
Towards Optimally Efficient Search with Deep

Learning for Large-Scale MIMO Systems

Le He, Ke He, Lisheng Fan, Xianfu Lei, Arumugam Nallanathan, Fellow, IEEE

and George K. Karagiannidis, Fellow, IEEE

Abstract

This paper investigates the optimal signal detection problem with a particular interest in large-scale

multiple-input multiple-output (MIMO) systems. The problem is NP-hard and can be solved optimally by

searching the shortest path on the decision tree. Unfortunately, the existing optimal search algorithms

often involve prohibitively high complexities, which indicates that they are infeasible in large-scale

MIMO systems. To address this issue, we propose a general heuristic search algorithm, namely, hyper-

accelerated tree search (HATS) algorithm. The proposed algorithm employs a deep neural network

(DNN) to estimate the optimal heuristic, and then use the estimated heuristic to speed up the underlying

memory-bounded search algorithm. This idea is inspired by the fact that the underlying heuristic search

algorithm reaches the optimal efficiency with the optimal heuristic function. Simulation results show

that the proposed algorithm reaches almost the optimal bit error rate (BER) performance in large-scale

systems, while the memory size can be bounded. In the meanwhile, it visits nearly the fewest tree nodes.

This indicates that the proposed algorithm reaches almost the optimal efficiency in practical scenarios,

and thereby it is applicable for large-scale systems. Besides, the code for this paper is available at

https://github.com/skypitcher/hats.
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Index Terms

Signal detection, integer least-squares, deep learning, maximum likelihood detection, MIMO, sphere

decoding, best-first search

I. INTRODUCTION

Given an observation vector y ∈ R
n×1 and the transformation matrix H ∈ R

n×m with full

column rank (n ≥ m), the signal detection problem aims to recover the transmitted discrete

signal x ∈ R
m×1 from the linear mixing model

y = Hx+w, (1)

where w ∈ R
n×1 denotes the additive white Gaussian noise with zero mean and unit variance.

Generally, the detection problem has diverse applications which include -but it is not limited

to- signal processing [1], communications [2], machine learning [3], global navigation satellite

systems (GNSS) [4], and radar imaging [5]. In these areas, estimating the transmitted signal

optimally in large-scale systems still remains a big challenge, and it is also of vital importance

for improving the reliability of the whole system [6]. In this paper, we will henceforth concentrate

on studying the optimal signal detection in large-scale multiple-input multiple-output (MIMO)

wireless communication systems. However, it shall be noted that the proposed method is general,

and can be applied to other applications.

A large-scale MIMO system [7]–[9], which is one of the most promising wireless techniques to

significantly improve the spectrum efficiency, has been widely studied during the last decades.

Specifically, there are mc and nc antennas equipped at the transmitter and receiver such that

nc ≥ mc � 1. Moreover, Hc refers to the random wireless channel state information (CSI)

matrix with the (i, j)’s element hi,j ∼ CN (0, ρ) denoting the tap gain from the j-th transmit

antenna to the i-th receive antenna. In further, xc denotes the transmit signal vector which is

uniformly distributed over the finite set of lattice points Am. In fact, A is the alphaset depending

on the underlying modulation schema, and a standard example of A would be A = {a+bj|a, b ∈
{−1,+1}} for 4-quadrature amplitude modulation (4-QAM). While transmitting xc through the

random wireless channel Hc, it suffers from an additive white Gaussian noise wc. Therefore,

the received signal can be expressed as

yc = Hcxc +wc. (2)

DRAFT January 4, 2022

Page 2 of 60

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

In particular, we consider the following equivalent representation

y =

⎡
⎣�(yc)

�(yc)

⎤
⎦ , H =

⎡
⎣�(Hc) −�(Hc)

�(Hc) �(Hc)

⎤
⎦ , (3)

x =

⎡
⎣�(xc)

�(xc)

⎤
⎦ , w =

⎡
⎣�(wc)

�(wc)

⎤
⎦ , (4)

where yc ∈ C
nc×1, Hc ∈ C

nc×mc , xc ∈ C
mc×1 and wc ∈ C

nc×1 are composed of complex

values, and �(·) and �(·) denote the real part and imaginary part of the value, respectively.

