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Abstract—Recently, there has been a growing interest in
learning-based semantic communication because it can prioritize
the preservation of meaningful semantic information over the
accuracy of the transmitted symbols, resulting in improved
communication efficiency. However, existing learning-based ap-
proaches still face limitations in defining semantic level loss
and often struggle to find a good trade-off between preserving
semantic information and preserving intricate details. In addi-
tion, the existing semantic communication approaches cannot
effectively train semantic encoders and decoders without the
support of downstream models. To address these limitations,
this paper proposes a contrastive learning (CL)-based semantic
communication system. First, inspired by practical observations,
we introduce the concept of semantic contrastive loss and propose
a semantic contrastive coding (SemCC) approach that treats data
corruption during transmission as a form of data augmentation
within the CL framework. Moreover, we propose a semantic
re-encoding (SemRE) operation, which uses a duplicate of the
semantic encoder deployed at the receiver to guide the entire
training process when the downstream model is inaccessible.
Further, we design the training procedure for SemCC and SemRE
approaches, respectively, to balance the semantic information
and intricate details. Finally, simulations are performed to
demonstrate the superiority of the proposed approaches over
competing approaches. In particular, our approaches achieve a
significant accuracy improvement of up to 53% on the CIFAR-
10 dataset with a bandwidth compression ratio of 1/24, and also
obtain comparable image reconstruction quality as the bandwidth
compression ratio is improved.

Index Terms—Semantic communication, contrastive learning,
joint source-channel coding, image transmission.

I. INTRODUCTION

A. Backgrounds
The primary goal of digital communication system has been

to reliably transmit bits through noisy channels, which is
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typically categorized as the technical level of communication.

The classical information theory proposed by Shannon [2],

provided the fundamental principle for achieving this goal,

which introduced the concept of channel capacity to provide a

theoretical upper bound on the data rate that ensures error-free

transmission. Researchers have made considerable efforts to

approximate the channel capacity by developing the advanced

channel coding techniques such as low-density parity check
(LDPC) [3] and polar code [4] in the 5G New Radio (NR).

While modern digital communication systems based on these

approaches have achieved remarkable progress, they do not

explicitly consider the underlying meaning of the transmitted

data and therefore treat all bits as equal, which could poten-

tially lead to challenges in future applications.

In the upcoming Beyond 5G (B5G) and 6G networks,

a large number of Internet of Things (IoT) devices will

be deployed and various types of multimedia data will be

transmitted to support novel applications such as smart cities,

automated driving, virtual reality (VR), and augmented reality

(AR) [5]–[7]. However, the large number of connections,

data transfer requirements, and ultra-low latency demands will

place a significant burden on the network infrastructure. To

address these challenges, researchers are shifting their focus

to improving communication efficiency within the constraints

of available channel capacity. In this direction, the importance

and meaning of the transmitted data are taken into account

in the system design, and the concept of semantic commu-
nication has attracted increasing attention [8]–[11]. Semantic

communication works under the semantic and effectiveness

level of communication, which aims to prioritize the preser-

vation of meaningful semantic information over the accuracy

of transmitted symbols, leading to improved communication

efficiency by transmitting only necessary information relevant

to the specific task at the receiver. These characteristics of

semantic communication can also better meet the requirements

of the aforementioned applications in the context of B5G and

6G networks.

However, a major challenge in semantic communication

is how to effectively extract semantic information at the

transmitter while accurately reconstructing it at the receiver

under constrained communication conditions. While recent

efforts have leveraged advanced deep learning technologies in

semantic communication systems, there are still some issues

that need to be addressed, which are discussed below.

1) How to evaluate the loss of semantic level during
the training process: While the performance of a semantic

communication system can be effectively evaluated by the

downstream task, it is crucial to note that the direct use

of the loss functions of the downstream task, such as the
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cross-entropy loss [12], may not fully match the intrinsic

characteristics of semantic information, and may not guide

the training of semantic encoder and decoder well, which

could potentially lead to the degradation of effectiveness and

robustness. Since semantic information is closely related to

the meaningful content and contextual aspects of the data,

these may be overlooked by the specific labels predicted by

the downstream network and the corresponding use of cross-

entropy loss. Therefore, it is necessary to integrate the inherent

properties of semantic information into the semantic level loss.

2) How to train semantic encoders and decoders without
the help of a pre-trained downstream network: The semantic

communication system faces significant challenges in scenar-

ios where the receiver is prohibited from accessing not only

the weights, but also the architecture of the downstream model

(i.e. the pretrained downstream is black-box). This limitation

is primarily due to encryption and other security measures,

and it severely hampers the simultaneous training of the

semantic encoder and decoder in [12]. One possible solution

to overcome this limitation is to retrain a deep neural network

(DNN) that can act as a guide for training the semantic encoder

and decoder. However, it is important to note that this solution

may introduce additional system cost and complexity, which

should be carefully considered in a practical system. Moreover,

if the chosen architecture of the DNN differs from that of the

pretrained downstream model, performance degradation may

occur, which poses a challenge to this solution.

3) How to strike a good balance between preserving seman-
tic information and preserving intricate details: For a well-

designed semantic communication system, striking a good

balance between preserving important semantic information

and retaining intricate fine-grained details is essential. When

the bandwidth resource is limited, the system may prefer to

transmit the semantic information over intricate fine-grained

details, and should gradually increase the level of detail

as the bandwidth availability improves. However, existing

approaches overemphasize semantic information, resulting in

a loss of detail when the bandwidth resource is not limited.

B. Contributions

To address the above questions, we introduce the contrastive

learning (CL)-based semantic communication system. We start

with the first question by taking into account the inherent

properties of semantic information. In particular, when we

compare two unrelated entities, it becomes clear that their

semantic information has significant differences. In contrast,

the semantic information may not change much when a data

augmentation operation is performed on the original entity.

These observations can motivate us to incorporate the pop-

ular CL approach into semantic communication, since the

principles of CL align closely with those of the semantic

communication system and CL has demonstrated significant

achievements across various domains, including computer

vision [13]–[17], natural language processing (NLP) [18],

and multimodal applications [19]–[21]. The works in [22],

[23] first introduced the concept into semantic communication

systems to help extract useful semantic information. However,

these works still face limitations in evaluating the semantic

level loss when these systems work in a noisy channel since

they ignore the fact that in an ideal semantic communication

system, the semantic information at the receiver should remain

basically unchanged from its state before transmission, while

still being distinguishable from those unrelated entities.

To this end, we propose the semantic contrastive coding
(SemCC) approach, which deeply explores the introduction of

CL process to the semantic communication system. Specif-

ically, we replace the conventional data augmentation pro-

cedure with a wireless transmission process. This change is

based on the idea that the distortion caused by the noise and

fading characteristics of the wireless channel during trans-

mission can be considered as a form of data augmentation.

