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Abstract

In this paper, we study a relay-assisted federated edge learning (FEEL) network under latency and

bandwidth constraints. In this network, N users collaboratively train a global model assisted by M

intermediate relays and one edge server. We firstly propose partial aggregation and spectrum resource

multiplexing at the relays in order to improve the communication of the relay-assisted FEEL system.

Then, we derive analytical and asymptotic expressions of the system outage probability and convergence

rate. For the purpose of improving the system performance, we further optimize the relay-assisted FEEL

network by maximizing the number of users who participate in each round of federated learning, through

allocation of the wireless bandwidth among users and relays. Specifically, two bandwidth allocation (BA)

schemes have been proposed, assuming either instantaneous or statistical channel state information (CSI).

Simulations show the advantages of the proposed BA schemes over other benchmarks, regarding the

accuracy and convergence rate of the considered relay-assisted FEEL network.
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I. INTRODUCTION

Recently, fast-growing applications of the Internet of Things (IoT) have generated an explosive

amount of data to drive artificial intelligence (AI), widely applied in wireless communication,

image processing and other fields [1]–[4]. The centralized AI applications need to aggregate

distributed data from users into the server for training, which is hard to be achieved due to

privacy concerns. To tackle this issue, an intelligent paradigm namely federated learning (FL)

was proposed to enable multiple users to train a global model without transmitting the sensitive

data [5]–[8]. In this framework, the FL server periodically selects some users as the candidates to

join each round’s training. Then, the selected users calculate the training loss, update the weights

and transmit the local models to the server. Once they received, the server can aggregate the

models and repeat the whole procedure until it converges [9]–[11].

In the same time, mobile edge computing (MEC) has become one of the most advanced tech-

nologies for reducing communication latency and energy consumption [12], [13]. For example,

MEC could be used for video transmission to suppress jamming [14], where the compression

parameter and power control were optimized by reinforcement learning. Besides, similar concept

was used to decide offloading against jamming attacks and interference in [15], which could

achieve a significant reduction in latency and energy consumption. Therefore, FL can be used

in the MEC scenarios, where the mobile users perform distributed learning and transmit the

trained models to be aggregated at the edge server, called federated edge learning (FEEL)

[16]–[18]. The FEEL performance depends on the number of successfully participated users

in the federated learning, which is however limited by the communication overhead, due to

practical constraints, such as latency and bandwidth [19]–[21]. To reduce the communication

overhead, a physical-layer quantization scheme was proposed to upload training models, where

the compromise between FEEL performance and quantization ratio was revealed [22]. Also,

to further cope with this overhead, the system resources of FEEL networks can be exploited

to support more users to successfully participate into the federated learning [23], [24]. For

instance, the trade-off between the communication overhead and computational capability was

investigated in [25], by dividing the deep model into several sub-models, where the authors

enabled heterogeneous mobile users to select models of appropriate size to reduce the amount

of transmitted data. In addition, the system resources such as bandwidth can be optimized among

the users, in order to meet practical requirements such as latency and energy consumption, by
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exploiting the channel state information (CSI) [26], [27].

Besides the above techniques, relays can be deployed in FEEL to decrease the communication

overhead and thus, enhance the system communication and learning performance. In recent

works, relaying has been proposed to be an effective technology in wireless communication

systems to extend coverage and improve reliability without requiring additional power [28]–[30].

In the relay-assisted FEEL, some intermediate relays can be deployed to assist the communication

between mobile users and the edge server. In this aspect, a FEEL network which exploits

cooperative relaying with service pricing was presented in [31], where the relays only help

the data communication during the model update. In addition, a relay-assisted FEEL system was

investigated in [32], where multiple relays were used to improve the over-the-air computation

performance. Besides assisting the data communication, the relays in the FEEL networks can

help performing partial aggregation in order to reduce the total amount of data required for

transmission. In this aspect, a two-tier relay-assisted FL framework was proposed in [33],

where the relays assisted the model aggregation for the local gradients to achieve a partially

synchronized parallel mechanism. In addition, federated learning aggregation was explored in

[34] for device-to-device (D2D) communications across the wireless devices, where partial

gradient aggregation was used at the relays to assist the uplink. However, so far, to the best

of our knowledge, there has been little work on the relay-assisted FEEL system with limited

resources, especially about the framework of performance analysis and system optimization.

In this paper, we study a relay-assisted FEEL network under latency and bandwidth con-

straints, where N users collaboratively train a global model assisted by one edge server and

M intermediate relays. For the relay-assisted FEEL system, we propose a novel framework for

the performance analysis and system optimization. Specifically, we begin with the first critical

question:“How to design a relay-assisted FEEL system that can make full use of the relays in the

edge environment with limited resources?”. To answer this question, we propose to use partial

aggregation and spectrum resource multiplexing at the relays to enhance the communication of

the relay-assisted FEEL system. We then study the second important question: “How to evaluate

the system performance of the relay-assisted FEEL?”. To answer this question, we provide the

analysis of outage probability and perform convergence analysis to reveal the impact of outage

probability on the convergence rate of federated learning. Driven by the system performance

analysis, we come to the third important question: “How to optimize the FEEL performance by

scheduling the system bandwidth resources?”. To answer this question, we provide instantaneous
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Fig. 1. Relay-assisted federated edge learning (FEEL).

and statistical bandwidth allocation (BA) schemes, which can be applicable depending on specific

requirements of communication and computing scenarios. Simulation results are finally provided

to illustrate the advantages of the instantaneous and statistical BA schemes.

II. RELAY ASSISTED FEDERATED EDGE LEARNING

In this section, the system model of the relay-assisted FEEL network is firstly presented, and

then the conventional federated learning is introduced. After that, we present the procedure for

the relay selection and partial aggregation.

A. System Model

A relay-assisted FEEL network is shown in Fig. 1, where N users collaboratively train a

global model assisted by one edge server ES and M intermediate decode-and-forward (DF)

relays1. Due to severe fading, there is no direct link between the ES and users, i.e., the ES can

only communicate with the users via relaying links. Besides assisting the data communication,

the relays can also perform the model aggregation, in order to reduce the communication and

computing overhead at the server. Let U � {U1,U2, . . . ,UN} denote the set of N users, where

1It is straightforward to adopt the DF relaying protocol to decode and recover the model weights, in order to aggregate

models at the relays in this paper. Note that this work can be extended to other relaying protocols, like AF protocol with some

minor modification. In particular, we can use the summation property of wireless channels and introduce over-the-air computing

technology to aggregate models without decoding and re-modulation.
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device Uk ∈ U has a local trainable dataset Dk and it can perform local stochastic gradient

descent (SGD) on Dk. In addition, we use R � {R1,R2, . . . ,RM} to denote the relay set, in

which each relay can receive the local models from the N IoT users through wireless links.

Then, the relays can perform partial aggregation and further transmit the aggregated models to

the ES for global aggregation through wireless links. Due to the limitation in the size, each

node in the system is assumed to have a single antenna.

