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Abstract—This paper investigates a wireless federated learning
(FL) network with limited communication bandwidth, where
multiple mobile clients train their individual models with the help
of one central server. We consider the practical communication
scenarios, where the clients should complete the local compu-
tation and model upload within a defined latency. By jointly
exploiting the dynamic characteristics of wireless channels and
computational capability at the clients, we optimize the federated
learning network by maximizing the number of active clients
under the constraints of both latency and bandwidth. Specifically,
we propose two bandwidth allocation (BA) schemes, where
scheme I is based on the instantaneous channel state information
(CSI), while scheme II employs the particle swarm optimization
(PSO) method, based on the statistical CSI. Simulation results
on the test accuracy and convergence rate are finally provided
to demonstrate the advantages of the proposed optimization
schemes for the considered FL network.

Index Terms—Federated learning, bandwidth allocation, laten-
cy, convergence rate.

I. INTRODUCTION

In recent years, there has been a great progress in the

development of artificial intelligence (AI), which has found

a lot of applications in practice [1]–[3]. The conventional AI

algorithms often require centralized processing, which needs

to collect the local data of all users. This is however harmful

to privacy protection and causes a heavy burden on the system

implementation such as the communication and computational

cost. In practice, the local dataset of a single client is often

insufficient to train a high-performance model. Moreover, due

to the preference of clients, the local dataset is unbalanced

and non-independent and identically distributed (Non-IID),

which is challenging for the clients to train models with some

generalization ability by using their own dataset. To alleviate

these issues, the framework of federated learning (FL) has

been proposed to train the model parameters without collecting

data from users, in which only the model parameters of the

users are collected and aggregated at the server. Moreover, in

order to further reduce the communication cost and accelerate

the process of federated learning, fraction clients are selected

to participate in federated learning instead of all clients in
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each communication round. The practical scenarios of FL

include the visit of website and everything the clients type

on their mobile keyboards, such as password, message, and

online shopping. Overall, there exists some performance loss

of FL compared to the centralized, due to distributed learning,

a fractional clients and unbalanced dataset.

One major challenge of FL is the convergence rate, which

determines the communication rounds that FL needs to

converge. The convergence rate of FL is affected by the

number of active clients, who successfully upload model

in each communication round, which is constrained by the

limited communication resources in practice [4]. To reduce the

number of rounds and speed up the convergence, the authors in

[5] adopted momentum gradient descent to optimize the loss

function of the local update, where the rate of gradient descent

and convergence was accelerated. Moreover, the adaptive

quantization and specification could be applied into the FL

networks, in order to compress the local models to reduce

the communication cost [6]. In further, some other wireless

techniques such as mobile edge computing can be incorporated

into the FL networks to reduce the communication cost,

in order to accelerate the convergence [7]–[10]. Recently,

the effect of latency on the FL networks has been studied,

where several bandwidth allocation schemes were proposed

to enhance the system performance [11], [12]. However, the

channel state information is seldom incorporated into the

system design of FL networks in the existing works, which

motivates the work in this paper.

This paper studies a wireless FL network with limited

communication bandwidth, where multiple clients complete

the local computation and model upload under the constraint

of latency, in order to accelerate the FL process. To improve

the system performance, two optimization schemes are devised

to maximize the number of active clients by performing

the bandwidth allocation (BA) among clients, based on the

channel state information (CSI). Specifically, scheme I is based

on the instantaneous CSI (I-CSI) to maximize the number of

active clients during the FL process, while scheme II is based

on the statistical CSI (S-CSI) and it uses the particle swarm

optimization (PSO) to maximize the expectation of the number

of active clients. Simulation results are finally provided to

demonstrate the advantages of the proposed optimization

schemes in the system performance for the considered FL

network.

The remainder of this paper is organized as follows. After

the Introduction, Section II describes the system model of

the considered FL network under the constraints from the

latency and communication bandwidth. Then, Section III
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Fig. 1. System model of federated learning networks.

presents two BA schemes based on CSI to optimize the system

performance. In further, simulation results are provided in

Section IV to demonstrate the effectiveness of the proposed

optimization schemes for the considered network, followed by

the conclusions made in Section V.