Therefore, we design the semantic-level loss for SemCC to

ensure that the semantic distance between the original and

reconstructed images is small enough while maintaining a

considerable semantic distance between the reconstructed and

irrelevant images for better discrimination in the downstream

task.

To address the second question, we introduce the concept

of semantic re-encoding (SemRE), which is inspired by the

information bottleneck theory that only useful semantic in-

formation is allowed to pass through the semantic encoder.

When the semantic information is initially used for data

reconstruction, the reconstructed data, when passed through

the semantic encoder again, should ideally acquire the same

semantic information as the initial one. Therefore, the key

design in this SemRE is that we deploy a semantic encoder at

the receiver, which is copied from the one in the transmitter,

and use it to guide the training of the semantic encoder and

decoder.

Furthermore, we introduce training strategies to address the

third question in the context of our semantic communication

system. In particular, inspired by the approach presented in

[12], we introduce a loss function that includes both obser-

vation loss and semantic level loss, with a hyper-parameter

that controls the trade-off between these two components.

We also design a fine-tuning approach for situations with

an available downstream model, which aims to improve the

inference performance of the downstream task.

Finally, simulations are performed to demonstrate the supe-

riority of the proposed approaches over competing approaches.

Without losing generality, we follow the concept of semantic

communication in [9], [10] and focus on the specific tasks of

image reconstruction and image classification at the receiver

like [12]. In this context, we no longer pay attention to the

typical metric of the technical level of communication such as

bit error ratio (BER) and symbol error rate (SER). Instead, we

evaluate the system performance based on the effectiveness of

the received semantic information, using intrinsic task-related

metrics such as image quality and inference accuracy. We

compare the proposed approaches with the advanced semantic

communication system in [12], [24], as well as the classical

digital communication system. Simulation results show that

the proposed approaches can achieve leading accuracy perfor-

mance in the downstream task under a range of bandwidth

compression ratios, and demonstrate remarkable adaptability
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to both AWGN and Rayleigh fading channels with different

noise levels, and also make a good trade-off between the image

reconstruction quality and inference performance.

The main contributions of this paper are summarized as

follows,

• We propose the SemCC approach, which integrates the

concept of CL into semantic communication. By utilizing

wireless transmission as a form of data augmentation in

CL, SemCC ensures minimal semantic distance between

original and reconstructed images while maintaining dis-

crimination against irrelevant images.

• We introduce the SemRE operation, which uses a dupli-

cate of the semantic encoder deployed at the receiver to

guide the entire training process when the downstream

model is inaccessible.

• We design the training procedure for SemCC and SemRE

approaches, respectively, to balance the semantic infor-

mation and intricate details.

• We conduct simulations to demonstrate the superiority

of our approaches over existing methods in terms of in-

ference accuracy, across various bandwidth compression

ratios and channel conditions, and also obtain comparable

image reconstruction quality as the bandwidth compres-

sion ratio is improved.

C. Structure

The rest of this paper is organized as follows. In Section

II, we provide an overview of related work on semantic

communication, covering its theoretical foundations and prac-

tical applications. Section III introduces the system model.

In Section IV, we present the implementation details of the

proposed CL-based semantic communication system. Section

V describes the proposed SemRE operation and its training

strategy. Simulation results are provided in Section VI. Finally,

we conclude this work in Section VII.

II. RELATED WORKS

A. Basics on Theory of Semantic Communication

The authors in [25] defined the semantic information car-

ried by a sentence in terms of logical probability during

transmission. Building on Shannon and Weaver’s theory, the

authors in [8] introduced the concept of a semantic channel

and proposed a model-theoretic approach to reliable semantic

communication. In [26], the communication scenario between

two intelligent beings was discussed, and the theoretical

formulation of the goals of semantic communication was

presented to demonstrate the necessity of semantic commu-

nication. Subsequently, G. Guler et al. investigated a semantic

communication framework by considering the meanings of

transmitted codewords over a noisy channel, and optimized the

end-to-end average semantic error using a Bayesian approach

[27]. Based on the aforementioned works, the concept of

semantic information theory [28]–[32] has attracted increasing

research interest in recent years, providing the theoretical

foundation for the development of semantic communication

in various directions.

B. Transmission Strategy of Semantic Communication

With the rapid growth of deep learning technology, re-

searchers have started to explore the deployment of semantic

communication system with the help of powerful semantic

extraction provided by deep learning. In this direction, the

authors in [24], [33], [34] proposed a deep learning based joint

source-channel coding (DeepJSCC) for image data, where the

encoder and decoder were designed based on autoencoder

and jointly optimized for semantic information transmission

to achieve a good image reconstruction quality. Then, the

works in [35]–[37] extended DeepJSCC to different channel

conditions and improved the image reconstruction quality

under noisy channels. In addition, motivated by generative

models, some works incorporated generative adversarial net-

works (GANs) to further reduce bandwidth consumption. For

example, the authors in [38], [39] applied the GAN inversion

methods [40] to regenerate the image at the receiver, which

leads to significant improvements in communication efficiency.

In [41], a joint semantic encoding-modulation system has been

explored to facilitate the deployment of semantic communica-

tion in practical networks.

For text and speech data, the work in [42] extended Deep-

JSCC to reduce the BER while preserving the semantic infor-

mation in sentences. Leveraging the transformer architecture,

the authors in [43], [44] proposed a semantic communica-

tion approach for text, achieving a high semantic similarity

between transmitted and received sentences. Guo et al. [45]

explored the ability of pre-trained large language model (LLM)

such as ChatGPT to extract semantic information by intro-

ducing a cross-layer manager, thus achieving lower semantic

loss under limited bandwidth. In addition, the work in [46],

[47] explored the semantic communication system for speech

signals to reduce perceptual distortion.

C. Application of Semantic Communication

Not limited to data reconstruction at the receiver, semantic

communication has been applied to various application scenar-

ios to support the downstream task. In the work of [48]–[50],

semantic communication is used to transmit the output of the

mid-layer of a neural network (NN) to reduce the inference

latency with the help of an edge server. The authors in [12]

proposed a collaborative training framework for semantic com-

munication, where users could train their semantic encoder to

improve the performance of downstream vision inference tasks

under limited bandwidth. Moreover, in [51], [52], the authors

used semantic communication to support the Visual Question

Answering (VQA) task by extracting and transferring the

semantic information from the correlated multimodal data. The

authors in [53] applied semantic communication in the UAV

network, which enables efficient on-the-fly scene classifica-

tion. Yang et al. [54] also introduced semantic communication

into the complex vehicular networks, and jointly optimized the

energy efficiency and semantic transmission reliability to sup-

port green V2V communication. The authos in [55] integrated

semantic communication in mobie edge computing (MEC)

network to support the efficient communication between the
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edge server and the user equipment (UE), which helps reduce

the energy consumption.