Based on this real-valued representation, (2) can be written as (1) with m = 2mc and n = 2nc.

In lattice theory, H is considered to be the generator matrix [10] of the generated lattice

L(H) = {Hx|x ∈ Am}, which indicates that the generated lattice is the “skewed” one of the

original lattice. When H is perfectly known at the receiver, the mathematically optimal approach

to solve the detection problem in terms of minimizing the average error probability, is to search

the closest “skewed” lattice point Hx∗ to y, in terms of the Euclidean distance [2]

x∗ = argmin
x̂∈Am

‖y −Hx̂‖2 , (5)

which gives the exact optimal maximum likelihood (ML) estimate of x in (1). Since the signal

vector x comprises of integer components only, (5) is also refereed as integer least-squares

(ILS) problem in the literature [11]. Unfortunately, solving the ILS problem is much more

challenging with comparison to the standard least-squares problem, where the latter’s signal

vector comprises of continuous entries rather than discrete entries, and the optimal solution can

be efficiently resolved via pseudo inverse [1]. As a combinatorial optimization problem, it is

known to be NP-hard because of its discrete search space. It has been proven that solving the

problem optimally involves exponential complexity for all algorithms in the worst case [12],

[13]. Moreover, with the deployment of 5G, the numbers of antennas mc and nc become very

large to support the demand of high data rate and ultra-reliable low-latency communication

(URLLC), which indicates that finding the optimal estimate becomes much more challenging

as well. However, one can formulate the problem as a search in a state space, and efficiently

reduce the average complexity by following a certain strategy that investigates only the necessary

lattice points at each dimension [1]. In particular, the resulting state space forms a decision tree

whose nodes represent decisions on symbols, and branches represent the costs of the associated

decisions. Correspondingly, the strategies that decide which node should be chosen for expansion

are called tree search algorithms. Once we find the shortest path, we can find the optimal solution.
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A. Related Works

In the past decades, researchers have proposed many tree search algorithms to address the ILS

problem [2], [10], [11], [14]–[22], and a comprehensive survey of these algorithms can be found

in the fifty-years review of MIMO detection [6]. One common approach achieving the optimal

ML detection performance is the sphere decoding (SD) algorithm, which employs a branch-and-

bound (BnB) depth-first search (DFS) strategy to find the shortest path [2], [10], [11]. Besides,

many variants of SD have been proposed in the literature as well. Among these variants, the

Schnorr-Eucherr SD (SE-SD) achieves the optimal performance with reduced average complexity

[10]. However, its average complexity still remains prohibitively high in large-scale MIMO

systems with low signal-to-noise ratio (SNR) [1]. To overcome this drawback, K-best SD has

been proposed to achieve a fixed and reduced complexity with a breath-first search (BrFS)

strategy, whereas the performance is sacrificed [15]. More importantly, the complexity reduction

can not be guaranteed in high SNR regimes [23].

Attempts that employ best-first search (BeFS) or stack algorithms to overcome the drawbacks

of DFS and BrFS have been investigated in the literature [17]–[22], [24], [25]. Among these

variants, A* like BeFS is the most promising variant which employs a heuristic function to predict

the shortest remaining cost [17]. It guarantees to find the optimal solution with an admissible

heuristic function, while it achieves the optimal efficiency with a consistent heuristic function

[26]. It has been show that BeFS visits the fewest nodes among the three search strategies, but

it requires exponentially increasing memory space [19]. Fortunately, several memory-bounded

BeFS algorithms have been proposed in the past years, and their performances are very close to

the original one [21], [24], [25]. However, it is still very difficult to find a consistent heuristic

function such that the optimal efficiency is achieved [20], [22]. Hence, the existing BeFS

algorithms are still infeasible for large-scale MIMO systems.

