
1

Dynamic Offloading for Multiuser Muti-CAP MEC Networks:

A Deep Reinforcement Learning Approach
Chao Li, Junjuan Xia, Fagui Liu, Dong Li, Lisheng Fan, George K. Karagiannidis, Fellow, IEEE,

and Arumugam Nallanathan, Fellow, IEEE

Abstract—In this paper, we study a multiuser mobile edge
computing (MEC) network, where tasks from users can be
partially offloaded to multiple computational access points
(CAPs). We consider practical cases where task characteristics
and computational capability at the CAPs may be time-varying,
thus, creating a dynamic offloading problem. To deal with this
problem, we first formulate it as a Markov decision process
(MDP), and then introduce the state and action spaces. We
further design a novel offloading strategy based on the deep Q
network (DQN), where the users can dynamically fine-tune the
offloading proportion in order to ensure the system performance
measured by the latency and energy consumption. Simulation
results are finally presented to verify the advantages of the
proposed DQN-based offloading strategy over conventional ones.

Index Terms—MEC, dynamic optimization problem, non-
binary offloading, DQN.

I. INTRODUCTION

In recent years, the research in wireless networks have

gradually evolved from the pure communication to com-

munication and computation [1]. Some practical examples

include intelligent monitoring, intelligent transport, vehicular

networking, etc. To support these computation-intensive ser-

vices, cloud computing can be applied to compute the tasks on

the cloud, at the cost of transmission and information leakage.

To resolve this problem, mobile edge computing (MEC) has

been proposed to assist computing the tasks by the near-by

computational access points (CAPs) in the networks, which

can significantly reduce the latency and energy consumption

of both communication and computation [2].

A key in the design of MEC networks is the offloading

strategy, which determines how many parts of the tasks will

be computed by the CAPs. In this direction, the authors in

[3] and [4] investigated time-invariant system environments,

and adopted some numerical methods to acquire a static

offloading strategy for multiuser or multi-CAP MEC networks.

In practice, the system environments may be time-varying,

C. Li, J. Xia, and L. Fan are all with the School of Computer Science,
Guangzhou University, Guangzhou 510006, China. (email: lichaoacadem-
ic@e.gzhu.edu.cn, xiajunjuan@gzhu.edu.cn, lsfan@gzhu.edu.cn).

F. Liu is with School of Computer Science and Engineering, South
China University of Technology, Guangzhou 510006, China (e-mail: fgli-
u@scut.edu.cn).

D. Li is with the Faculty of Information Technology, Macau Univer-
sity of Science and Technology, Taipa 999078, Macau, China (e-mail:
dli@must.edu.mo).

G. K. Karagiannidis is with Aristotle University of Thessaloniki, Thessa-
loniki 54636, Greece (e-mail: geokarag@auth.gr).

A. Nallanathan is with the School of Electronic Engineering and Com-
puter Science, Queen Mary University of London, London, U.K (e-mail:
a.nallanathan@qmul.ac.uk).

Fig. 1. A multiuser MEC network with M users and N CAPs.

which will impose a significant impact on the offloading

strategy of MEC networks. For the time-varying wireless

channels or varying arrival rate of computational tasks, some

dynamic offloading strategies were proposed based on the

game theory [5], [6]. As the above binary optimization

problem [3]–[6] in MEC networks may be NP-hard, the

authors in [7] further employed a deep Q network (DQN) to

efficiently find a binary offloading strategy for MEC networks.

However, To the best of our knowledge, there is no prior work

on designing dynamic offloading strategy for multiuser multi-

CAP MEC networks, by taking into account the time-varying

task characteristics and computational capability at the CAPs,

which motivates the work in this paper.

In this paper, we investigate a multiuser MEC network,

where the tasks from users can be partially offloaded to

multiple CAPs. We consider the practical environments where

task characteristics and computational capability at the CAPs

may be time-varying, thus, creating a dynamic offloading

problem. To solve this problem, we first formulate it as a

Markov decision process (MDP), and then introduce the state

space and action space. We further design a novel offloading

strategy based on the DQN, where the users can dynamically

fine-tune the offloading proportion in order to ensure the

system performance measured by the latency and energy

consumption. Simulation results are finally presented to verify

the advantages of the proposed DQN-based offloading strategy

over conventional ones.