III. SYSTEM MODEL

This paper investigates a semantic communication system,

where an NN-based semantic encoder and decoder are de-

ployed in the transmitter and receiver, respectively. More

specifically, we focus on the wireless image transmission in

this paper, and use x ∈ R
nc×nh×nw to denote the transmitted

source image, where nc, nh, and nw correspond to the number

of channels, height, and width of the image, respectively. To

simplify, let n = nc × nh × nw stand for the input dimension

of x.

The transmission process begins with the semantic encod-

ing, which is used to extract the semantic information of x
and directly realize the non-linear mapping from semantic

information into the k-dim complex-valued vector s̃ ∈ C
k,

given by

s̃ = Eθ1(x), (1)

where Eθ1(·) represents the semantic encoding operation with

parameter θ1. At this stage, it is important to consider the

relationship between the output dimension k and the input

dimension n in the context of the bandwidth constraint. Typ-

ically, k < n should be satisfied to the bandwidth constraint,

where k/n is referred to as the bandwidth compression ratio.

In particular, a large bandwidth compression ratio indicates

a favorable communication condition, while a small one

indicates a limited use of bandwidth. In addition, a power

normalization layer [24] is used at the end of the semantic

coding network to satisfy the average power constraint of P
at the transmitter, given by

s =
√
kP

s̃√
s̃∗s̃

, (2)

where s is the channel input signals that meets the power

constraint, and ∗ denotes the conjugate transpose. Next, s is

transmitted over the noisy channel, where both the additive

Gaussian white noise (AWGN) channel and Rayleigh fading

channels are considered in this paper. Specifically, for the

AWGN channel, the received signals can be expressed as

ŝ = s+ ε, (3)

where ŝ is the received signals, and ε ∈ CN (0, σ2I) denotes

the additional noise sample. In the case of Rayleigh fading

channels, the received signals ŝ is given by

ŝ = H · s+ ε, (4)

where H is the channel parameter and we assume that H can

be perfectly estimated through some pilot signals.

At the receiver, the semantic decoder will be used to

reconstruct the original image x̂ ∈ R
nc×nh×nw from the

corrupted ŝ according to

x̂ = Dθ2(ŝ), (5)

where Dθ2(·) denotes the semantic decoding operation param-

eterized by θ2. It is important to highlight that this semantic
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Fig. 1: Network architecture of the semantic encoder and

decoder.

decoding operation aims to recapture the semantic information

from the noisy signals and reconstruct the image x̂.

Subsequently, x̂ will be used to exert the downstream task

and obtain the inference results through the following process

fx = Fbφ1
(x̂), (6)

where Fbφ1
(·) characterized by parameter φ1 denotes

the feature extraction operation performed by the back-

bone of the pretrained downstream model, and fx =
{f (1),f (2), · · ·f (C)} is the output feature map with C chan-

nels. The inference result ŷ can be obtained by passing fx

to the classifier Fclsφ2
(·) with parameter φ2, which can be

expressed as

ŷ = Fclsφ2
(fx). (7)

From the above description, we can see that the semantic

encoder and decoder play a key role in semantic communi-

cation. Moreover, preserving the semantic information in the

reconstructed image is crucial for the inference performance,

especially when the channel bandwidth is limited. Therefore,

the architecture and training procedure of the semantic encoder

and decoder require careful design.

Next, we will introduce the proposed CL-based semantic

communication framework. Specifically, we will first present

the architecture of the semantic encoder and decoder, and

then provide the details of SemCC and the associated training

procedure.

IV. CL BASED SEMANTIC COMMUNICATION

A. Architecture of Semantic Encoder and Decoder

The backbone of the pre-trained downstream model may

not provide sufficient information to aid in reconstructing

the image and can not mitigate the effect of channel noise.

As a result, it cannot be utilized as a semantic encoder

and decoder. Therefore, we train an extra semantic encoder

and semantic decoder in this work. The architecture of the

proposed semantic encoder and decoder is presented in Fig. 1.

The semantic encoder consists of a 5 × 5 head convolution,

two downsampling modules, and a channel coding module.

Each downsampling module contains a basic block in ResNet

[56] (we call it ResBolck) to capture the spatial feature of the

image, and a 4×4 convolution with stride 2 to downsample the
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Fig. 2: Illustration of the proposed SemCC.

image. The channel coding module is used to mitigate channel

corruption and output the k-dim complex-valued channel input

that satisfies the bandwidth and power constraints.

Furthermore, we adopt a symmetric architecture in the

decoder, which consists of a 5× 5 head convolution, two up-

sampling modules, and a recoding module. In the upsampling

module, ResBlocks are also used as in the encoder, and we

adopt the pixel shuffle technology [57] to upsample the image,

as it can provide a more efficient computing paradigm and

better reconstruction performance compared to the transposed

convolution used in [24]. The image coding module consists of

a 3×3 convolution followed by the sigmoid activated function

to produce the reconstructed image. Notably, the batch normal-

ization and parametric rectified linear unit (PReLU) activated

function are followed with all convolutions if not specified.

B. Semantic Contrastive Coding

The details of the proposed SemCC are shown in Fig. 2.

The process begins with the semantic encoding and decoding

for a typical image x in a training batch B, where we can

obtain the reconstructed x̂. We use this process to replace the

conventional data augmentation procedure, and we regard x̂
as an augmented sample of x. The backbone of pretrained

downstream mode Fbφ1
(·) is applied to x and x̂, which

generates the feature maps fx = Fbφ1
(x) and fx̂ = Fbφ1

(x̂),
respectively. Next, a fully connected projection network Pψ(·)
with learnable parameter ψ followed by a normalization op-

eration maps the features into the semantic space defined as a

hypersphere1, where samples are represented as tensors based

on their semantic information in this sapce. As mentioned

earlier, samples with similar semantic information are close

1The output of the projection network is typically represented as tensors,
which can be straightforwardly normalized into a unit hypersphere. This
approach is widely used in the domain of representation learning, as it can
help improve training stability. More details about this can be found in [58].

together, while those with different semantic information are

farther apart in this space.

During the training stage, Pψ(·) can be updated to enhance

the understanding of features, thereby learning the mapping

from features to semantics. Specifically, the projected results

of fx and fx̂ can be represented as qx = Pψ(fx) and

qx̂ = Pψ(fx̂), respectively, where qx is referred to as the

anchor, and qx̂ is called the positive. We can apply the widely

used cosine similarity between anchor and positive to define

the semantic distance between x and x̂ since it is suitable

for comparing the similarity between points in such high-

dimensional space. It is notable that when we focus on x̂,

we can regard it as the anchor, and x as the positive instead.