B. Conventional Federated Learning

In the conventional FL network, multiple users with distributed data train a global model

assisted by an edge server, where the intermediate relays are not involved. For such a network,

the FL can be described by the following problem

min
w

F (w) =
N∑
k=1

|Dk|
|D| Fk(w), (1)

where w represents the global model parameter, |Dk| denotes the training sample amount in user

Uk, and |D| =∑N
k=1 |Dk|. Notation Fk(w) is the local loss function of user Uk,

Fk(wk) =
∑
x∈Dk

1

|Dk|L(wk, x), (2)

where wk denotes the model parameter of user Uk, and L(wk, x) is the corresponding loss

function. As the data is distributed, it is generally difficult to solve (1) directly. Hence, FL

tends to be used by employing an iterative algorithm to train a global model from the users.

Specifically, for each round, user Uk calculates the training loss, and then the weights are updated

using the gradient descending as

vk ←− wk − η∇Fk(wk), (3)

where vk is the updated model parameter of user Uk and η denotes the learning rate. After that,

the updated local models from multiple users are gathered and aggregated at ES.

C. Relay-assisted FEEL

In the considered relay-assisted FEEL, the intermediate relays cooperatively assist the model

exchange between users and ES, to extend the coverage and enhance the transmission reli-

ability. Moreover, the relays can perform the operation of aggregation early to cut down the

communication cost.
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Next, we present in detail the procedure of the FEEL assisted by the relays under the paradigm

of FedAvg. Specifically, the global model parameter is initialized to w0, and then the global

model is updated in a number of rounds. At each round, we can divide the model update into

the following four steps.

1) User sampling and model broadcast: At this step, ES firstly selects a group of users

for each round t. It then broadcasts the global model parameters wt of the previous round

to the selected users with the help of the relays. In particular, ES may uniformly select the

user subset K out of N users without replacement, where |K| = K is the user number in the

user subset K. Note that the uniform selection can be applied to many scenarios where the

importance of users is unknown or identical [35]–[37], and it can guarantee the unbiasedness

of the model aggregation with full client participation in each round. For other scenarios where

the users have different importance, importance-aware scheduling can be adopted to enhance the

federated learning performance.

2) Local model update: At this step, user Uk firstly sets the initial local model parameters as

wt+1
k = wt, after receiving the global model parameters wt from ES. Then, user Uk trains its

model on its local dataset. Specifically, user Uk conducts E epochs of SGD on its local dataset,

where there are totally ek = E |Dk|
b

SGD iterations, and b is the mini-batch size. Therefore, the

local model will be updated in a total of ek times, and in each SGD iteration holds that

vt+1,j+1
k ←− vt+1,j

k − ηt+1∇Fk(w
t+1,j
k ; ξk), (4)

where j ∈ {1, · · · , ek} is the local SGD iteration index, and ξk is the data batch uniformly

chosen from the local dataset Dk.

3) Relay selection and partial aggregation: After finishing the local update, user Uk needs

to transmit its updated weight vt+1
k to a selected intermediate relay Rm. Let Jm denote the user

subset uploaded to relay Rm, and |DJm | is total the training sample amount in the user subset

Jm. After receiving and decoding the local models, relay Rm will aggregate the collected models,

where some aggregation method can be applied for the considered relay-assisted federated

framework. Without loss of generality, the well-known FedAvg is adopted in this work to

aggregate the local trained models, given by

wt+1
m =

∑
Uk∈Jm

|Dk|∑
Uk∈Jm

|Dk|v
t+1
k , (5)

where the aggregation at the relay Rm is synchronized, which can help reduce the communication

overhead and avoid model staleness, by contrast with the asynchronous federated learning.
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Although the synchronous federated learning has the limitation of waiting for slow learners,

i.e., stragglers, such limitation can be alleviated through setting a latency threshold to drop out

slow users and using proper resource allocation to avoid a long time waiting.

Note that in the above FedAvg, the problem of “objective inconsistency” may arise due to

the heterogeneity in the size of local dataset and local SGD iteration among users [38]. This is

because the aggregated model will be biased towards the users with more SGD iterations, which

eventually affects the federated learning performance. To tackle this problem, we can use the

important works [34], [38] and especially the normalized cumulative gradients to replace the

FedAvg, given by

wt+1
m = wt +

( ∑
Uk∈Jm

|Dk|
|DJm |

ek

) ∑
Uk∈Jm

|Dk|
|DJm |

vt+1
k − wt

ek
. (6)

If not specified, FedAvg will be used for aggregating the local trained models in the subsequent

sections.

4) Global Aggregation: At this step, each relay needs to send its aggregated model to the

edge server via the second-hop relaying link. After gathering all the models from the relays, the

ES can perform the aggregation as

wt+1 =
∑

Rm∈R

|DJm |∑
Rm∈R |DJm |

wt+1
m . (7)

D. Problem Formulation

For the considered relay-assisted FEEL system under latency and bandwidth constraints, we

can optimize the system performance through minimizing the global loss function, given by

P0: min
1

|D|
N∑
k=1

∑
x∈Dk

L(wk, x). (8)

However, obtaining an exact expression for the global loss function of FEEL is generally hard,

which causes much difficulty in solving the optimization in problem P0. To overcome this

difficulty, we turn to perform some analysis on the system performance, as shown in the following

section.

III. SYSTEM PERFORMANCE ANALYSIS

A. Latency analysis

The latency is a critical performance metric in the FEEL network, as it determines whether

the users can finish the model training and model upload in time or not. When the devices
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fail to accomplish uploading in time, the effective number of successfully participated users

will decrease, causing deterioration in the convergence of federated learning. In the considered

relay-assisted FEEL, the latency of each IoT device is related to the computational capability,

wireless channel quality, and relay selection. The latency of local training and global aggregation

may significantly affect the system training performance. Thus, investigating the latency for the

considered relay-assisted FEEL is very important.

The total latency of user Uk is denoted as T total
k , which consists of both the local training

latency and the uplink latency. Note that the downlink latency is ignored in this work, as it is

generally much smaller than the uplink latency, because the transmit power at the server can be

much larger. Specifically, the local training latency T local
k of user Uk is given by

T local
k =

ekbρ

fk
, (9)

where CPU needs ρ cycles to process one sample training, and fk denotes the computational

capability at user Uk. Then, the local trained model needs to be uploaded to ES via the uplink

relaying links. In this paper, we perform the relay selection based on the instantaneous CSI of

the first-hop relaying links2

m∗
k = argmax

1≤m≤M
|hk,m|2, (10)

where hk,m is the channel parameter of the link Uk–Rm, and it follows Rayleigh fading with

E[|hk,m|2] = λk,m. The transmission data rate of the link Uk–Rm∗
k

is

RI
k,m∗

k
= BI

k log2

(
1 +

Pk|hk,m∗
k
|2

σ2

)
, (11)

where BI
k is the allocated bandwidth of the link Uk–Rm∗

k
, Pk denotes the transmit power at user

Uk, and σ2 denotes the variance of AWGN.