With the tremendous success of machine learning techniques on physical layer communica-

tion, significant improvement becomes possible for the aforementioned search strategies [27]–

[32]. For example, the authors in [33] proposed a novel expectation maximization-based sparse

Bayesian learning framework to learn the model parameters of the sparse virtual channel, which

significantly reduces the overhead of the channel training in massive MIMO systems. To solve

the crucial active antenna selection problem in massive MIMO, a deep learning (DL) based

active antenna selection network was devised to utilize the probabilistic sampling theory to
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select the optimal location of these active antennas [34]. Besides, a preliminary theoretical

analysis on DL based channel estimation was presented in [35] to understand and interpret

the internal mechanism of single-input multiple-output (SIMO) systems. The theoretical result

shows that DL based channel estimation outperforms or is at least comparable with traditional

channel estimation, depending on the types of channels, which encourages researchers to solve

problems with promising DL based approaches. Regarding the ILS problem, researchers have

proposed a DL based SD (DL-SD) algorithm which significantly improves SE-SD’s performance

by employing the deep neural networks (DNNs) to choose a good initial radius [36], [37]. Since

the tree search can be treated as a sequential decision making process, the authors in [38]

proposed a sub-optimal search algorithm named LISA with a fixed complexity, since LISA uses

a DNN to make decisions with fixed steps. It was demonstrated that LISA could achieve very

good performances with a fixed complexity. The success of these data-driven search algorithms

certainly motivates us to improve the BeFS algorithm’s performance with DL techniques.

B. Contributions

Consequently, we are interested in speeding up A* like BeFS algorithms with model-driven

DL methods, while trying not to compromise the optimal bit error rate (BER) performance. To

accomplish this goal, we propose a hyper-accelerated tree search (HATS) algorithm, which en-

hances the underlying efficient memory-bounded A* algorithm (SMA*) [24], through predicting

the optimal heuristic with a well-trained DNN. This idea is inspired by the fact that with the

optimal heuristic, A* not only becomes optimally efficient but also expands the fewest nodes

[26]. In contrast, the other A* inspired search algorithms only find the admissible heuristic

[20], [22], which limits the improvement of these methods. As we will show in the simulations,

the proposed algorithm achieves almost the optimal BER performance in large-scale MIMO

systems, while its memory size can be bounded and it reaches the lowest average complexity

under practical scenarios. This suggests that the proposed algorithm is feasible for practical

large-scale MIMO systems.

II. MIMO SIGNAL DETECTION WITH HEURISTIC BEST-FIRST SEARCH

In this section, we will take an efficient approach to interpret the optimal MIMO signal

detection problem as a tree search, which enables us to decouple the vector-valued problem into

January 4, 2022 DRAFT

Page 5 of 60

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

a sequential decision making problem. After that, we will introduce the A* algorithm to find

the shortest path, and discuss its properties accordingly.

A. Tree Construction

To construct a decision tree, we first perform QR decomposition on the CSI matrix H as

H =
[
Q1 Q2

]⎡⎣ R

0(n−m)×m

⎤
⎦ = Q1R, (6)

where R ∈ R
m×m is an upper triangular matrix, and the partitioned matrices Q1 ∈ R

n×m and

Q2 ∈ R
n×(n−m) both have orthogonal columns. Then, we rewrite (1) as

z = Rx+ v, (7)

where z � QT
1 y and v � QT

1w. Note that the optimal MIMO signal detection problem is

always squared of dimensions m after preprocessing. For convenience, we number the entries

of matrices and vectors of (7) in a reverse order as⎡
⎢⎢⎢⎣
zm
...

z1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
rm,m . . . rm,1

...
. . .

...

0 . . . r1,1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
xm

...

x1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
vm
...

v1

⎤
⎥⎥⎥⎦ , (8)

where ri,j represents the (i, j)-th component of R after arranging from the bottom right to the

upper left. After preprocessing, the squared Euclidean distance of a given candidate can be

expanded as

d2(x) = (z1 − r1,1x1)
2︸ ︷︷ ︸

b(x1)

+(z2 − r2,2x2 − r2,1x1)
2︸ ︷︷ ︸

b(x2)

+ · · ·

+ (zm − rm,1x1 − · · · − rm,mxm)
2︸ ︷︷ ︸

b(xm)

(9a)