For the remaining samples m ∈ B/{x} within training

batch B, the same procedure will be followed. Specifically, we

can obtain the feature map fm = Fb(m) and fm̂ = Fb(m̂)
by feeding m and m̂ into the backbone of pretrained down-

stream model respectively. Then, we project them into the

semantic space using Pψ(·), where qm and qm̂ are referred

to as the negative of x and x̂, respectively. Similarly, the

semantic distance among them can be defined as the cosine

similarity between anchor and negative.

To simply the expression, we define B∗ as the augmented

version of B, which comprises both of the original samples

from B and the reconstructed ones, and |B∗| = 2|B| is

satisfied. We also define x∗ as the positive of x ∈ B∗. The

objective of SemCC is to minimize the semantic distance

between the original and reconstructed images while maxi-

mizing the semantic distance among the original image and

the irreverent images. Therefore, we can use the InfoNCE

function [13] to define the semantic contrastive loss, which

can be expressed as

Lsem = Ex∈B∗

{
− log

exp(qx · qx∗/τ)∑
m∈B∗/{x} exp(qx · qm/τ)

}
, (8)
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where τ > 0 is the temperature coefficient used to smooth

the probability distribution. Next, we will introduce how to

take into account the SemCC and semantic contrastive loss to

design the loss function and training procedure.

C. Loss Function and Training Procedure

Based on the SemCC, we design a two-stage training

strategy to optimize the semantic encoder and decoder. The

first stage is pre-training, where we use the SemCC approach

to train the weights of the encoder θ1, the decoder θ2, and

the projection network ψ simultaneously. Since it is difficult

to achieve a fast convergence speed when we only optimize

the semantic contrastive loss, we combine the semantic con-

trastive loss with the reconstructed loss between x and x̂,

since reducing the reconstructed loss can help improve the

convergence speed in the early training rounds. Specifically,

we use the Mean Square Error (MSE) function to evaluate

the reconstruction loss for the training batch B, which can be

expressed as

Lrec = Ex∈B

{
1

n
||x− x̂||22

}
. (9)

Then, the loss function in the first training stage can be

summarized as the linear combination, given by

L1 = α1Lrec + (1− α1)Lsem, (10)

where α1 ∈ [0, 1] is a hyperparameter that controls the tradeoff

between the two parts of the loss function. For example, we

can set α1 = k/n in the practical semantic communication

system. In this context, the system prioritizes the preservation

of semantic information over the reconstructed quality when

the bandwidth compression ratio is small. In contrast, as the

bandwidth compression ratio increases, the system shifts its

focus to preserving the reconstructed quality.

In the second training stage, we aim to further optimize the

performance of the semantic communication system by jointly

fine-tuning the encoder and decoder with a small learning rate

to achieve significant inference performance and reconstructed

image quality, especially when the bandwidth compression

ratio is low. The loss function of this stage can be expressed

as

L2 = α2Lrec + (1− α2)LTask, (11)

where α2 ∈ [0, 1] is a hyper-parameter like α1 and LTask is

the loss function of the downstream task. Specifically, when

the downstream task is a classification problem, the cross-

entropy function can be employed to model the loss, given

by

LTask = Ex∈B

{
− 1

Ncls

Ncls∑
i=1

yx,i log(ŷx,i)

}
, (12)

where yx,i and ŷx,i represent the ground-truth and the pre-

dicted probability of the i-th class, respectively. Notation Ncls
denotes the number of classes in the dataset. The whole

training procedure is summarized in Algorithm 1, where

Nepochs and NFine-tuning represent the number of training and

fine-tuning epochs, respectively.

Algorithm 1: SemCC Training Procedure

// Training Stage 1: Pre-training
1 for epoch ← 1 to Nepochs do
2 Sample a batch B from the knowledge base;

3 The transmitter encodes each x ∈ B with Eθ1(·);
4 The receiver decodes and obtains x̂ with Dθ2(·);
5 Extract feature maps fx and fx̂ using Fbφ1

(·) for

x ∈ B;

6 Project feature maps to semantic space using pψ(·);
7 Calculate reconstruction loss Lrec using (9);

8 Calculate semantic contrastive loss Lsem based on

(8);

9 Calculate combined loss L1 based on (10);

10 Update θ1, θ2, and ψ using SGD.

11 end
// Training Stage 2: Fine-tuning

12 for epoch ← 1 to NFine-tuning do
13 Sample a batch B from the knowledge base;

14 The transmitter encodes each x ∈ B with Eθ1(·);
15 The receiver decodes and obtains x̂ with Dθ2(·);
16 Extract feature maps fx and fx̂ using Fbφ1

(·) for

x ∈ B;

17 Send the feature map to the classifier Fclsφ2
(·);

18 Calculate reconstruction loss Lrec using (9);

19 Calculate loss of the downstream task LTask based

on (12);

20 Calculate combined loss L2 based on (11);

21 Update θ1 and θ2 using SGD.

22 end

V. SEMANTIC RE-ENCODING WITH INACCESSIBLE

DOWNSTREAM MODEL

In this section, we will discuss a more general scenario

where the architecture and weights of the downstream network

are not accessible. Specifically, we will introduce an alternative

approach, namely SemRE, to address these issues, and then

present a soft update paradigm for the semantic encoder. After

that, we will provide the updated loss function and the training

procedure.

A. Semantic Re-encoding

When the weights of the pretrained downstream model are

not accessible (i.e. the pretrained downstream is black-box),

we cannot use its pre-trained backbone to extract features

and subsequently map them to the semantic space, as back-

propagation cannot be performed. A simple straightforward

solution is to initialize a DNN model randomly and pre-

train it using the label information. This pre-trained random

model can then guide the training of the proposed SemCC

or DeepSC. However, this approach introduces additional

system overhead and training latency. Moreover, if the chosen

architecture of the random DNN differs from that of the

pretrained downstream model, it may result in performance

degradation. Therefore, we propose to use only the label

information to train the semantic encoder and decoder, which
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Fig. 3: Illustration of the proposed SemRE.

Lsem,R = Ex∈B∗

{
− 1

|Sx|
∑

x∗∈Sx

log
exp(qx · qx∗/τ)∑

m∈B∗/{Sx} exp(qx · qm/τ)
}
. (13)

provides a complementary technique between DeepSC and

the proposed SemCC. Specifically, we propose to use the

semantic encoder to re-encode the reconstructed image instead

of the feature extraction operation. This is motivated by

the concept of information bottleneck [59] in deep learning,

where the network acts as a bottleneck and the only useful

information from the input is agreed to pass through itself.