Note that the transmission in (11) employs orthogonal frequency resources among users. If

multiple users employ the same frequency resource to communicate simultaneously, the co-

channel interference will arise among the users, and the transmission data rate between user Uk

and the selected relay Rm∗
k

becomes,

RI
k,m∗

k
= BII

m∗
k
log2

⎛
⎝1 +

Pk|hk,m∗
k
|2

σ2 +
∑

Ui∈Jm∗
k
,i �=k Pi|hi,m∗

k
|2

⎞
⎠ , (12)

2In order to obtain the instantaneous CSI, each user needs to broadcast the transmission request to all relays, and then the

users will send some pilot signals to the relays. After that, the relays can estimate the associated channel parameters and execute

the relay selection in (10).
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where BII
m∗

k
denotes the bandwidth of the link Rm∗

k
–ES. From this expression, we can find that

the co-channel interference will deteriorate the transmission data rate, and multiple users will

have to collaborate or compete in some other domains, such as the power domain in multiuser

NOMA systems.

From (11), the transmission latency from user Uk to relay Rm∗
k

is given by

T I
k,m∗

k
=
|L|

RI
k,m∗

k

, (13)

where |L| is the size of the uploaded model. After receiving all the model parameters from the

user set Jm∗
k
, relay Rm∗

k
aggregates the local model according to (5). Then, relay Rm∗

k
needs

to transmit the aggregated model to ES, where the corresponding transmission data rate from

relay Rm∗
k

to ES is

RII
m∗

k
= BII

m∗
k
log2

(
1 +

Pm∗
k
|gm∗

k
|2

σ2

)
, (14)

where Pm∗
k

denotes the transmit power at relay Rm∗
k
, gm∗

k
denotes the instantaneous channel

parameter of the link Rm∗
k
–ES, and it follows Rayleigh fading with E[|gm∗

k
|2] = λm∗

k
. In this

paper, the relays work in a time-division multiplexing mode, where the dual hops share the same

frequency resources, i.e.,

BII
m∗

k
=

∑
Uk∈Jm∗

k

BI
k . (15)

From RII
m∗

k
in (14), the transmission latency from relay Rm∗

k
and ES is

T II
m∗

k
=
|L|
RII

m∗
k

. (16)

In summary, the total latency of user Uk is

T total
k = T local

k + T I
k,m∗

k
+ T II

m∗
k
. (17)

B. Outage Probability Analysis

From the above T total
k , we can start to analyze the outage probability of user Uk. To avoid idle

time in the FEEL network, a predetermined latency threshold γth will be set in practice. The

user Uk will be dropped from the federated learning, if the associated latency T total
k is above γth.

Thus, the effective number of users who can successfully participate in federated learning can

be given by

Keff =
K∑
k=1

I(T total
k ≤ γth), (18)
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where I(·) denotes the indicator function which returns 1 if the condition is met or 0 otherwise.

Accordingly, the expected effective user number is given by

E (Keff) =
K∑
k=1

Pr[T total
k ≤ γth] = K

(
1− 1

K

K∑
k=1

Pr[T total
k > γth]

)
. (19)

From (19), the system outage probability of the FL is given by

Pout =
1

K

K∑
k=1

Pr[T total
k > γth] =

1

K

K∑
k=1

Pout,k, (20)

where Pout,k is the outage probability of Uk in the process of FL, given by

Pout,k = Pr[T total
k > γth] = Pr[T local

k + T I
k,m∗

k
+ T II

m∗
k
> γth]. (21)

To analyze the system outage performance, we need first to derive the outage probability of

user Uk. In practice, the local training latency of user Uk can be regarded deterministic, as it is

not affected by the stochastic nature of the channels. Hence, we can re-write

Pout,k = Pr

[
T I
k,m∗

k
+ T II

m∗
k
> γth − dk

fk

]
= Pr

[
|L|

RI
k,m∗

k

+
|L|
RII

m∗
k

> γth − dk
fk

]

= Pr

⎡
⎣ RI

k,m∗
k
RII

m∗
k

|L|
(
RI

k,m∗
k
+RII

m∗
k

) <
fk

γthfk − dk

⎤
⎦ , (22)

where dk = ekbρ denotes the CPU cycles needed to finish local training for user Uk.

As deriving an exact closed-form solution to Pout,k from (22) is generally hard, we turn to use

the inequality of xy/(x + y) < min(x, y) for positive x and y3, and then obtain a tight upper

bound for the first form in (22) as,

RI
k,m∗

k
RII

m∗
k

|L|
(
RI

k,m∗
k
+RII

m∗
k

) <
1

|L| min(RI
k,m∗

k
, RII

m∗
k
). (23)

Then, substituting (23) into (22), we can obtain the lower bound on the outage probability of

user Uk, which can be analytically solved, as shown in Theorem 1,

3Note that in this inequality, the approximation error is large when x is equal to y, and the approximation accuracy improves

when x differs from y. In general, x is often different from y due to random wireless channels, resulting in a fine approximation

accuracy on average. Due to these reasons, the inequality of xy/(x+ y) < min(x, y) is widely used in the existing works such

as [39]–[41].
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Theorem 1. A lower bound on the outage probability of user Uk is

P lb
out,k =1− exp

⎛
⎜⎜⎝
1− exp

(
fk|L| ln 2

AII
k (γthfk−dk)

)
λm∗

k
ζm∗

k

⎞
⎟⎟⎠ ·

⎛
⎝1−

M∏
m=1

⎛
⎝1− exp

⎛
⎝1− exp

(
fk|L| ln 2

BI
k(γthfk−dk)

)
λk,mζk

⎞
⎠
⎞
⎠
⎞
⎠ . (24)

where ζk =
Pk

σ2 and ζm∗
k
=

Pm∗
k

σ2 are the transmit SNRs at the user Uk and relay Rm∗
k
, respectively,

and AII
k is given by

AII
k =

K−1∑
i=1

[(
K − 1

i

)
BI

k +

(
K − 2

i− 1

)
(Btotal − BI

k)

](
1

M

)i(
1− 1

M

)K−i−1
+BI

k

(
1− 1

M

)K−1
,

(25)

Proof. See Appendix A. �

Thus, a lower bound on the system outage probability can be obtained in Theorem 2

Theorem 2. A lower bound on the system outage probability is given by

P lb
out =

1

K

K∑
k=1

P lb
out,k

=
1

K

K∑
k=1

[
1− exp

(
1− exp

(
fk|L| ln 2

AII
k (γthfk−dk)

)
λm∗

k
ζm∗

k

)

×
(
1−

M∏
m=1

(
1− exp

(
1− exp

(
fk|L| ln 2

BI
k(γthfk−dk)

)
λk,mζk

)))]
. (26)

Proof. By applying Theorem 1 into (20), the lower bound on the system outage probability can

be proved. �

Note that the above bound contains elementary functions only, which can be easily computed.

Therefore, the system outage probability can be easily evaluated in the whole range of SNR.

