, 2018.

[12] J. Mei, K. Li, and K. Li, “Customer-satisfaction-aware optimal multi-
server configuration for profit maximization in cloud computing,” IEEE
Trans. Sustain. Comput., vol. 2, no. 1, pp. 17–29, 2017.

[13] J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme
with guaranteed quality of service in cloud computing,” IEEE Trans.
Computers, vol. 64, no. 11, pp. 3064–3078, 2015.

[14] S. Bi and L. Huang, “Joint optimization of service caching placement
and computation offloading in mobile edge computing systems,” IEEE
Trans. Wirel. Commun., vol. 19, no. 7, pp. 4947–4963, 2020.

[15] X. Pham, T. Nguyen, V. Nguyen, and E. Huh, “Joint service caching
and task offloading in multi-access edge computing: A qoe-based utility
optimization approach,” IEEE Commun. Lett., vol. 25, no. 3, pp. 965–
969, 2021.

[16] Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and
R. Y. Kwok, “Intelligent edge computing in internet of vehicles: A
joint computation offloading and caching solution,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 4, pp. 2212–2225, 2021.

[17] C. Tang, C. Zhu, H. Wu, Q. Li, and J. J. P. C. Rodrigues, “Toward
response time minimization considering energy consumption in caching-
assisted vehicular edge computing,” IEEE Internet Things J., vol. 9,
no. 7, pp. 5051–5064, 2022.

[18] J. Xia, L. Fan, W. Xu, X. Lei, and X. Chen, “Secure cache-aided multi-
relay networks in the presence of multiple eavesdroppers,” IEEE Trans.
Commun., vol. 67, no. 11, pp. 7672–7685, 2019.

[19] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer, “The cross-
entropy method for optimization,” in Handbook of statistics. Elsevier,
2013, vol. 31, pp. 35–59.

[20] S. Zhu, W. Xu, L. Fan, K. Wang, and G. K. Karagiannidis, “A novel cross
entropy approach for offloading learning in mobile edge computing,”
IEEE Wirel. Commun. Lett., vol. 9, no. 3, pp. 402–405, 2020.

[21] P. de Boer, D. P. Kroese, and S. Mannor, “A tutorial on the cross-entropy
method,” Ann. Oper. Res., vol. 134, no. 1, pp. 19–67, 2005.

Page 6 of 13IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Response to Reviewers’ Comments:

VT-2022-04335

Profit Maximization for Cache-Enabled Vehicular Mobile Edge

Computing Networks

March 1, 2023

Page 7 of 13 IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