In other words, the unimportant information is filtered out in

the process. In essence, the ideal semantic encoder should

play such a role, i.e., only the semantic information can

be retained after semantic encoding, and the task-irrelevant

information is removed. It is worth noting that, according to

the principles of data processing inequality (DPI) [60], no

additional semantic information is generated during encoding,

transmission, and decoding processing. Therefore, when the

reconstructed sample at the receiver is fed back to the semantic

encoder, the output should resemble the previous encoding

results for an ideal semantic communication system.
We then provide a detailed description of the SemRE and

the modification of the semantic contrastive loss. As shown in

Fig. 3, in contrast to SemCC, where both the original x and

x̂ are fed into the backbone of the pre-trained downstream

model, the proposed SemRE approach only needs to perform

re-encoding at the receiver, since we have already obtained

the encoding results at the sender. Let s̃r = Eθr1 (x̂) denote

the re-encoding operation at the receiver, where θr1 represents

the parameters of the re-encoder. In particular, θr1 is updated

based on θ1 and we will introduce how this update is achieved.

After that, the power normalization in (2) is used to obtain the

results sr.
Next, we can use s and sr to perform CL. Specifically,

similar to SemCC, SemRE still uses projection meshes. For

simplicity, we use qx and qx∗ to denote the anchor and

positive projection results. To obtain the negative, we select

samples from the same batch and use cosine similarity to

evaluate the semantic distance. It is important to note that

we do not consider all remaining samples within the same

batch as negative, because the ability of semantic extraction

in this scenario is limited and we cannot obtain rich and

fine-grained semantic information due to the lack of the pre-

trained downstream model. Blindly pulling samples away from

each other within the same class would degrade the system

performance. In other words, it is advisable to consider the

semantic similarities between different samples belonging to

the same class. For these reasons, we adopt a supervised

method in [17]. Specifically, the label of each sample is used to

facilitate CL, and we define Sx as the positive set containing

samples belonging to the same class with x. Thus, we can

derive the semantic contrastive loss of the SemRE approach

as (13). Then we can use (13) to replace (10) to perform the

gradient descent.

B. Soft Update Approach

In the training process of the proposed SemRE approach,

the semantic encoder plays a key role. It first extracts the

semantic information and encodes it before transmission.

Then, at the receiver, it extracts the semantic information again

to evaluate the quality of the received semantic information.

However, training such a semantic encoder is challenging in

practice. Because, it is a self-guided process, i.e., the semantic

encoder evaluates its own performance and the weights of the
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Algorithm 2: Semantic Re-Coding Training Procedure

1 for epoch ← 1 to Nepochs do
2 Sample a batch B from the knowledge base;

3 The transmitter encodes each x ∈ B with Eθ1(·);
4 The receiver decodes and obtains x̂ with Dθ2(·);
5 The receiver re-encodes x̂ with Eθr1 (·);
6 Project the encoded results from both of the

transmitter and receiver to semantic space using

pψ(·);
7 Calculate reconstruction loss Lrec based on (9);

8 Calculate semantic contrastive loss Lsem,R based

on (13);

9 Calculate combined loss L1 based on (10);

10 Update θ1, θ2 and ψ using SGD;

11 if epoch mod Nupdate = 0 then
12 Update θr1 ← βθr1 + (1− β)θ1
13 end
14 end

semantic encoder are also updated dynamically. This makes

the semantic encoder at the receiver fail to provide stable

evaluation, which complicates the optimization of the entire

process.

Inspired by weight update strategies in deep reinforcement

learning, as exemplified by deep Q-Networks (DQN) [61] and

deep deterministic policy gradients (DDPG) [62], we propose

a soft update approach for the semantic encoder to address

these challenges. This approach decouples the evaluation and

update steps in the training process. Specifically, the semantic

encoder at the receiver does not update its weights after each

training batch, as it does at the transmitter. Instead, its weights

are updated periodically to achieve better training stability. The

detailed soft-update approach can be expressed as

θr1 ← βθr1 + (1− β)θ1, (14)

where β ∈ [0, 1] is a hyper-parameter which controls the

update magnitude. We finally summarize the whole training

process of SemRE as shown in Algorithm 2, where Nupdate is

the update interval.

VI. SIMULATIONS

A. Simulations Settings

To verify the effectiveness of the proposed framework, we

conduct experiments on CIFAR-10, which contains 60,000

32×32 color images divided into 10 classes. The training set

contains 50,000 images, while the test set contains 10,000

images. A pre-trained ResNet-20 [56] is used as the backbone

and classifier of the downstream model for inference2.

The projection network adopts a two-layer fully connected

structure with an output dimension of 32. The number of

training epochs for the pre-training and fine-tuning is set to

200 and 50, respectively, with a batch size of 128. We also

use the Adam optimizer with a learning rate of 0.001 for the

2The pre-trained weights can be found at https://github.com/chenyaofo/
pytorch-cifar-models.

first pre-training stage and 0.0001 for the second fine-tuning

stage. These learning rates are adjusted every 50 epochs with

a decay factor of 0.5.

For the network environment, we set the transmit power

to unity and the transmit SNR to 20dB and 5dB for normal

and noisy environments, respectively. In addition, we assume

that the receiver can estimate the channel parameters perfectly

in the case of Rayleigh channel. We compared the proposed

approaches with the advanced DL-based semantic communi-

cation approaches, which are listed as follows,

• SemCC: The proposed CL based semantic communi-

cation approach, where the pretrained backbone of the

downstream task is used in the training process.

• SemRE: The proposed SemRE strategy and no pre-

trained backbone is adopted in this case.

• DeepJSCC [24]: Deep learning based source-channel

joint coding that maps the original input to the channel

input through the structure of an autoencoder.

• DeepSC [12]: The SOTA deep learning based semantic

communication framework to support downstream in-

ference task. DeepSC trains the semantic encoder and

decoder with both semantic loss provided by the whole

pre-trained ResNet-20 and observation loss in (11) to

achieve efficient semantic information transmission. Note

that the hyper-parameter α2 is set to the same as it in the

fine-tuning stage of the proposed approaches.

For fair comparison, the architectures of the encoders and

decoders in these approaches are set to be the same, and the

network environment settings are kept consistent across all

experiments, if not specified.