To obtain more insights on the system design of the relay-assisted FEEL, we use (26) to

provide an approximate expression for P lb
out, when high SNR region is assumed

P lb
out �

1

K

K∑
k=1

(
1−

(
1−

M∏
m=1

exp
(

fk|L| ln 2

BI
k(γthfk−dk)

)
− 1

λk,mζk

)(
1−

exp
(

fk|L| ln 2

AII
k (γthfk−dk)

)
− 1

λm∗
k
ζm∗

k

))
,

(27)
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where the Taylor’s series approximation of lim
x→0

e−x � 1 − x is applied [42]. We further use

the approximation of lim
x→0
y→0

1− (1− x)(1− y) � x+ y and get the asymptotic expression of P lb
out

for high SNR as

P lb
out �

1

K

K∑
k=1

(
M∏

m=1

(
exp

(
fk|L| ln 2

BI
k (γthfk − dk)

)
− 1

)/
λk,mζk︸ ︷︷ ︸

O1

+

(
exp

(
fk|L| ln 2

AII
k (γthfk − dk)

)
− 1

)/
λm∗

k
ζm∗

k︸ ︷︷ ︸
O2

)

= P asy
out . (28)

Note that the above asymptotic expression contains two parts, where the first part O1 depends on

the transmission between users and relays, while the second part O2 depends on the transmission

between relays and edge server. From P asy
out , several insights on the FL system can be obtained,

• The first part O1 decays exponentially with factor M , which indicates that the M interme-

diate relays can be fully exploited.

• When relay number M is large, the first part O1 approaches to 0, and the second part O2

will dominate in the system outage probability, indicating that the transmission between the

relays and edge server becomes the system bottleneck.

• The outage performance of the relay-assisted FEEL system improves with a larger λk,m and

λm∗
k
, revealing that a better transmission channel can enhance FL transmission.

• Both O1 and O2 are decreasing with respect to BI
k and AII

k , indicating that a larger band-

width of user Uk and intermediate relays m∗
k will improve the system outage performance.

C. Convergence Analysis

The convergence of the relay-assisted FEEL is now analyzed, which is of vital importance

for the FL training. For this purpose, we first introduce the following assumptions,

Assumption 1: For any user Uk, Fk(·) is μ-strongly convex, i.e., for any w0 and w1,

Fk(w1) ≥ Fk(w0) + (w1 − w0)
T∇Fk(w0) +

μ

2
‖w1 − w0‖2. (29)

Assumption 2: For any user Uk, Fk(·) is L-smooth, i.e., for any w0 and w1,

Fk(w1) ≤ Fk(w0) + (w1 − w0)
T∇Fk(w0) +

L

2
‖w1 − w0‖2. (30)

Assumption 3: For ξk uniformly and randomly sampled from the local dataset Dk, the variance

of user Uk is bounded for all k by

E
[‖∇Fk(w; ξk)−∇Fk(w)‖2

] ≤ δ2k. (31)
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13

Assumption 4: For all users, the expected second-order moment of the norm of the stochastic

gradient is uniformly bounded by E [‖∇Fk(w; ξk)‖2] ≤ G2.

In addition to the above assumptions, we use the term Γ = F ∗ −∑N
k=1 pkF

∗
k to quantify the

degree of non-i.i.d, where F ∗ and F ∗k are the minimum values of F and Fk, respectively. We

can find from Γ’s definition that the data distribution is i.i.d if Γ = 0, or non-i.i.d otherwise.

Moreover, in order to simplify the analysis, we change the timeline to SGD iterations and assume

that all users have the same e SGD iterations in the convergence analysis.

From the above assumptions, the convergence performance of the relay-assisted FEEL can be

analyzed, which is presented in Theorem 3.

Theorem 3. Under Assumption 1-4, with ψ = max
{
8L
μ
, e
}

, and ηt =
2

μ(ψ+t)
, the convergence

should satisfy

E[F (wT )− F ∗] ≤ L

μ(ψ + T )

[
2

μ

(
N∑
k=1

p2kδ
2
k + 6LΓ + 8(e− 1)2G2 + 4e2G2H

)
+

μψ

2

∥∥w0 − w∗
∥∥2 ],

(32)

where H =
∑N

k=1 pk
N−K(1−Pout)
K(1−Pout)

, and w0 is the initial value of the global model weights.

Proof. See Appendix B. �

From Theorem 3, we can conclude that for the relay-assisted FEEL with partial user partic-

ipation and user dropout, the terms of
∑N

k=1 p
2
kδ

2
k, 6LΓ, 8(e − 1)2G2, and 4e2G2H dominate

the convergence performance. Specifically, the term
∑N

k=1 p
2
kδ

2
k is related to the mini-batch SGD

used in the local training, and the term 6LΓ is related to non-i.i.d data distribution of user

data. In particular, the convergence upper bound decreases monotonically with Γ, and when Γ

becomes zero, i.e., i.i.d. dataset, the term 6LΓ can be removed. Moreover, the terms 8(e−1)2G2

and 4e2G2H are both related to the distributed SGD algorithm and the model aggregation,

where the term 4e2G2H also shows that the effective number of participated users directly

affects the convergence upper bound, revealing that a larger outage probability will deteriorate

the convergence rate seriously. Thus, it is critical to enhance the convergence performance

through reducing the number of users dropped from the FEEL training, by designing a bandwidth

allocation scheme for the considered system.
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14

IV. BANDWIDTH ALLOCATION

Inspired by the above convergence results that more users successfully participating in each

round’s learning process can improve the convergence in Theorem 3, problem P0 is reformulated

as maximizing the successfully participated user number in each round’s FL by allocating the

wireless bandwidth among users and intermediate relays, given by

P1: max
{BI

k,B
II
m |Uk∈U ,Rm∈R}

Keff =
K∑
k=1

I(T total
k ≤ γth) (33a)

s.t.
∑

Rm∈R
BII

m ≤ Btotal, (33b)

∑
Uk∈Jm

BI
k = BII

m , (33c)

where (33b) and (33c) are the bandwidth constraints at the relays and users, respectively. These

two bandwidth constraints also indicate that multiple users will collaborate or compete with each

other in the frequency domain, which can be found in many application scenarios where the users

employ some orthogonal frequency resources to communicate, such as OFDMA systems. On

the other hand, if the users employ the same frequency resource to communicate simultaneously,

co-channel interference will arise, and multiple users have to collaborate or compete in some

other domains, such as the power domain in multiuser NOMA systems. In this case, the proposed

framework of performance analysis and system optimization in this paper is still applicable, and

the results in this work can serve as a useful benchmark for the federated learning with multiuser

interference, which can help obtain some insights on the system design.

In the following, the optimization problem is solved by exploiting the instantaneous or statis-

tical CSI, where flexible choices can be provided for the system optimization.