II. PRELIMINARIES

A. System Model

Fig. 1 shows the system model of a multiuser MEC

network, where there are M mobile users and N CAPs. The

users have some computational tasks to be implemented, but

they have limited computational capabilities. To facilitate the

computation, these tasks can be partially offloaded to the N

Page 1 of 14 IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2

CAPs, through the wireless links. Specifically, the sets of users

and CAPs in the network are denoted by {um|1 ≤ m ≤ M}
and {CAPn|1 ≤ n ≤ N}, respectively. At each time slot, user

um has a computational task Xm, which has dm number of

bits and requires cm CPU cycles to process. The computational

capability at CAPn is denoted by fn, measured in CPU

cycles per second. In practice, the task characteristics and

computational capability at the CAPs may be time-varying,

due to the change of environments.

In this paper, without loss of generality, we use a typical

form of uniform distribution U(•) to characterize the variation

in the time domain1. Specifically, cm ∼ U(cmin, cmax),
where cmin and cmax are the minimum and maximum cycles,

respectively; dm ∼ U(dmin, dmax) , where dmin and dmax are

the minimum and maximum numbers of bits in the task Xm,

respectively; and fn ∼ U(fmin, fmax) , with fmin and fmax

being the minimum and maximum computational capabilities,

respectively. To compute the task Xm, user um can offload

ρm,n portion of the task to CAPn through the wireless um–

CAPn link, where 0 ≤ ρm,n ≤ 1. After the computation is

finished, all the CAPs return the computational results to the

users through some dedicated feedback links. In summary,

each time slot can be divided into three stages, i.e., task

offloading, task computing and result feedback. The above

three stages can be described as follows:

1) Task offloading: In this stage, some portions of the

tasks at users are offloaded to the CAPs. Let ρm =
[ρm,0, ρm,1, ..., ρm,N] denote the 1×(N+1) offloading vector

for the task Xm of the user um, where ρm,0 represents the

proportion of Xm to be computed locally while ρm,n denotes

the portion to be computed by CAPn. Based on ρm, user um

flexibly divides its task Xm into N + 1 subtasks, and sends

the associated N subtasks to the N CAPs in a sequential way.

2) Task computing: After collecting the subtasks in the first

stage, the CAPs can compute the received subtasks in parallel,

which can help reduce the latency in the computation.

3) Result feedback: After the task computation is finished,

the CAPs can feedback the associated results to the users

through some dedicated feedback channels. Once this stage is

finished, one time slot has been used up for the communication

and computation.

B. Latency and Energy Consumption

In this paper, we investigate the latency and energy con-

sumption in the process of communication and computation

in order to measure the system cost at each time slot 2. At the

first stage, the data rate of the wireless link from user um to

1When other kinds of distribution are used to characterize the time-varying
characteristics, the proposed DQN-based optimization framework in this paper
can be still applied to optimize the system offloading.

2As pointed out by many existing works in the literature such as [1-4],
latency and energy consumption are two most significant performance metrics
in the MEC networks. Specifically, latency is particularly important in the
cases of video transmission, navigation, and control-orientated systems, while
energy consumption attracts broad interests since the MEC nodes are energy-
aware, especially when they have limited energy. Due to these reasons, we
adopt the widely-used latency and energy consumption model in this work.
Some other metrics such as pricing on the computation will be incorporated
to measure the performance of MEC networks in future works.

CAPn is

rm,n = B log2

(
1 +

Pm|hm,n|2
σ2

)
, (1)

where B is the wireless bandwidth, Pm is the transmit power

at user um, hm,n ∼ CN (0, β) is the instantaneous channel

parameter of the um − CAPn link, σ2 is the variance of the

additive white Gaussian noise (AWGN) at CAPn. From (1),

we write the transmission latency and energy consumption as

lm,n =
ρm,ndm
rm,n

, em,n =
Pmρm,ndm

rm,n
. (2)

Then, the latency of task offloading is given by

lm =
N∑

n=1

lm,n =
N∑

n=1

ρm,ndm
rm,n

. (3)

The largest lm among M ones is used as the system offloading

latency at the first stage,

L1 = max {l1, · · · , lM}. (4)

Similarly, the energy consumption of task offloading at the

first stage is given by

E1 =

M∑
m=1

N∑
n=1

em,n =

M∑
m=1

N∑
n=1

ρm,ndm
rm,n

Pm. (5)

Now we turn to compute the latency and energy consumption

for the computation in the second stage. The local computa-

tional latency and energy consumption at user um are

lm,0 =
ρm,0cm

f0
, em,0 = ζuρm,0cmf2

0 , (6)

where f0 is the local computational capability and ζu is the

energy consumption coefficient of the CPU chip at the users.