II. SYSTEM MODEL

Fig. 1 shows the system model of federated learning

networks, where there are K mobile clients {Uk|1 ≤ k ≤ K}
trying to aggregate their training models through the help of

one central server S . Client Uk has a local trainable dataset

Dk, and the number of samples in Dk is |Dk|, so that the

total number of samples of all clients is |D| = ∑K
k=1 |Dk|.

In practice, the local dataset is limited, and it is hard for

each client to obtain a fine training model of deep network,

without using the datasets of other clients. However, directly

using the datasets of other clients will impose a severe

load on the communication and computation, and the severe

issue of information leakage is also caused. To solve these

problems, the FL framework is employed in Fig. 1, where

each client only needs to upload the trained model parameters

to the central server S , which reduces the communication cost

significantly.

The FL procedure is detailed as follows. The central server

S firstly randomly selects N clients among K ones for

efficiency and fairness at each round [4], and then it broadcasts

the global model to the clients. After that, each client updates

the local model by using the global model and local dataset.

These N clients further upload the local models to the central

server S for aggregating models to obtain the global model.

This process is iterated R rounds, until a fine deep network

model is obtained.

Specifically, at round r, the n-th client receives the global

model of the previous round wr−1. In general, the downlink

bandwidth is much larger than the uplink bandwidth, and the

server has a larger transmit power than the mobile clients

because of the connection with the power supply. Hence, for

client Un, the time to receive the global model parameter can

be negligible. After μn times of the local epochs, client Un

updates the local mode by using the received global model

and local dataset, and the local model is updated as

wr
n = wr−1 − η∇Fn(wr−1), (1)

where wr
n denotes the model parameter of client Un and Fn(•)

represents the loss function of client Un. Notations η and ∇

represent the learning rate and gradient operation on the loss

function, respectively. The local training time of client Un is

ten, given by

ten =
ρμn|Dn|

fn
, (2)

where ρ is the number of CPU cycles required to compute one

sample data and μn is the epoch of local training of client n
in a communication round. Moreover, fn ∼ U(fmin, fmax)
is the computational capacity of client Un, where U(•)
represents a uniform distribution, in which fmin and fmax

are the minimum and maximum computational capacities,

respectively. After the training, the local model is uploaded

to the central server, and the transmission time of client Un is

given by,

tun =
Ln

Cn
, (3)

where Ln is the size of the model parameter of client Un, in

which the 32-bit floating point format is often used in practice,

and Cn is the transmission rate from client Un to the server

S , given by

Cn = Bn log2

(
1 +

Pn|hn|2
σ2
n

)
, (4)

where Pn is the transmit power and σ2
n is the variance of the

additive Gaussian white noise (AWGN) at the receiver. The

channel parameter hn experiences Rayleigh flat fading with

the average channel gain of εn, and Bn is the wireless channel

bandwidth allocated to client Un. In practice, the frequency

spectrum is limited, and the channel bandwidth of the N
clients should meet the following constraint,

N∑
n=1

Bn ≤ Btotal, (5)

where Btotal is the total bandwidth of the system. The server

S further aggregates the collected model parameters and gets

the global model. We use the federated average (FedAvg), and

then the global model parameter wr at round r can be updated

as

wr �
∑N

n=1 |Dn|wr
n∑N

n=1 |Dn|
. (6)

From the above equations, we can summarize the total latency

of client Un at each round as

tn = ten + tun. (7)

III. SYSTEM OPTIMIZATION

In practice, the clients may have different computational

capabilities and experience different fading channels, causing

different latencies of uploading the local model to the server.