A. Instantaneous Bandwidth Allocation

For the instantaneous bandwidth allocation method, the edge server needs to make bandwidth

allocation decision at each time slot, so that the instantaneous bandwidth allocation tends to be

used in the system which is sensitive to the performance of communication and training. Due to

the indicator function and the coupling of constraints (33b) and (33c), the problem P1 is hard to

be directly solved. Thus, we propose to solve this problem by dividing it into two sub-problems:

minimizing the total bandwidth required for the selected users and choosing some users to be

dropped out from the FEEL process. Specifically, for the first sub-problem, we relax the problem
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P1 by removing the bandwidth constraint (33b), so that all the relays can be allocated by the

required bandwidth, in order to support the selected users to successfully participate in FEEL

process. The first sub-problem can be given by

P2: min
{BI

k,αk,m|Uk∈U ,Rm∈R}

∑
Rm∈R

BII
m (34a)

s.t. T local
k +

|L|
αk,mBII

m rIk,m
+
|L|

BII
m rIIm

≤ γth, ∀Uk ∈ U , (34b)

∑
Uk∈Jm

αk,m = 1, (34c)

0 ≤ αk,m ≤ 1, (34d)

where rIk,m = log2

(
1 +

Pk|hk,m|2
σ2

)
, rIIm = log2

(
1 + Pm|gm|2

σ2

)
, and αk,m is the bandwidth alloca-

tion ratio from relay Rm to user Uk, which satisfies 0 ≤ αk,m ≤ 1 and
∑

Uk∈Jm
αk,m = 1.

Constraint (34b) guarantees that all users can successfully participate in the training process.

Constraints (34c) and (34d) are the reformulation of (33c) using BI
k = αk,mB

II
m as the bandwidth

allocated to user Uk from relay Rm. We can find that the optimal solution of P2 should satisfy

the conditions given in Theorem 4,

Theorem 4. For relay Rm, the optimal BII∗
m and α∗k,m to solve problem P2 should satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T local
k +

|L|
α∗k,mBII∗

m rIk,m
+

|L|
BII∗

m rIIm
= γth, (35a)∑

Uk∈Jm

α∗k,m = 1, (35b)

0 ≤ α∗k,m ≤ 1, (35c)

BII
m ≥ 0. (35d)

Proof. See Appendix C. �

From Theorem 4, we can observe that there is one and only one solution to (35) because of

the monotonicity and non-trivial value of α∗k,m and BII∗
m . Moreover, with a given BII∗

m , we can

get the optimal value of αk,m as

α∗k,m =
rIIm |L|

BII∗
m (γth − T local

k )rIk,mr
II
m − rIk,m|L|

. (36)

With (36), we can obtain a numerical value of BII∗
m by using an efficient searching algorithm

based on the bisection method, as shown in Algorithm 1. In particular, we start the search with
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Algorithm 1: Bisection search of BII∗
m and α∗k,m

1 Input Btotal, Jm ;

2 Blower = 0, Bupper = Btotal;

3 while Blower < Bupper do

4 Bmid = (Blower +Bupper)/2;

5 For Uk ∈ Jm, calculate the bandwidth ratio αk,m according to (36) with Bmid;

6 if
∑

Uk∈Jm
αk,m < 1 then

7 Blower = Bmid;

8 else if
∑

Uk∈Jm
αk,m > 1 then

9 Bupper = Bmid;

10 else if
∑

Uk∈Jm
αk,m = 1 then

11 BII∗
m = Bmid, α

∗
k,m = αk,m,Uk ∈ Jm;

12 break;

13 end

14 end

15 Output BII∗
m , {α∗k,m|Uk ∈ Jm}

the middle point Bmid of an initial range [Blower, Bupper]. With Bmid as the bandwidth allocated

to relay Rm, we then calculate αk,m for each user Uk ∈ Jm and sum up all αk,m. By comparing∑
Uk∈Jm

α∗k,m with 1, we can halve the search region with Bupper = Bmid if
∑

Uk∈Jm
αk,m > 1,

or halve the search region with Blower = Bmid otherwise. The search process will continue until

the constraint (35b) is satisfied, which finally outputs the optimal αk,m for Uk ∈ Jm and BII
m .

We proceed to solve the second sub-problem when the total bandwidth needed exceeds the

system total bandwidth, i.e.,
∑

Rm∈RBII
m > Btotal. In this case, the participating users should be

adjusted and certain users have to be dropped out to satisfy the bandwidth constraint (33b). Here,

a greedy algorithm is utilized to solve the second sub-problem. Specifically, the user with the

largest αk,mB
II
m , i.e., the user occupies the largest bandwidth, will be dropped out from the FEEL

process. After removing the firstly dropped out user, we continue to solve problem P2 until the

constraint
∑

Rm∈RBII
m ≤ Btotal is satisfied. In this way, we finally solve problem P1 with the

instantaneous CSI. The greedy based bandwidth allocation algorithm with the instantaneous CSI
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Algorithm 2: Greedy based bandwidth allocation algorithm

1 Input U , R, Jm, Btotal;

2 For Rm ∈ R, Solve BII∗
m , α∗k,m using Algorithm 1;

3 while
∑

Rm∈RBII∗
m > Btotal do

4 Uk
′,Rm

′ = argmaxUk∈U ,Rm∈R α∗k,mB
II∗
m ;

5 BI
k′ = 0;

6 U = U \ Uk
′,Jm′ \ Uk

′;

7 Solve BII∗
m , α∗k,m using Algorithm 1 with U and Jm,Rm ∈ R;

8 end

9 BII
m = BII∗

m , BI
k = α∗k,mB

II∗
m ,Uk ∈ Jm,Rm ∈ R;

10 Output {BI
k , B

II
m |Uk ∈ U ,Rm ∈ R}

is summarized in Algorithm 2.

B. Statistical Bandwidth Allocation

Besides the above instantaneous BA method, we also provide a statistical bandwidth allocation,

which is performed once for many time slots and applicable to the system that is sensitive to the

computational complexity of bandwidth allocation at the price of some performance deterioration

compared with the instantaneous bandwidth allocation. In this case, we turn problem P1 into

optimizing the statistical expectation of the successfully participated user number in each round’s

FL, given by

P3: max
{BI

k,B
II
m |Uk∈U ,Rm∈R}

E (Keff) = K (1− Pout) (37a)

s.t.
∑

Rm∈R
BII

m ≤ Btotal, (37b)

∑
Uk∈Jm

BI
k = BII

m . (37c)

As obtaining an exact analytical expression for Pout is hard, we turn to employ the derived lower

bound P lb
out to help approximate the expectation of the number of users successfully participating
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in FEEL. Thus, we can reformulate P3 into P4, given by

P4: max
{BI

k,B
II
m |Uk∈U ,Rm∈R}

K(1− P lb
out) (38a)

s.t.
∑

Rm∈R
BII

m ≤ Btotal, (38b)

∑
Uk∈Jm

BI
k = BII

m . (38c)

As problem P4 is hard to be directly solved, we use the particle swarm optimization (PSO)

to solve problem P4, which is an intelligent algorithm using a set of “particles” to search for

an approximate solution. In PSO, there are I particles, and each particle i has three associated

vectors: the velocity vi, the position pi, and the best position pbesti. Specifically, pi is a K-

dimension vector denoting a feasible solution of bandwidth allocation, where pi = {BI
k|Uk ∈ K},

vi is a K-dimension vector of bandwidth variation, where vi = {ΔBI
k|Uk ∈ K}, and pbesti is

a K-dimension vector of the best solution to the optimization problem for particle i. Moreover,

there is a global vector gbest used to denote the best solution among all the particles. All the

position vectors are potential solutions of the optimization problem evaluated by the fitness

function Ffitness(·), measured by K(1− P lb
out).