The computational latency and energy consumption at CAPn

are

ln =
M∑

m=1

ρm,ncm
fn

, en =
M∑

m=1

ζcρm,ncmf2
n, (7)

where ζc is the energy consumption coefficient of the CPU

chip at the CAPs. From (6)-(7), we can write the latency and

energy consumption at the second stage as,

L2 = max{max{l1,0, ..., lM,0},max{l1, ..., lN}}, (8)

E2 =
M∑

m=1

em,0 +
N∑

n=1

en

=

M∑
m=1

ζuρm,0cmf2
0 +

M∑
m=1

N∑
n=1

ζcρm,ncmf2
n, (9)

where both the transmission latency and computational latency

are considered in this paper. In some practical application

scenarios, the number of bits in the feedback process is much

smaller than that in the task. Hence, we can ignore the cost

in the third stage. Accordingly, the total system latency and

energy consumption at each time slot are summarized as

Ltotal = L1 + L2, (10)

Page 2 of 14IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3

Etotal = E1 + E2. (11)

From the equations above, we can find that the energy

consumption is affected by both the latency and the associated

power. However, the relationship between the latency and

energy consumption is quite complicated, since the total

energy consumption E1 and E2 are the sum of the individual

one while the total latency L1 and L2 are the maximum of

the individual one.

Besides investigating the individual latency and energy

consumption, a linear combination of Ltotal and Etotal can

be used to measure the system performance,

λLtotal + (1− λ)Etotal, (12)

where λ ∈ [0, 1] is a weight factor between the system latency

and energy consumption. Note that it is reasonable to use

the linear combination of latency and energy consumption

as the system cost, in some MEC scenarios, due to the

following reasons. Firstly, minimizing the linear combination

can help reduce the latency and energy consumption. In

particular, when the weight factor λ is 0 or 1, the linear

combination degenerates into latency or energy consumption

only. In this case, minimizing the linear combination directly

leads to minimizing the latency and energy consumption.

More importantly, the linear combination provides a flexible

form of the system cost for the MEC networks, through

adaptively adjusting the linear weight factor. Specifically, if

the latency plays a more important role in the system cost,

we can increase the value of λ, while we can reduce λ if the

energy consumption becomes more important. Due to these

reasons, the linear combination form of latency and energy

consumption has been widely used to measure the system cost

of MEC networks, in the existing works of the literature such

as [8]–[10].

III. DQN-BASED OFFLOADING STRATEGY

As the offloading strategy determines how many portions

of the tasks will be computed by the CAPs, it will affect

the system latency and energy consumption significantly. Let

π = [ρT
1 , · · · ,ρT

M] be the offloading matrix. In this paper,

we propose two criteria to optimize the offloading strategy.

Specifically, criterion I optimizes the offloading strategy by

minimizing the linear combination form of the system cost, at

each time slot as,

min
π

ΦI(π) = λLtotal + (1− λ)Etotal (13a)

s.t. ρm,0 +
N∑

n=1

ρm,n = 1, ∀m ∈ {1, 2, ...,M}, (13b)

0 ≤ ρm,0 ≤ 1, 0 ≤ ρm,n ≤ 1. (13c)

In contrast, criterion II optimizes the offloading strategy

by minimizing the energy consumption while meeting the

requirement of the latency, at each time slot as,

min
π

ΦII(π) = Etotal (14a)

s.t. ρm,0 +
N∑

n=1

ρm,n = 1, ∀m ∈ {1, 2, ...,M}, (14b)

Ltotal < Lth, (14c)

0 ≤ ρm,0 ≤ 1, 0 ≤ ρm,n ≤ 1, (14d)

where Lth is the latency threshold. For the decentralized

implementation, criterion I should turn to minimize the locally

linear combination form of cost while criterion II turns to

minimize the local energy consumption with a given latency

constraint, in order to obtain the local offloading strategy for

each user.