This may increase the system latency of global aggregation

at the server and deteriorate the aggregation performance. To

speed up the global aggregation, a latency threshold γth should

be set. Specifically, client Un is able to complete the upload

if its latency is below γth, i.e.,

tn ≤ γth. (8)
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By incorporating this latency constraint, we can optimize the

FL networks through allocating the limited frequency spectrum

among N clients, in order to minimize the global loss function,

min
{B1,...,BN}

F (w) (9)

s.t. tn ≤ γth, ∀n ∈ N ,∑
n∈N

Bn ≤ Btotal,

where N is the set of N clients, and F (•) denotes the

global loss function. As different tasks and datasets may use

different loss functions, the optimization problem in (9) is

often not general. Inspired by the fact that uploading more

models successfully in each round can help improve the FL

performance [13], we turn to optimize the FL networks by

maximizing the number of active clients who can successfully

upload the models, given by

max
{B1,...,BN}

N1 (10)

s.t. tn ≤ γth, ∀n ∈ N ,∑
n∈N

Bn ≤ Btotal,

where N1 is the number of active clients, who can successfully

upload the models. In the following, we will present two BA

schemes to solve the optimization problem in (10).

A. I-CSI based BA Scheme

When the instantaneous CSI of N users is estimated1 and

gathered at each round of federated learning, we can solve the

BA optimization problem in (10) based on the instantaneous

CSI. Note that the I-CSI based BA scheme can be applied to

the wireless channels with static fading, such as the application

scenarios of static Internet of Things (IoT) networks. To train

the global model better, more clients should participate into

uploading models in each communication round. Aimed by

this, we propose a sorting BA scheme, where the clients

with favorable channel conditions tend to be allocated an

appropriate bandwidth preferentially. Specifically, we firstly

sort the N clients in a descending order according to the

channel condition, which forms a set N . In N , the former

clients have better channel condition than the latter. After that,

the clients in N are selected one by one from the first to the

last, and then they are allocated an appropriate bandwidth,

in order to meet the latency requirement. In particular, for

client Un, its bandwidth allocation should meet the following

requirement,

tn =
Ln

Bn log2

(
1 + Pn|hn|2

σ2
n

) +
ρμn|Dn|

fn
≤ γth, (11)

1The clients can estimate their channel parameters of the wireless links, by
using the pilot signals transmitted from the central server. Then, the central
server can gather these CSIs of clients through some dedicated feedback
channels.

Algorithm 1: I-CSI Based BA Scheme

1: for Each r ∈ [1, R] do
2: N ← Sort the N clients according to the channel gains

in Des.;
3: for n = 1:|N | do
4: Obtain Bn according to (13);

5: Get the rest bandwidth: Btotal ← Btotal −Bn;

6: if Btotal ≤ 0 then
7: Break;

8: end if
9: Add element Un to N1;

10: end for
11: end for

which results in

Bn ≥ Ln(
γth − ρμn|Dn|

fn

)
log2

(
1 + Pn|hn|2

σ2
n

) . (12)

Then, we can set Bn as

Bn =
Ln(

γth − ρμn|Dn|
fn

)
log2

(
1 + Pn|hn|2

σ2
n

) , (13)

if there is enough bandwidth resource left. This process

continues until the clients in N have been completely

allocated or the bandwidth resource has been used up2. The

whole procedure of the proposed I-CSI based BA scheme is

summarized in Algorithm 1, where |N | is the cardinality of

set N .

B. S-CSI Based BA Scheme

As the above I-CSI based BA scheme requires to know

the instantaneous CSI of all users at each round, a severe

burden is imposed on the system implementation. To alleviate

this burden, we turn to exploit the statistics CSI to solve the

BA problem in (10). Note that the S-CSI has to be used to

the wireless channels with fast fading, such as the application

scenarios of Internet of Vehicles (IoV) networks. From (11),

we firstly write the channel conditions with the given latency

threshold γth as

|hn|2 ≥
(
2

Ln

Bn

(
γth−

ρμn|Dn|
fn

)
− 1

)
σ2
n

Pn
= G(fn), (14)

where G(x) is

G(x) =

(
2

Ln

Bn

(
γth−

ρμn|Dn|
x

)
− 1

)
σ2
n

Pn
.