Moreover, we also compare the performance of the proposed

approaches with conventional digital communication using

separate source and channel coding under the same bandwidth

compression ratio. For the source coding, we leverage the

SOTA image compression algorithm named better portable

graphics (BPG)3, which is based on the intra-frame encoding

approach of the high-efficiency video coding (HEVC, aka

H.265) standard. As for the channel coding, we integrate

LDPC code configured according to the IEEE 802.16E stan-

dard (Mobile WIMAX), where the block length of 2304 and

rates of 1/2, 2/3 and 3/4 are adopted in our simulations. In

addition, we use the quadrature amplitude modulation (QAM)

with order of 4,16 and 64. Notably, we only report the results

of the optimal combination of LDPC rates and modulation

schemes for simplicity.

In further, we present the upper bound performance of the

digital communication approach, denoted as BPG+Capacity,

which realizes capacity-achieving transmission based on Shan-

non theorem for a given transmit SNR, with the assumption

of error-free transmission. Hence, practical digital transmission

schemes incorporating channel coding and modulation can not

outperform this upper bound.

B. Effectiveness

Fig. 4 compares the accuracy performance of DeepJSCC,

DeepSC, the conventional digital communication and the

3https://bellard.org/bpg/.
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9

Fig. 4: Test Accuracy versus the bandwidth compression ratio

under AWGN channel, where SNR is 20dB.

Fig. 5: PSNR versus the bandwidth compression ratio under

AWGN channel, where SNR is 20dB.

proposed approaches including SemCC and SemRE under

AWGN channel where the SNR is set to 20dB and the

bandwidth compression ratio k/n varies from 1/24 to 1/2.5.

For the digital communication system, the combination of

3/4 rate LDPC and 64QAM is used. This figure clearly

shows that the proposed SemCC consistently outperforms

the compared ones in terms of accuracy. In particular, when

the compression ratio is 1/2.5, all approaches can transmit

rich semantic information to support the downstream task,

resulting in high accuracy levels of about 92.3%. As the

bandwidth compression ratio decreases, the proposed SemCC

still maintains a comparable accuracy performance. For ex-

Fig. 6: Test Accuracy versus the bandwidth compression ratio

under AWGN channel, where SNR is 5dB.

Fig. 7: PSNR versus the bandwidth compression ratio under

AWGN channel, where SNR is 5dB.

ample, the proposed SemCC can achieve accuracy levels of

89.85% and 88.81% at bandwidth compression ratios of 1/12

and 1/24, respectively, which outperforms DeepSC by about

2% at the corresponding bandwidth compression ratios and

also shows an accuracy gain of up to 40% and 26% over

DeepJSCC and BPG+Capcacity, respectively. In addition, the

SemRE approach is also superior to DeepJSCC, achieving an

accuracy gain of up to 25% at a bandwidth compression ratio

of 1/24. It is important to note that both approaches do not

use a pre-trained backbone during the training process. These

results suggest that the proposed approaches can effectively

extract semantic information to meet the requirements of the
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Fig. 8: Test accuracy versus the bandwidth compression ratio

under Rayleigh fading channels, where SNR is 20dB.

Fig. 9: PSNR versus the bandwidth compression ratio under

Rayleigh fading channels, where SNR is 20dB.

downstream task and remove irrelevant redundant information

to ensure that the semantic information can be successfully

transmitted. This is particularly beneficial in scenarios where

the channel bandwidth is limited.

Fig. 5 presents the peak signal-to-noise ratio (PSNR) com-

parison of the proposed SemCC and SemRE and the four

complementary approaches, where the SNR is set to 20dB

and the bandwidth compression ratio varies from 1/24 to 1/2.5.

For the digital communication system, the combination of 3/4

rate LDPC and 64QAM is used. As shown in the figure, we

can see that as the bandwidth compression ratio increases, the

PSNRs of all the approaches improve and the conventional

Fig. 10: Test Accuracy versus the bandwidth compression ratio

under Rayleigh fading channels, where SNR is 5dB.

Fig. 11: PSNR versus the bandwidth compression ratio under

Rayleigh fading channels, where SNR is 5dB.

approach performs best when the bandwidth compression ratio

is larger than 1/3. Although SemCC and SemRE sacrifice

some image quality to prioritize semantic information when

the bandwidth compression ratio is low, they can quickly

catch up with the PSNR of DeepJSCC at higher compression

ratios. Specifically, the proposed SemCC achieves a PSNR of

38.31dB, which is close to the 39.07dB of DeepJSCC, and out-

performs DeepSC with 37.11dB when the bandwidth compres-

sion ratio is 1/2.5. Moreover, the SemRE approach achieves

the same PSNR performance as the DeepJSCC when the

bandwidth compression ratio is greater than 1/6. These results

indicate that the proposed SemCC and SemRE approaches
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Fig. 12: Test Accuracy on CIFAR-10 versus PSNR under

AWGN channel with SNR of 5dB, where the bandwidth

compression ratio is set to 1/24.

Fig. 13: Test Accuracy on CIFAR-10 versus test SNR un-

der Rayleigh channel. The semantic encoder and decoder

are trained at an SNR of 5dB, and the high-performance

RepVGG16 is utilized as the downstream model.

can prioritize the transmission of semantic information over

irrelevant background information to ensure the performance

of the downstream task in bandwidth-limited scenarios, and

meanwhile transmit enough background information to obtain

good image quality when the bandwidth is not a bottleneck.

These results further demonstrate the effectiveness of the

proposed approaches.

Fig. 6 and Fig. 7 show the performance comparison of

several approaches under low SNR in terms of accuracy

Fig. 14: Test Accuracy on CIFAR-10 versus test SNR under

Rayleigh channel. The semantic encoder and decoder are

trained at an SNR of 5dB, and the lightweight ShuffleNet-

V2 is utilized as the downstream model.

and PSNR, respectively. Specifically, both figures consider

a low SNR of 5dB, and the bandwidth compression ratio

varies from 1/24 to 1/2.5. Moreover, 3/4 rate LDPC and

4QAM is used in this case. From Fig. 6, we can see that

the proposed SemCC still shows the superiority in terms of

accuracy compared to the competitive ones, indicating its

robustness in low SNR scenarios. From Fig. 7, we can find that

the proposed approaches can adaptively sacrifice the global

information to obtain comparable semantic performance when

the bandwidth compression ratio is low, and meanwhilebtain

sufficient reconstructed quality in terms of PSNR as the

bandwidth compression ratio increases. These results in both

figures further verify the effectiveness and robustness of the

proposed approaches in low SNR scenarios.

To further evaluate the performance of several approaches,

we perform a comparison under Rayleigh fading channels.

Fig. 8 shows the accuracy performance where the SNR is 20dB

and the bandwidth compression ranges from 1/24 to 1/2.5. For

the digital communication system, we utilize a combination

of 2/3 rate LDPC and 16QAM. From this figure, we can see

that all approaches experience performance degradation under

Rayleigh fading channels compared to the AWGN channel.