For particle i at iteration t, its velocity is updated as

vti = ωvt−1i + ϕ1ρ1
(
pbestt−1i − pt−1i

)
+ ϕ2ρ2

(
gbestt−1 − pt−1i

)
, (39)

where ω denotes the inertia weight of the previous velocity, ϕ1 and ϕ2 are two acceleration

coefficients, and ρ1 and ρ2 are two random variables uniformly distributed in [0,1]. The position

of particle i is updated as

pti = pt−1i + vti . (40)

After E times of iteration of velocity and position updates, the gbest obtained from I particles

can be regarded as a feasible solution to problem P4. The PSO based bandwidth allocation

algorithm with the statistical CSI is summarized in Algorithm 3.

V. SIMULATION RESULTS

In this part, some analytical and simulation results are presented to validate the proposed

studies in this paper. In particular, the basic setting of these simulations is introduced, along

with some baselines methods used for comparison. We then present some simulations with the
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Algorithm 3: PSO based bandwidth allocation algorithm

1 Input U , R, Jm, Btotal, I , T , ω, ϕ1, ϕ2;

2 Initialize Create I particles randomly;

3 for t = 1 to T do

4 for i = 1 to I do

5 Update vt
i by (39), and update pt

i by (40);

6 if Ffitness (p
t
i) ≤ Ffitness (pbest

t
i) then

7 pbestti = pt
i;

8 end

9 if Ffitness (p
t
i) ≤ Ffitness (gbest

t) then

10 gbestt = pt
i;

11 end

12 end

13 end

14 BII
m =

∑
Uk∈Jm

BI
k ,Rm ∈ R;

15 Output {BI
k , B

II
m |Uk ∈ U ,Rm ∈ R}

purpose of verifying the derived analysis on the system outage performance. Further, we conduct

some more simulations to validate instantaneous and statistical bandwidth allocation schemes.

A. Simulation Settings

The simulations are performed in the considered relay-assisted FEEL system with a total of

200 users. If not specified, for all simulations, there are 500 communication rounds in total, and

there are 10 selected users for each communication round. The channels follow Rayleigh flat

fading, where the average channel gain of the link Uk–Rm is set to λk,m = (100 + k)/200, and

the average channel gain between the relays and ES is set to 2. The transmit power at each user

and each relay are set to 0.1W and 0.5W, respectively. The computational capability of each

user is 1.5 × 107cycle/second. In addition, for the PSO based bandwidth allocation algorithm,

we use 30 particles and 50 iterations to search for a feasible solution, where the inertia weight

of the previous velocity ω is 0.5 and the two acceleration coefficients ϕ1 and ϕ2 are both 0.4.
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Fig. 2. Outage probability of the considered relay-assisted FEEL system versus the transmit SNR.

In practice, for the FL task, the Fashion-MNIST dataset is used to perform a classification

task, where 60000 training and 10000 test samples are utilized. There are 10 classes of fashion

pictures in the training samples, and the number of training samples allocated for each user is

uniformly distributed as |Dk| ∈ U(200, 400). For the non-i.i.d setting of the Fashion-MNIST

dataset, each user is assigned with 2 labels in its local training samples. As to the learning

network, we use a CNN composed of two 3 × 3 convolution layers, each followed by a batch

normalization layer and a 2× 2 max pooling layer, two fully connected layers, a drop out layer

between the two fully connected layers, and a soft output layer. For the training of the CNN

network, we use the CrossEntropyLoss as the loss function with η = 0.001, b = 30, and E = 3.

To verify the effectiveness of the proposed instantaneous and statistical bandwidth allocation

schemes, we compare with some baseline methods abbreviated as follows,

• Ideal FEEL: There is no bandwidth or latency constraint so that all the selected users can

successfully take part in the learning process.

• Uniform allocation (UA): ES performs the uniform bandwidth allocation for all users

selected in each communication round.

• Uniform allocation without partial aggregation (UA-wo-PA): ES performs the uniform

bandwidth allocation for all users selected in each communication round, and the users

upload the model via the selected relay without partial aggregation.
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Fig. 3. Test accuracy and training loss through aggregating the trained models.

B. Outage Performance Simulation

Fig. 2 depicts the simulated, analytical and asymptotic outage probabilities for the relay-

assisted FEEL under UA method versus the transmit SNR, where the transmit SNR of each user

ranges from 15dB to 35dB, the transmit SNR of each relay is ten times that of the user, and the

total bandwidth of the system is 50MHz. Observing from Fig. 2, we can find that the analytical

lower bound fits well with the simulated one, and the asymptotic lower bound converges to

the analytical one with high SNR, which shows the correctness of the derived analytical and

asymptotic expressions of the system outage probability. Moreover, all the system outage results

get improved when SNR becomes larger, as a larger transmit power at users and relays can

achieve a reduced latency in the model upload, thus improving the system outage performance.

Further to this, it is found that the system outage probability improves with a larger M , as more

relays can help increase the spatial diversity of the wireless links between users and relays.

C. Federated Learning Performance Simulation

Fig. 3(a) and Fig. 3(b) illustrate the test accuracy and training loss of the aforementioned

BA schemes, where Btotal = 60MHz, and γth = 1.2s. We can observe from Fig. 3(a) and

Fig. 3(b) that both the test accuracy and training loss of all BA schemes converge with the

increasing communication round. Moreover, the UA-wo-PA performs the worst, because without

partial aggregation, more models need to be uploaded through the second hop. Further, the
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Fig. 4. Test accuracy and training loss through aggregating the normalized cumulative gradients.

proposed instantaneous and statistical bandwidth allocation schemes outperform UA, showing the

effectiveness of the two bandwidth allocation schemes. Furthermore, the instantaneous bandwidth

allocation scheme can achieve a better near-optimal convergence rate and test accuracy than the

statistical bandwidth allocation scheme, indicating that the instantaneous CSI can help maximize

the number of users who can successfully participate in FL at each round more effectively.

Fig. 4(a) and Fig. 4(b) show the test accuracy and training loss of the aforementioned BA

schemes versus the communication round through aggregating the normalized cumulative gradi-

ents, where Btotal = 60MHz, and γth = 1.2s. We can observe that the proposed instantaneous and

statistical BA schemes outperform UA, proving the effectiveness of the two bandwidth allocation

schemes when aggregating the normalized cumulative gradients. Moreover, aggregating the

normalized cumulative gradients can provide a better performance with an improved test accuracy

of 1%-1.5% than simply aggregating the trained models in the FedAvg, which demonstrates that

the problem of “objective inconsistency” caused by different SGD iterations would deteriorate

the federated learning performance, and using normalized cumulative gradients in the aggregation

can help solve the inconsistency problem and enhance the system performance.