As the channels in the network are subject to Rayleigh fading,

|hn|2 follows the exponential distribution with the average gain

of εn. In this case, we turn to maximize the expectation of

2Note that if the total bandwidth is sufficient, the excess bandwidth can be
allocated to the clients according to some criteria, such as uniform allocation
among clients or allocating more excess bandwidth to the clients with worse
channel condition. This will not affect the number of active clients, as the
latency constraint has already been satisfied.
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number of active clients participating into uploading models

to the server. Aimed by this, we firstly calculate the probability

that each client can successfully upload its model to the server,

which satisfies the latency requirement. From the probability

density function (PDF) of |hn|2, we can obtain the conditional

expectation of the n-th client participating into uploading its

model to the server as,

E(xn|fn) = Pr{|hn|2 ≥ G(fn)|fn}

=

⎧⎨
⎩

exp
(− G(fn)

εn

)
, fn > ρμn|Dn|

γth

0, fn ≤ ρμn|Dn|
γth

. (15)

From E(xn|fn) and fn ∼ U(fmin, fmax), we can write the

expectation E(xn) as

E(xn) =

∫ fmax

fmin

1

fmax − fmin
Pr{|hn|2 ≥ G(fn)|fn}dfn

≈
M∑

m=1

√
1− φ2

m

fmax − fmin
exp

(
− G(ζm)

εn

)
, (16)

where the Gaussian-Chebyshev approximation [14] is used and

M is a complexity-vs-accuracy tradeoff parameter with

φm = cos

(
(2m− 1)π

2M

)
,

ζm =
fmax −max

(
fmin,

ρμn|Dn|
γth

)
2

φm

+
fmax +max

(
fmin,

ρμn|Dn|
γth

)
2

.

Note that the Gaussian-Chebyshev approximation can be

accurate with a medium value of M . From E(xn), we can

calculate the expectation of the number of active clients who

can successfully upload model parameters, given by

E(X) =
N∑

n=1

E(xn),

≈
M∑

m=1

N∑
n=1

√
1− φ2

m

fmax − fmin
exp

(
− G(ζm)

ε

)
. (17)

The BA scheme is then devised to maximize the expectation

E(X),

max
{B1,...,BN}

E(X) (18)

s.t.
N∑

n=1

Bn ≤ Btotal.

As it is difficult to directly solve the optimization problem in

(18), we turn to employ the particle swarm optimization (PSO)

algorithm to solve the optimization, which is an intelligent

algorithm based on population. In the PSO algorithm, there

are J particles in the population, and each particle includes

two important attributes of position and velocity. We use

pj and vj to represent the position and velocity of particle

j, respectively, where pj = {B1, B2, . . . , BN} provides a

feasible solution of the bandwidth allocation problem in (18)

Algorithm 2: S-CSI Based BA Scheme.

1: Obtain the channel condition of each client that meets the

latency requirement in (14);

2: Obtain the conditional expectation of each client partici-

pating into uploading its model to the server by (15);

3: Obtain the expectation of the number of active clients by

(17);

4: Create J particles randomly;

5: for Each i ∈ 1 : I do
6: for Each j ∈ 1 : J do
7: Update vi

j by (19), and update pi
j by (20);

8: Evaluate pi
j by the fitness function E(X);

9: if the fitness evaluation of pi
j is better than that of

pbestij then
10: pbestij is equal to pi

j ;

11: end if
12: if the fitness evaluation of pi

j is better than that of

gbesti then
13: gbesti is equal to pi

j ;

14: end if
15: end for
16: end for

and vj = {ΔB1,ΔB2, . . . ,ΔBN} represents the increment

of pj . Here, ΔBn is the increment of Bn from the current

iteration to the next one. Moreover, pbestj and gbest are

used to denote the best BA solutions of particle j and the

global particles until the current iteration, respectively, which

are measured by the fitness function. Here, the fitness function

of the PSO is characterized by E(X). At iteration i, the

velocity of the j-th particle, vi
j , is updated by

vi
j = ωvi−1

j + c1ξ1(pbest
i−1
j − pi−1

j )