However, the proposed SemCC still achieves a leading level

of accuracy. Specifically, at a bandwidth compression ratio of

1/2.5, the proposed SemCC achieves an accuracy of 91.21%,

which is approximately 1% higher than DeepJSCC and 0.3%

higher than DeepSC. As the bandwidth compression ratio

decreases, the proposed SemCC demonstrates its adaptability

to Rayleigh fading channels and still achieves an accuracy of

about 90% when the bandwidth compression ratio ranges from

1/4 to 1/24, which achieves accuracy gains of up to 46.08%

and 2.62% over DeepJSCC and DeepSC, respectively, and
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TABLE I: Ablation study on AGWN channels (SNR=5dB)

k/n = 1/24 k/n = 1/12 k/n = 1/6

Metrics Baseline w/o. FT w/o. CL Baseline w/o. FT w/o. CL Baseline w/o. FT w/o. CL

ACC 87.13 83.48 (-3.65) 86.78 (-0.26) 88.68 88.16 (-0.52) 86.87 (-1.81) 89.32 89.18 (-0.14) 88.85 (-0.47)
PSNR (dB) 15.87 16.00 (+0.13) 11.86 (-4.01) 18.99 18.97 (-0.02) 13.83 (-5.16) 23.60 23.18 (-0.42) 21.28 (-2.32)

TABLE II: Ablation study on Rayleigh fading channels (SNR=5dB)

k/n = 1/24 k/n = 1/12 k/n = 1/6

Metrics Baseline w/o. FT w/o. CL Baseline w/o. FT w/o. CL Baseline w/o. FT w/o. CL

ACC 77.65 71.00 (-6.65) 65.22 (-12.43) 79.86 76.99 (-2.87) 73.02 (-6.84) 80.14 78.79 (-1.35) 77.28 (-2.86)
PSNR (dB) 14.87 14.94 (+0.07) 11.41 (-3.46) 17.04 16.94 (-0.10) 14.02 (-3.02) 20.65 20.48 (-0.17) 17.89 (-2.76)

even outperforms the upper bound performance of the digital

communication approach. Moreover, the SemRE also shows

its superiority in exploiting the Rayleigh fading characteris-

tics compared to DeepJSCC and BPG+Capacity, achieving

accuracy gains of up to 30.31% and 10.27%, respectively.

These results further demonstrate the effectiveness of the

proposed SemCC and SemRE approaches under Rayleigh

fading channels.

Fig. 9 shows the PSNR comparison under Rayleigh fading

channels with an SNR of 20dB. For the digital communication

system, a combination of 2/3 rate LDPC and 16QAM is

used. From this figure, we can see that both the proposed

SemCC and SemRE approaches prioritize the transmission

of semantic information at low bandwidth compression ratios

while preserving enough detail to improve image quality as the

bandwidth compression ratios increase. It is noteworthy that

the SemRE approach achieves a superior PSNR performance

compared to DeepJSCC when the bandwidth compression

ratio is greater than 1/6, and the proposed SemCC also outper-

forms DeepJSCC and the conventional digital communication

approach when the bandwidth compression ratio is 1/2.5. This

can be attributed to the introduced CL and the approach

of replacing the data augmentation with a practical wireless

channel, which helps to mitigate the effect of Rayleigh fading

channels. In addition, the presence of rich semantic informa-

tion plays a crucial role in image reconstruction at the receiver.

Fig. 10 and Fig. 11 show the performance comparison

under Rayleigh fading, and the SNR is set to 5dB. In

this scenario, the characteristics of fading and channel noise

pose even greater challenges to the semantic communication

system. From Fig. 10, we can see that the test accuracy

of all approaches deteriorates significantly. Compared to the

competing approaches, the accuracy gains of the proposed

SemCC increase with a smaller bandwidth compression ratio,

and it outperforms DeepSC and DeepJSCC by up to 18.65%

and 57%, respectively. Moving to Fig. 11, we find that the

SemRE approach still achieves superior image quality in terms

of PSNR compared to other approaches when the bandwidth

compression ratio is larger than 1/6. It achieves a gain of up to

1.5 dB over DeepJSCC. Moreover, the proposed SemCC also

outperforms DeepJSCC when the bandwidth compression ratio

is 1/2.5. These results further demonstrate the effectiveness

of the proposed approaches in overcoming the challenges of

channel environments and successfully balancing the semantic

information and image details according to the bandwidth

compression ratio.

Next, we vary the trade-off parameters in (10) and (11)

across a broad range to adjust the PSNR value and observe the

corresponding performance in terms of accuracy under AWGN

channels, where the BCR is set to 1/24 and SNR is set to 5dB.

As shown in Fig. 12, the test accuracy of the proposed SemCC

and DeepSC decreases as the PSNR increases, which indicates

that both the proposed SemCC and DeepSC can balance the

trade-off between the semantic information and image quality.

However, the test accuracy of DeepSC is more sensitive to the

trade-off parameter, while the proposed SemCC can maintain

a higher accuracy level across a broad range of trade-off

parameters and the corresponding PSNR values. Specifically,

the proposed SemCC achieves the test accuracy of 87.13%

and 86.71% when the PSNR is about 15.87dB and 16.38dB,

respectively, while DeepSC achieves the same-level accuracy

with a lower PSNR value of 12-13dB. These results further

demonstrate the effectiveness of the proposed SemCC in the

trade-off between the semantic information and image quality.

We also conduct ablation studies, as shown in Table I and

Table II. We consider our proposed SemCC with two-stage

training as the baseline. We then remove the first stage of

CL pre-training (denoted as w/o. CL) and the second stage of

fine-tuning (denoted as w/o. FT), respectively, to evaluate their

individual impact. It is notable that for w/o. CL, we used a

larger learning rate to train the semantic encoder and decoder

from scratch than that used in the fine-tuning stage and in fact,

SemCC degrades to DeepSC in this case. Specifically, Table I

provides the performance comparison, where AWGN channel

with SNR of 5dB is set and the bandwidth compression k/n
is set to 1/24, 1/12 and 1/6, respectively. From this table,

we can find that the baseline achieves the highest accuracy

and PSNR, while the baseline without fine-tuning can still

outperform the one without CL pre-training in most cases.

These results indicate that the gains of the proposed SemCC

mainly come from the CL pre-training, and the fine-tuning

also contributes to improved accuracy performance, especially

when the bandwidth compression ratio is 1/24.