Although the above two criteria in (13) and (14) can

optimize the offloading strategy, it is however difficult to

employ the conventional optimization method to solve an

optimal π for each time slot. This is because that the

optimization involves some complicated operations including

the max operation and the associated derivative with respect

to π is very complicated to solve. More importantly, the

conventional optimization method performs the optimization

at each individual time slot, and it cannot perform the

optimization for the current time slot by exploiting the

optimization result of the previous time slot, which however

can act as an important reference for the current time slot. In

time-varying environments, where the task characteristics and

computational capability are varying, a learning based scheme

should be developed to adaptively optimize the offloading

strategy according to the dynamic environments.

In this paper, we adopt the DRL based algorithm to optimize

the offloading strategy for the considered system. As one of the

powerful decision-making algorithms in artificial intelligence

field, the DRL performs the dynamic programming to achieve

an excellent performance and effectiveness in tackling the

optimization under dynamic environments. In the following,

we will introduce the Markov decision process (MDP) and

the implementation of deep Q-network (DQN), which are two

important parts in the DRL based optimization framework.

A. Markov Decision Process (MDP)

The MDP is used to characterize the time-varying envi-

ronments, which involve the state space and action space.

As the time slot t = 1, 2, ...,∞, we use S = {st|st =
[Dt,Ct,Ft,πt]} to denote the state space, where Dt =
[d1(t), · · · , dM (t)] and Ct = [c1(t), · · · , cM (t)] are two 1 ×
M task characteristic vectors at time slot t; Ft = [f1, · · · , fN]
is the 1×N computational capability vector at time slot t; and

πt is the M ×N offloading matrix at time slot t. In addition,

we use A = {am,n ∈ {1,−1, 0}|1 ≤ m ≤ M, 1 ≤ n ≤ N}
to denote the action space. For a given action am,n, we have

⎧⎨
⎩

ρm,n = ρm,n + δ, ρm,0 = ρm,0 − δ If am,n = 1,
ρm,n = ρm,n − δ, ρm,0 = ρm,0 + δ If am,n = −1,
ρm,n = ρm,n, ρm,0 = ρm,0 If am,n = 0,

(15)

Page 3 of 14 IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4

where δ ∈ [0, 1) is an iterative gradient to fine-tune the

offloading matrix. At the current time slot t, the environment

state is denoted as st ∈ S and then according to st, the users

execute an action noted by at ∈ A. Considering the fairness

among users, we can impose a constraint on the offloading

ratio for the execution at, given by

|ρm1,0 − ρm2,0| < κ, ∀m1,m2 ∈ {1, · · · ,M}, (16)

where κ ∈ [0, 1] is the fairness factor used to adjust the fairness

among users. A smaller κ indicates a more strict constraint on

the fairness. If (16) cannot hold, the agent will not execute

the selection action at, and turn to choose another action

to update the offloading matrix πt. When an element in the

matrix πt is updated, the offloading matrix transits from πt to

πt+1. Moreover, Dt, Ct and Ft accordingly transit to Dt+1,

Ct+1 and Ft+1, respectively. Therefore, the environment state

transits from st to st+1 with a conditional probability P ,

and meanwhile the users acquire the instant reward. We now

discuss the reward function for the two criteria. For criterion

I, we can design the reward function ΨI,t as

ΨI,t = λLtotal,t + (1− λ)Etotal,t. (17)

For criteria II, we can design the reward function ΨII,t as

ΨII,t=

⎧⎨
⎩
−μ1 if Ltotal,t ≥ Lth,
μ2 if Ltotal,t < Lth and Etotal,t−Etotal,t−1< 0,
−μ2 if Ltotal,t < Lth and Etotal,t−Etotal,t−1≥ 0,

(18)

where μ1 and μ2 are two positive values with μ1 > μ2.