+ c2ξ2(gbest
i−1 − pi−1

j ), (19)

where c1 and c2 are two acceleration constants, ξ1 and ξ2 are

two random variables uniformly distributed in the range of [0,

1], and ω stands for the inertia weight factor. From (19), the

position pi
j is updated by

pi
j = pi−1

j + vi
j . (20)

The particles require I times of iteration to update theirs

velocity and position according to (19) and (20), respectively.

After I iterations, the gbest will be obtained among J
particles, which serves as the solution of the BA optimization

problem in (18). Moreover, for J particles and I iterations in

the PSO algorithm, the associated computational complexity

is about O(J × I), where the performance of the PSO can be

improved with increased numbers of particles and iterations.

The proposed S-CSI based BA scheme is summarized in

Algorithm 2.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present some experimental results to

validate the proposed BA schemes for the FL networks, where

Python 3.6 is used and the learning framework is PyTorch

1.8.0. Specifically, the total communication round is set to
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Fig. 2. Performance comparison of several BA schemes with Fashion-MNIST
and latency threshold γth = 5s.
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Fig. 3. Performance comparison of several BA schemes with MNIST and
latency threshold γth = 3s.

500, the total number of clients is 200, and the number of

selected clients is set to 10. If not specified, the system total

communication bandwidth is set to 50MHz, and the channels

in the network experience Rayleigh flat fading, where the

average channel gain of the k-client to the server is set to

εk = (k + 50)/200, without loss of generality. Moreover, the

transmit power of clients is set to 0.5W, and ρ is set to 104

cycle/sample. In further, the computational capability of clients

is uniformly distributed in the range of [2 × 106, 3 × 106]
cycle/second. Furthermore, for the PSO method involving

in the S-CSI based BA scheme, the number of particle in

the population is 30, where the number of iterations is 20.

Moreover, the two acceleration constants c1 and c2 are both

set to 0.4 and ω = 0.5. In addition, two typical datasets of

MNIST and Fashion-MNIST are used to train the models to

validate the proposed studies, detailed as follows,

1) Fashion-MNIST: In this dataset, there are 60000 samples

in total. The trained model is composed of two 3 × 3
convolution layers with ReLU activation, two fully connected

layers (600 and 120 units, respectively), a dropout layer

between the first fully connected layer and the second one

and an output layer with Softmax. The first convolution layer

has 43 channels while the second one has 64 channels, both

followed by a batch normalization layer and a 2 × 2 max

pooling layer. Moreover, the training parameters are set as

follows: the learning rate is 0.001, the batch size is 30, and the

local epochs is set to 3 for the selected clients. In addition, the

loss function is CrossEntropyLoss and tje optimizer is SGD.

In further, we preform Non-IID operation on the dataset [4].

2) MNIST: In this dataset, there are 60000 samples in total.

The deep learning model structure consists of the following

components: two 5× 5 convolution layers of 32 channels and

64 channels, respectively, both followed by the 2 × 2 max

pooling, a fully connected layer with activation function ReLU
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Fig. 4. Effect of latency threshold on the proposed BA schemes with Fashion-
MNIST.

and 512 units, and an output layer with Softmax. The learning

rate is set to 0.065, while the other training parameters remain

the same as those in the MNIST.

Figs. 2-3 demonstrate the accuracy and loss of several

BA schemes versus the communication round, where Fig.

2 and Fig. 3 correspond to Fashion-MNIST with γth = 5s

and MNIST with γth = 3s, respectively. For comparison,

we also provide the results of ‘Baseline’ scheme where the

latency threshold is set to infinite so that all clients can

successfully upload the models to the server, and ‘UA’ scheme

where the communication bandwidth is uniformly allocated

among clients. We can observe from these two figures

that the accuracy and loss of several BA schemes become

convergent with the increasing number of communication

round. Moreover, the proposed I-CSI and S-CSI based BA

schemes outperform the UA one, since the channel information

is incorporated into the BA process. In further, the I-CSI based

BA scheme is superior to the S-CSI based one, and it can

achieve almost the same performance as the baseline one,

since the instantaneous channel state information is effectively

exploited to help optimize the BA process.