Similar results of ablation studies on Rayleigh fading chan-

nels are presented in Table II, where SNR is set to 5dB. From

Page 12 of 43

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13

Original DeepJSCC

PSNR|MS-SSIM 20.23dB|0.83

DeepSC SemCC

16.85dB|0.68 19.83dB|0.82

Original DeepJSCC

PSNR|MS-SSIM 21.11dB|0.89

DeepSC SemCC

17.925dB|0.73 21.21dB|0.88

Fig. 15: Visual comparison of the reconstructed image under AWGN channel with an SNR of 20dB and a bandwidth compression

ratio of 1/48. The proposed approaches effectively preserves the semantic information of the colorful macaws and removes the

irrelevant background.

this table, we can observe that a larger gain is obtained by

the CL pre-training over training from scratch compared to

that under AWGN channel, which further demonstrates the

effectiveness of the proposed CL-based pre-training, as well

as the benefits of fine-tuning.

C. Robustness

To verify the robustness of the proposed SemCC and

SemRE approaches, we consider a more challenging scenario

where there is a mismatch between the training SNR and

the test SNR. In addition, the model architecture for the

downstream task is different from the one used in the training

process. In particular, we consider the state-of-the-art (SoTA)

RepVGG16 [63] and the lightweight ShuffleNet [64] as the

downstream models. RepVGG16 and ShuffleNet are more

powerful and less powerful, respectively, compared to the

ResNet-20 used in the training phase. Therefore, we can eval-

uate the robustness of the proposed approaches by assessing

whether the preserved semantic information is general enough

to work properly with a more powerful pre-trained model

downstream and whether it is sufficient and appropriate for

the lightweight model. We also provide the performance of

the conventional digital communication system under the same

condition, where we use the serval combination of LDPC

rates and modulation schemes to achieve the best performance.

In Fig. 13, we present the test accuracy comparison under

Rayleigh fading channels for different SNRs, where the se-

mantic encoder and the semantic decoder are both trained

at the SNR of 5dB, and the bandwidth ratio is set to 1/6.

The model architecture for the downstream task is ResNet20

during the training phase, while in the test phase, we use

RepVGG16 [63]. This change may indicate an upgrade in the

GPU device of the receiver, which allows the use of a more

powerful deep model. From this figure, we can observe that

despite the mismatched SNR and the use of a more complex

downstream model, the proposed approaches still demonstrate

competitive test accuracy levels by providing enough semantic

information to the downstream model and the ability to protect

it from fading and noise. It is also important to note that

the proposed SemRE, which utilizes only label information,

demonstrates better performance compared to DeepSC when

the downstream model is unknown. These results suggest that

our semantic communication system maintains its robustness

in the face of real-world variations.

In Fig. 14, we continue to evaluate the test accuracy under

Rayleigh fading channels, where we employ a lightweight

model architecture. Specifically, ShuffleNet [64] is employed

for the downstream model, and the bandwidth compression

ratio is set to 1/12 to simulate computational resource and

bandwidth constraints. In this scenario, we observe a signifi-

cant degradation in the accuracy performance of DeepSC, as it

primarily emphasizes specific semantic information and shows

its sensitivity to different model architectures of the down-

stream task. In contrast, our proposed approaches demonstrate

that they can provide more general semantic communication

by maintaining competitive test accuracy levels, reaching up to

80%, and showing gains of up to 40% over DeepSC. In further,

the proposed approaches can effectively mitigate the cliff

effect under various channel conditions. These results highlight

the robustness of our semantic communication system in

scenarios with limited computational and bandwidth resources.

D. Visualization

We also provide visual comparisons of different approaches

using the Kodak dataset in Fig. 15, where the encoder and

decoder are trained on the STL10 dataset, the SNR is 20dB,

and the bandwidth compression ratio is 1/48. From this figure,

we can find that the quality of the reconstructed image

Page 13 of 43

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14

for DeepJSCC, DeepSC, and the proposed SemCC all get

deteriorated in this large compression ratio, but the proposed

SemCC can effectively preserve the semantic information. For

example, the proposed SemCC effectively preserves the se-

mantic information of the colorful macaws, people, and rafters,

and removes the irrelevant background. This is particularly

beneficial in scenarios where the channel bandwidth is limited

and can explain the reasons for the superior performance

of the proposed SemCC in the downstream task. On the

other hand, DeepJSCC treats all information as important and

attempts to reconstruct the background, leading to the loss

of semantic information about colorful macaws and rafters.

Although DeepSC can extract textual information, it still

fails to preserve the colorful macaws and rafters, significantly

deteriorating image quality. These results further demonstrate

the effectiveness of the proposed approaches in preserving

semantic information and removing irrelevant background

information.

VII. CONCLUSION

In this paper, we investigated a CL-based semantic com-

munication system. Our contribution was to introduce the

concept of semantic contrastive loss, which provides a more

reasonable evaluation of semantic-level aspects during the

training process. Moreover, we modified the CL procedure

by replacing the traditional data augmentation with a practical

wireless channel and proposed the SemCC approach, which

allows us to comprehensively exploit the impact of the channel

on the transmission of semantic information. We also proposed

the SemRE approach, which uses a copy of the semantic

encoder to guide the whole training process, to address the

problem of an inaccessible downstream model. Further, we

designed training procedures for SemCC and SemRE, respec-

tively, which achieved a good trade-off between preserving

semantic information and retaining intricate details. Finally,

we conducted simulations under various conditions, including

different bandwidth compression ratios, SNRs, and down-

stream model configurations, to demonstrate the effectiveness

and robustness of the proposed approaches.

REFERENCES

[1] S. Tang, Q. Yang, L. Fan, X.Lei, Y. Deng, and A. Nallanathan,
“Contrastive learning based semantic communication for wireless image
transmission,” in IEEE Veh. Technology Conf. (VTC-Fall), Oct. 2023, pp.
1–6.

[2] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[3] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21–28, 1962.

[4] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[5] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for
6G: Vision, enabling technologies, and applications,” IEEE J. Sel. Areas
Commun., vol. 40, no. 1, pp. 5–36, 2022.

[6] X. Duan, X. Wang, L. Lu, N. X. Shi, C. Liu, T. Zhang, and T. Sun, “6G
architecture design: From overall, logical and networking perspective,”
IEEE Commun. Mag., vol. 61, no. 7, pp. 158–164, 2023.

[7] C. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang,
Y. Chen, H. Haas, J. S. Thompson, E. G. Larsson, M. D. Renzo, W. Tong,
P. Zhu, X. Shen, H. V. Poor, and L. Hanzo, “On the road to 6G: Visions,
requirements, key technologies, and testbeds,” IEEE Commun. Surv.
Tutorials, vol. 25, no. 2, pp. 905–974, 2023.

[8] J. Bao, P. Basu, M. Dean, C. Partridge, A. Swami, W. Leland, and J. A.
Hendler, “Towards a theory of semantic communication,” in IEEE Netw.
Sci. Workshop, 2011, pp. 110–117.
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