Specifically, if the latency at the current time slot exceeds Lth,

then the instant reward is −μ1. Otherwise, we need to observe

the change in the energy consumption. The instant reward is

μ2 if the energy consumption decreases, while equal to −μ2

otherwise. According to the two instant reward functions, we

can formulate the long-term expected average rewards for the

network optimization under the strategy πt as

Vi(st = [Dt,Ct,Ft,πt]) = lim
T→∞

E[
T∑

t=1

ξtΨi,t], (19)

where i ∈ {I, II} and ξ ∈ (0, 1] is a discount factor to control

the effect of historical data. We can try to find the optimal

offloading strategy π∗ by minimizing V (st) as

π∗ = argmin
π

Vi(st), ∀st ∈ S. (20)

However, it is difficult for the users to know the conditional

probability P for the state transition. Hence, we employ

the following DQN-based approach to solve the offloading

strategy for the considered MEC networks.

B. DQN-Based Solution

To show the effect of action on the strategy, we rewrite the

state value function shown in (19) in a recursive form by using

the state-action value function as

Qi(st, at) = Ψi,t + ξmin
at+1

Qi(st+1, at+1), (21)

which is known as the Q function. In the conventional Q-

learning algorithm, it is assumed that the number of states

Fig. 2. The framework of the DQN-based offloading strategy.

is limited, so that we can use a lookup table to record the

state-action value pair. However, in this paper, due to the

large number of environment states, we have to employ a

deep neural network (DNN) to approximate the Q function.

As shown in Fig. 2, at the current time slot t, we collect

the current environment state st as the input data of the

evaluation network, and the evaluation network outputs the

value Qi(st, a), for a ∈ A. Then, we apply the ε-greedy policy

to select an action at. Next, the users execute the action at,
and then the state transits from st to another state st+1 with

the instant cost Ψi,t. Based on the cost Ψi,t, we update the

parameters of the evaluation network. After many trials, the

evaluation is trained to output an optimal value Qi(st, at).
Similar to the other deep learning networks, we use the mean

square error based loss function to evaluate the training,

Losst = E[(Yt −Qi(st, at|θ))2], (22)

where θ is the parameter of the evaluation network, and Yt is

the target value that represents the optimization object of the

evaluation network. Nevertheless, if we use the same DNN

to obtain the target value, the optimization object will be

changed with the parameter θ at each iteration. Therefore, we

apply the target network which has the same structure with

the evaluation network, except that the parameter update of

the target network θ− is tcopy time slots later than that of the

evaluation network. For the two criteria in (13) and (14), we

can calculate the target value Yt as

Yt = Ψi,t + ξmin
at+1

Qi(st+1, at+1|θ−). (23)

In addition, the input data is independent in the supervised

learning, while the observation data of the network is

sequential. Motivated by this, we set an experience relay unit

(ERU) in the framework of DQN. For the two criteria, we

can collect the transition sample (st, at,Ψi,t, st+1) generated

by the interaction between the environment and agent into the

memory of ERU. During the training process, we randomly

catch a mini-batch of transitions of the ERU memory at

each iteration to break the dependence of data set. The

proposed DQN-based offloading strategy is summarized in

Algorithm 1.

C. Complexity Analysis

In this subsection, we provide some computational complex-

ity analysis of the DQN used in this paper. As the complexity

Page 4 of 14IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5

Algorithm 1: DQN-based offloading strategy

1: Clear up the memory of ERU

2: Randomly initialize the parameter of evaluation network

θ and the parameter of target network θ−, let θ = θ−

3: Loop for each episode:

4: Initialize s0 ∈ S
5: Loop for each time slot t:
6: Choose at from st using policy derived from

ε-greedy

7: Carry out action at, and observe the system cost Ψi,t

and st+1

8: Store the transition sample (st, at,Ψi,t, st+1) in ERU

9: Catch a minibatch of transitions from ERU

10: Yt = Ψi,t + ξminat+1
Qi(st+1, at+1|θ−)

11: Execute RMSPropOptimizer to (Yt −Qi(st, at|θ))2
respect to θ

12: Every tcopy time slots reset θ− = θ
13: Let st = st+1

14: end for

15: end for

of ε-greedy policy based Q-learning algorithm is O(T) [11]

and the DQN framework is a combination of Q-learning and

two DNNs with the identical structure, the computational

complexity of the DQN comes from the matrix operation

of DNNs. Since the DNNs of this paper employ the full-

connection networks, the computational complexity of each

training step is O(
∑J

j=1 Kj−1Kj), where Kj represents the

neural size of the j-th layer (1 ≤ j ≤ J) among J layers. As

the target value network only operates the forward propagation

at each training step, the total computational complexity of the

DQN algorithm in this paper is O(3T
∑J

j=1 Kj−1Kj).