Fig. 5 is provided to show the test accuracy of the several BA schemes versus γth, where

M ∈ {1, 2} and the system latency threshold varies from 0.8s to 1.8s. We can observe that for

all the aforementioned schemes except the ideal FEEL one, the test accuracy gets improved with

a larger system threshold, as a larger threshold can allow more users successfully to participate
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Fig. 5. Test accuracy of the several BA schemes versus γth.

in FEEL. Moreover, for all the aforementioned schemes, the performances with two relays are

better than those with only one relay, since more relays can help improve the model transmission

rate. In further, the UA and UA-wo-PA schemes have a lower test accuracy than the instantaneous

and statistical BA schemes. In particular, when the latency threshold is low, the relay-assisted

FEEL system using the UA and UA-wo-PA schemes can not even train an effective model. This

is because that only very few users can successfully participate in FEEL under those schemes.

However, the proposed instantaneous and statistical BA schemes can achieve sufficiently good

performance for various latency thresholds, which proves that instantaneous and statistical BA

schemes can provide a feasible bandwidth allocation strategy for the relay-assisted FEEL.

Fig. 6 shows the impact of Btotal on the test accuracy of the several bandwidth allocation

schemes, where the relay number M ∈ {1, 2}, γth = 1.2s, and Btotal varies from 50MHz to

100MHz. The test accuracy improvements are observed for all the aforementioned schemes

except the ideal FEEL one, as Btotal increases, indicating that a larger bandwidth can help

increase the transmission rate of the models. Moreover, we can see that with the number of

relays increasing from 1 to 2, all the bandwidth allocation schemes get improved because more

relays can help enhance the outage performance and allow more users successfully participate

in FEEL. In further, the proposed instantaneous and statistical BA schemes outperform the other

bandwidth allocation schemes for a wide range of Btotal, and they can achieve almost the same

accuracy as the ideal FEEL. These results further verify the proposed bandwidth allocation
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schemes.

In Fig. 7, the influence of the relay number on the test accuracy of the several BA schemes

is studied, where the relay number varies from 1 to 5, Btotal = 60MHz, and γth = 1.2s. We

can observe from this figure that all the bandwidth allocation schemes are improved with a

larger M , as spatial diversity and better transmission connections can be provided for model

uploading. Moreover, the proposed instantaneous and statistical BA schemes are superior to the

other bandwidth allocation schemes, including UA and the UA-wo-PA schemes. In particular,
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when there are four relays in the network, the proposed instantaneous and statistical BA schemes

can achieve a better test accuracy, at least 5.1% and 3.8% higher than that of the UA and UA-wo-

PA schemes. These results indicate that the proposed instantaneous and statistical BA schemes

can efficiently exploit multiple relays and improve the performance of the relay-assisted FEEL.

VI. CONCLUSION

In this article, a relay-assisted FEEL system was studied under latency and bandwidth con-

straints, where we evaluated the system performance by deriving analytical and asymptotic

expressions of the system outage probability and the convergence analysis. In order to improve

the system performance, we optimized the relay-assisted FEEL network through allocating the

wireless bandwidth among users and relays. Specifically, we proposed two bandwidth alloca-

tion schemes to maximize the successfully participated user number in each round’s federated

learning. Finally, some simulations were demonstrated to verify the instantaneous and statistical

bandwidth allocation schemes. The simulation results showed that the proposed instantaneous

and statistical BA schemes could outperform the conventional UA and UA-wo-PA schemes, and

achieve almost the same performance as the conventional federated learning without latency

and bandwidth constraints. In future works, we will study the federated learning with multiuser

interference for the considered system, where the proposed framework of performance analysis

and system optimization in this paper will be applied.
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APPENDIX A

PROOF OF THEOREM 1

To prove Theorem 1, we substitute (23) into (22), and then the lower bound of Pout,k is,
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After some manipulations, we can further have,
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(A.2)

As |hk,m|2 and |gm∗
k
|2 are exponentially distributed with E[|hk,m|2] = λk,m and E[|gm∗

k
|2] = λm∗

k
,

the analytical lower bound on Pout,k is written as,
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We can observe from (A.3) that exp
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. By using Jensen’s inequality, we have
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k
ζm∗

k

⎞
⎟⎟⎠ , (A.4)

where AII
k is the expected bandwidth of the relay selected by user Uk, given in (25). In this

way, we have proven Theorem 1.

APPENDIX B

PROOF OF THEOREM 3

Before proving Theorem 3, we first present some notations and lemmas to facilitate the proof.

Specifically, we define w̄t =
∑N

k=1 pkw
t
k and v̄t =

∑N
k=1 pkv

t
k, where pk =

|Dk|
|D| . Then, we present

two preliminary lemmas used for the proof.

Lemma 1. Using (7) and taking the system outage into account, we can write the aggregated

global model at time t as

wt+1 = wt+1−e +
N∑
k=1

I(k ∈ K, T total
k ≤ γth)|Dk|∑

k∈K I(T
total
k ≤ γth)|Dk| (v

t+1
k − wt+1−e). (B.1)
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Lemma 2. The two-stage aggregation in the relay-assisted FEEL is unbiased, i.e., E[w̄t] = v̄t.

Proof. Using (B.1), we have

E[w̄t] =E

[
wt−e +

N∑
k=1

I(k ∈ K, T total
k ≤ γth)|Dk|∑

k∈K I(T
total
k ≤ γth)|Dk| (v

t
k − wt−e)

]

=wt−e +
N∑
k=1

|Dk|
K
N
(1− Pout)|D|

· E [I(k ∈ K, T total
k ≤ γth)

]
(vtk − wt−e)

=wt−e +
N∑
k=1

pk(v
t
k − wt−e) =

N∑
k=1

pkv
t
k = v̄t. (B.2)

�

Then, we proceed with the proof of Theorem 3 by looking into assumption 2 of Sec.III-C,

where we have

E[F (wT )− F ∗] ≤ L

2
E

[∥∥w̄t+1 − w∗
∥∥2] . (B.3)

Thus, we only need to bound E

[
‖w̄t+1 − w∗‖2

]
for the proof, which can be further written as

E

[∥∥w̄t+1 − w∗
∥∥2] = E

[∥∥w̄t+1 − v̄t+1 + v̄t+1 − w∗
∥∥2]

=E

[∥∥w̄t+1 − v̄t+1
∥∥2]︸ ︷︷ ︸

Q1

+E

[∥∥v̄t+1 − w∗
∥∥2]︸ ︷︷ ︸

Q2

+2E
[(
w̄t+1 − v̄t+1

)T (
v̄t+1 − w∗

)]
︸ ︷︷ ︸

Q3

. (B.4)