Fig. 4 shows the effect of the latency threshold γth on the

test accuracy of the proposed BA schemes, where the dataset

Fashion-MNIST is used and γth varies from 2s to 10s. From

Fig. 4, we can find that the performances of the proposed

two BA schemes and UA improve with a larger γth, as the

clients can successfully upload the models to the server more

easier. Moreover, the proposed I-CSI based BA scheme can

achieve almost the same performance as the baseline one, for

a wide range of latency threshold. In further, although the S-

CSI based BA scheme fails to obtain the optimal performance

of the baseline scheme, it is still superior to the UA scheme.

Furthermore, compared to the I-CSI based BA scheme, the S-

CSI based one deteriorates much more rapidly with respect to

the decreased latency threshold, as the probability that clients

can successfully upload model is reduced severely in the low

region of γth. These phenomena validate the proposed two BA

schemes.

Fig. 5 depicts the impact of total communication bandwidth
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Fig. 6. Impact of latency threshold and total communication bandwidth on
the proposed BA schemes with MNIST.

on the test accuracy of the proposed BA schemes, where the

dataset Fashion-MNIST is used, γth is 5s, and the bandwidth

Btotal varies from 50MHz to 200MHz. From this figure,

we can see that the test accuracy of the proposed two BA

schemes and UA improves with the increasing value of Btotal,

as the transmission rate becomes larger and accordingly the

transmission latency decreases. Moreover, the proposed I-CSI

based BA scheme can achieve almost the same performance

as the baseline one for a wide range of bandwidth, while the

S-CSI based BA scheme is superior to the UA one, especially

in the low region of bandwidth. In further, compared to the I-

CSI based BA scheme, the S-CSI based one deteriorates much

more rapidly with the smaller bandwidth, since it becomes

more difficult for the clients to complete the model upload

due to the decreased transmission data rate in the S-CSI

based BA scheme. These phenomena further demonstrate the

effectiveness of the proposed two BA schemes.

Fig. 6 demonstrates the impact of latency threshold and total

communication bandwidth on the test accuracy of different BA

schemes, where the dataset is MNIST. Specifically, Fig. 6(a)

corresponds to the performance versus the latency threshold

with Btotal = 50MHz, while Fig. 6(b) corresponds to

the performance versus the communication bandwidth with

γth = 3s. From this figure, we can find that with the MNIST

dataset, the proposed two schemes are still superior to the UA

one, and the proposed I-CSI scheme can achieve almost the

optimal performance as the baseline one, in the high region of

bandwidth or latency threshold. Moreover, the performance of

the two proposed schemes and UA scheme improves with a

larger Btotal or γth, as the clients have more opportunities

to complete the local training and model upload. Overall,

the phenomena in Fig. 6 demonstrate the effectiveness of the

proposed two BA schemes furthermore.

V. CONCLUSIONS

This paper investigated the wireless federated learning

network constrained by a latency, where the clients should

complete the local computation and model upload under the

latency constraint, in order to accelerate the federated learning

process. By jointly exploiting the dynamic characteristics of

wireless channels and computational capability at clients,

we optimized the federated learning network by maximizing

the number of active clients under the constraint of latency

and system bandwidth. Two BA schemes were proposed

to optimize the FL network, based on the I-CSI and S-

CSI, respectively. Simulation results were finally provided to

demonstrate the effectiveness of the proposed two BA schemes

for the considered federated learning network. In particular,

the proposed I-CSI based BA scheme can achieve almost

the same performance as the baseline one for a wide range

of bandwidth, while the proposed S-CSI based BA scheme

outperforms the conventional UA one.
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