IV. SIMULATION RESULTS

In this part, we demonstrate some simulation results to

verify the effectiveness of the proposed DQN-based dynamic

offloading strategy for the considered MEC networks. To

simulate the time-varying environments, we set cm ∼ U(2 ×
109, 3 × 109), dm ∼ U(2 × 108, 3 × 108), and fn ∼ U(5 ×
109, 7 × 109). The local computational capability f0 is set

to U(1.5 × 109, 2 × 109). Moreover, the wireless bandwidth

B is equal to 40MHz, whereas the average channel gain is

set to 4, and the transmit SNR is set to 10dB. In further,

the DQN network is implemented by using the well-known

Tensorflow library on the Python platform, and there are three

hidden layers in the network, with 16, 32 and 64 nodes in

the layers in order. The Rectified Linear Unit (ReLU) is used

as the activation function, and the ‘RMSPropOptimizer’ is

employed as the optimizer to minimize the loss function in

(22). Furthermore, the iterative gradient δ is 0.01, the factor

ε in ε − greedy policy is 0.8, and the sizes of the ERU

and minibatch are set to 1000 samples and 200 samples,

respectively. We reset θ− = θ every 200 time slots. In

each simulation, we initialize ρm,0 = 1 and ρm,n = 0 for

1 ≤ m ≤M , and repeat the experiment 100 times to calculate

the average cost. If not specified, we set λ to 0.5 for criterion

I and Lth = 1s for criterion II, and set κ = 1 for both criteria.

0 5000 10000 15000
Time slot

100

150

200

250

300

350

400

450

500

C
os

t o
f l

in
ea

r c
om

bi
na

tio
n

M=10 N=10
M=10 N=15
M=15 N=10

(a) Criterion I

0 5000 10000 15000
Time slot

200

300

400

500

600

700

800

900

1000

C
os

t o
f e

ne
rg

y
co

ns
um

pt
io

n

M=10 N=10
M=10 N=15
M=15 N=10

(b) Criterion II

Fig. 3. Convergence of the proposed DQN approach.

Fig. 3 shows the training process of the proposed DQN

approach for both criteria, where there are 15000 time slots

and Fig. 3 (a) uses the linear combination to evaluate criterion

I while Fig. 3 (b) employs energy consumption to measure

criterion II. In particular, three groups of parameter setting

are plotted with (M,N) = (10, 10), (M,N) = (10, 15), and

(M,N) = (15, 10), respectively. As observed from this figure,

we can find that for different numbers of users and CAPs,

the curves of the proposed approach drop sharply with the

increasing number of time slots, and the system cost becomes

convergent after enough number of time slots. In particular,

when (M,N) = (10, 10) and (M,N) = (10, 15), the system

cost becomes convergent after about 5000 time slots, while

for (M,N) = (15, 10), the system cost requires about 10000

time slots to be convergent. These results verify that after

enough number of trials, the proposed DQN approach can find

a suitable offloading strategy for the considered MEC network.

Fig. 4 illustrates the system cost of the proposed DQN-based

offloading strategy versus the number of users for both criteria,

where Fig. 4 (a) uses the linear combination to evaluate

criterion I while Fig. 4 (b) employs energy consumption

to measure criterion II. For comparison, we also plot the

system cost of random offloading, local computing, fully

offloading, and decentralized offloading in Fig. 4, where the

decentralized offloading adopts the distributed DQN method

without a centralized entity and each user can adaptively

adjust its own offloading strategy via observing its local task

characteristic and offloading vector by itself [12]. We can

observe from this figure that for criterion I, the proposed DQN-

Page 5 of 14 IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6

(a) Criterion I

(b) Criterion II

Fig. 4. System cost versus the number of users with N = 15.