Next, we bound E

[
‖w̄t+1 − w∗‖2

]
part by part. Specifically, for the first part Q1, we have

Q1 =E

[∥∥w̄t+1 − v̄t+1
∥∥2]

=E

[∥∥∥∥∥wt−e +
N∑

k=1

I(k ∈ K, T total
k ≤ γth)|Dk|∑

k∈K I(T total
k ≤ γth)|Dk|

(vt+1
k − wt+1−e)−

N∑
k=1

pkv
t+1
k

∥∥∥∥∥
2]

=E

[∥∥∥∥∥wt−e +
N∑

k=1

pk
I(k ∈ K, T total

k ≤ γth)
K
N (1− Pout)

(vt+1
k − wt+1−e)−

N∑
k=1

pk
(
vt+1
k − wt+1−e

) ∥∥∥∥∥
2]

=E

[∥∥∥∥∥
N∑

k=1

pk

(
N · I(k ∈ K, T total

k ≤ γth)

K(1− Pout)
− 1

)
· (vt+1

k − wt+1−e)

∥∥∥∥∥
2]

. (B.5)

Using the convexity of the second-order norm, we further have

Q1 ≤ E

[
N∑
k=1

pk

∥∥∥∥
(
N · I(k ∈ K, T total

k ≤ γth)

K(1− Pout)
− 1

)
· (vt+1

k − wt+1−e)

∥∥∥∥∥
2]

=
N∑
k=1

pk
N −K(1− Pout)

K(1− Pout)
· E
[∥∥∥∥vt+1

k − wt+1−e
∥∥∥∥2
]
. (B.6)
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We can write E

[∥∥vt+1
k − wt+1−e∥∥2] in (B.6) as

E

[∥∥vt+1
k − wt+1−e∥∥2] = E

⎡
⎣∥∥∥∥∥

t∑
i=t+1−e

ηi∇Fk(w
i
k; ξ

i
k)

∥∥∥∥∥
2
⎤
⎦ ≤ E

[
e ·

t∑
i=t+1−e

∥∥ηi∇Fk(w
i
k; ξ

i
k)
∥∥2]

≤E
[
η2t+1−ee ·

i=t+1−e∑
t

∥∥∇Fk(w
i
k; ξ

i
k)
∥∥2] ≤ η2t+1−ee

2G2≤4η2t+1e
2G2 ≤ 4η2t e

2G2, (B.7)

where we use the Cauchy-Schwarz inequality for the first inequality, and we assume that ηt is

non-increasing with respect to t and ηt ≤ 2ηt+E to derive other inequalities. Then, we can bound

the first part Q1 as

Q1 =E

[∥∥w̄t+1 − w∗
∥∥2] ≤ N∑

k=1

pk
N −K(1− Pout)

K(1− Pout)
· 4η2t e2G2. (B.8)

For the second part Q2, its bound can be found in [43], which can still hold for this paper. Thus,

according to [43], we have that for any round t, if we choose ψ = max
{
8L
μ
, e
}

and ηt =
2

μ(ψ+t)
,

the second part Q2 is bounded as

Q2 = E

[∥∥v̄t+1 − w∗
∥∥2] ≤ (1− μηt)E

[∥∥w̄t − w∗
∥∥2]+ η2t

(
N∑
k=1

p2kδ
2
k + 6LΓ + 8(e− 1)2G2

)
.

(B.9)

For the third part Q3, we can derive from Lemma 2 that Q3 equals to 0 due to the unbiasedness

of w̄t+1. By summarizing the above three parts, we have that, for any round t, E
[
‖w̄t+1 − w∗‖2

]
is bounded as

E

[∥∥w̄t+1 − w∗
∥∥2] ≤ (1− μηt)E

[∥∥w̄t − w∗
∥∥2]+ η2t

(
N∑
k=1

p2kδ
2
k + 6LΓ + 8(e− 1)2G2 + 4e2G2H

)
,

(B.10)

in which H =
∑N

k=1 pk
N−K(1−Pout)
K(1−Pout)

. For brevity, we rewrite (B.10) as

Δt+1 ≤ (1− μηt)Δt + C, (B.11)

where Δt+1 = E

[
‖w̄t+1 − w∗‖2

]
and

C =
N∑
k=1

p2kδ
2
k + 6LΓ + 8(e− 1)2G2 + 4e2G2H. (B.12)

DRAFT March 21, 2023

Page 30 of 32

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



31

Then, we use the recurrence method to prove that Δt ≤ v
ψ+t

, where v = max
{
ψΔ0,

β2C
μβ−1

}
.

First, for t = 0, we have Δ0 ≤ v
ψ+0
≤ Δ0. For t > 0, we have

Δt+1 ≤ (1− μηt)Δt + η2tC =
t+ ψ − 1

(t+ ψ)2
v +

[
β2C

(t+ ψ)2
− μβ − 1

(t+ ψ)2
v

]
≤ 1

t+ ψ + 1
. (B.13)

Therefore, we have

E[F (wT )− F ∗] ≤ L

2
E

[∥∥w̄t+1 − w∗
∥∥2]

≤ L

μ(ψ + T )

[
2

μ

(
N∑
k=1

p2kδ
2
k + 6LΓ + 8(e− 1)2G2 + 4e2G2H

)
+

μψ

2

∥∥w0 − w∗
∥∥2 ]. (B.14)

In this way, we have proven Theorem 3.

APPENDIX C

PROOF OF THEOREM 4

To prove Theorem 4, we start from αk,m > 0 and BII
m > 0 to have

dRI
k,m

dαk,m

=
d

dαk,m

(
αk,mB

II
m log2

(
1 +

Pk|hk,m|2
σ2

))
= BII

m log2

(
1 +

Pk|hk,m|2
σ2

)
> 0, (C.1)

and

dRI
k,m

dBII
m

=
d

dBII
m

(
αk,mB

II
m log2

(
1 +

Pk|hk,m|2
σ2

))
= αk,m log2

(
1 +

Pk|hk,m|2
σ2

)
> 0, (C.2)

we can see from (C.1) and (C.2) that RI
k,m monotonically increases with αk,m and BII

m . Therefore,

for αk,m > 0, and BII
m > 0, we have that T I

k,m and T II
m monotonically decrease with αk,m

and BII
m . Moreover, the system latency is determined by the slowest user. Therefore, we can

achieve the optimal solution of P2 if and only if: 1) all of the bandwidth BII
m is allocated (i.e.,∑

k∈Jm
αk,m = 1) and 2) all selected users have the same total latency of γth (i.e., T total

k =

T local
k + T I

k,m + T II
m = γth). So the optimal solution can be given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

T total
k + |L|

α∗
k,mBII∗

m rIk,m
+ |L|

BII∗
m rIIm

= γth,∑
Uk∈Jm

α∗k,m = 1,

0 ≤ α∗k,m ≤ 1,

BII
m ≥ 0.

(C.3)

Because of the monotonicity and non-trivial value of α∗k,m and BII∗
m , there is one and only one

solution to (C.3), which finishes the proof of Theorem 4.
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