λ

κ

κ

Fig. 5. Effect of the weight factor λ on the system cost of criterion I.

based offloading strategy outperforms the other four strategies

for various values of M , indicating that the proposed strategy

can effectively exploit the communication and computation

resources. In contrast, the proposed strategy of criterion II

outperforms the random, local computing and decentralized

strategies, and it is assumed worse than the full offloading

which however has a large transmission latency. The reason

why the proposed strategy outperforms the decentralized one

lies in that the latter cannot learn the global features by training

separately without interacting with each other. In further, the

system cost of the five strategies increases with a larger M , as

more users cause an increasing number of tasks to the MEC

network.

Fig. 5 demonstrates the system cost of criterion I with

several offloading strategies versus the weight factor λ, where

M = 10, N = 10 and λ varies from 0.1 to 0.9. We use two

values of fairness factor with κ = 0.4 and 1, to see the impact

of fairness on the system cost. As observed from Fig. 5, we

can find that for various values of λ, the proposed strategy is

superior to the other three strategies, which further verifies the

effectiveness of the proposed strategy. Moreover, the system

cost of the proposed strategy increases with a smaller κ, due

to the sacrifice to protect the fairness among users. In further,

the system cost of the five strategies decreases with a larger

λ, as the energy consumption plays a more important role

than latency in the linearly weighted cost, under the given

parameter setting.
V. CONCLUSIONS

In this paper, we have investigated a multiuser muti-CAP

MEC network, where task characteristics and computational

capability at the CAPs are time-varying. To propose a dynamic

offloading strategy, we have first formulated the dynamic

offloading as MDP, and then introduced the state space

and action space. We further designed a novel offloading

strategy based on the DQN, where the users could dynamically

fine-tune the offloading proportion in order to ensure the

system performance measured by the latency and energy

consumption. Simulation results were finally presented to

verify the advantages of the proposed DQN-based offloading

strategy over the conventional ones.

REFERENCES

[1] J. Tang, H. Tang, X. Zhang, K. Cumanan, G. Chen, K. Wong, and
J. Chambers, “Energy minimization in D2D-assisted cache-enabled
internet of things: A deep reinforcement learning approach,” IEEE Trans.
Ind. Informat., vol. 16, no. 8, pp. 5412–5423, 2020.

[2] Z. Liang, Y. Liu, T. Lok, and K. Huang, “Multiuser computation
offloading and downloading for edge computing with virtualization,”
IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4298–4311, 2019.

[3] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, 2016.

[4] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal task offloading
and resource allocation in mobile-edge computing with inter-user task
dependency,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 235–
250, 2020.

[5] H. Cao and J. Cai, “Distributed multiuser computation offloading for
cloudlet-based mobile cloud computing: A game-theoretic machine
learning approach,” IEEE Trans. Vehic. Tech., vol. 67, no. 1, pp. 752–
764, 2018.

[6] L. Xiao, Y. Li, X. Huang, and X. Du, “Cloud-based malware detection
game for mobile devices with offloading,” IEEE Trans. Mobile Comput.,
vol. 16, no. 10, pp. 2742–2750, 2017.

[7] S. Bi and Y. J. A. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190, 2017.

[8] Y. Pan, M. Chen, Z. Yang, N. Huang, and M. Shikh-Bahaei, “Energy-
efficient NOMA-based mobile edge computing offloading,” IEEE
Commun. Lett., vol. 23, no. 2, pp. 310–313, 2019.

[9] Z. Yang, C. Pan, J. Hou, and M. Shikh-Bahaei, “Efficient resource allo-
cation for mobile-edge computing networks with NOMA: Completion
time and energy minimization,” IEEE Trans. Commun., vol. 67, no. 11,
pp. 7771–7784, 2019.

[10] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and
C. S. Hong, “Joint communication, computation, caching, and control
in Big data multi-access edge computing,” IEEE Trans. Mob. Comput.,
vol. 19, no. 6, pp. 1359–1374, 2020.

[11] J. Chi, A.-Z. Zeyuan, B. Sebastien, and J. M. I., “Is Q-learning provably
efficient?” in Proceedings of NIPS, 2018, pp. 4868 – 4878.

[12] B. Peng, G. Seco-Granados, E. Steinmetz, M. Frohle, and H. Wymeer-
sch, “Decentralized scheduling for cooperative localization with deep
reinforcement learning,” IEEE Trans. Vehic. Tech., vol. 68, no. 5, pp.
4295–4305, 2019.

Page 6 of 14IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