=
m∑
k=1

b(xk), (9b)

where the k-th incremental cost is denoted by

b(xk) =

(
zk −

k∑
j=1

rk,jxj

)2

, (10)
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which only depends on the partial signal vector (PSV) xk = [xk, xk−1, . . . , x1]
T . The cumulative

cost of the PSV xk is

g(xk) =
k∑

i=1

b(xi), (11)

and the successor can be computed recursively by

g(xk+1) = b(xk+1) + g(xk), ∀k = 0, 1, · · · ,m− 1 (12)

where the initialization g(x0) ≡ 0 is set. Clearly, (12) constructs a perfect |A|-way m-level

(starts from zero) decision tree. In the resulting tree, the deepest nodes represents the goal nodes

associated with specific candidates. Since |A| is finite, the set of goal nodes can be enumerated

as

Am = {xm
1 ,x

m
2 , . . . ,x

m
j , . . . ,x

m
|A|m}, (13)

where each goal node xm
j is associated with a signal candidate. For convenience, we denote

the antecedent of a goal node xm
j that locates at level k as xk

j , which also represents the path

leading from the root to that node. Note that we will sometimes ignore the subscript and use xk

to represent an arbitrary node located at level k. We also use xj ⊆ xk (0 ≤ j ≤ k) to denote

that xl is the antecedent of xk. On the contrary, xj ⊇ xk (0 ≤ k ≤ j) denotes that xj is the

descendent of xk. Importantly, each node xk is associated with a branch cost b(xk), and g(xk)

is the cumulative cost of the path leading from the root to that node. For demonstration, a simple

binary 4-level decision tree is illustrated in Fig. 1, where m = 4 and A = {−1,+1}.

B. Heuristic Tree Search

Now it is straightforward to employ the A* algorithm [20], [22], [26], [39] to search the least-

cost path on the tree. Before describing the algorithm, it is necessary to introduce the following

notations,

• ACTIVE is an ordered list with possibly limited space that stores nodes to be expanded,

whose data structure is often a priority queue or self-balancing binary search tree (a.k.a.

AVLTree) in practice. In this case, we can efficiently find the least-f -cost node with a

computational complexity of O(1), which means that the algorithm is able to find the

least-f-cost node at each loop with a very small fixed cost.

• f(xk) is the evaluation cost (f -cost) currently assigned to a node xk at the time. Note that

f(xk) is not static, and it may change during search.
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Fig. 1. An example of decision tree for signal detection, where m = 4 and A = {−1,+1}. In the resulting tree, the left branch

represents the symbol decision of −1, while the right branch represents the symbol decision of +1.

• A node is visited or generated if it has been encountered during the expansion of its parent.

• A node is expanded if all of its successors have been generated during the expansion.

• A node is in memory if it is inserted into ACTIVE.

• The complexity of a search algorithm is defined in terms of the number of visited nodes.

We are now ready to introduce the A* algorithm, and the pseudo code is presented in Algorithm

1. Throughout the paper, we shall emphasize that the tree search always starts at the dummy root

x0. At each iteration, A* expands the least-f -cost node among all the nodes that are in ACTIVE

and waiting for expansion, and inserts all successors of that node into ACTIVE afterwards [22].

This process will terminate as long as a goal node is selected for expansion, and the selected

goal node will become the output of the algorithm. As a heuristic BeFS algorithm, A* employs

a heuristic function h(xk) to guide the search. Specifically, the heuristic function estimates the

remaining cost from xk to goal nodes, denoted by

h(xk,xm) = g(xm)− g(xk) (14)

=
m∑

i=k+1

(
zi −

i∑
j=1

ri,jxj

)2

, ∀xm ⊇ xk. (15)

Accordingly, A* computes the evaluation cost of xk as

f(xk) = g(xk) + h(xk), (16)
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Algorithm 1 A* Algorithm

Looploopend MemoryACTIVE z and R x̂ (estimate of the transmitted signal x) insert the root

node x0 in

loop

if is empty then return x̂ = ∅ with failure xk ← least-f -cost node in

if xk is a goal node then return x̂ = xk with success

for every successor xk+1 ⊃ xk do f ′(xk+1) ← g(xk+1) + h(xk+1) f(xk+1) ←
max

{
f(xk), f ′(xk+1)

}
insert xk+1 into remove xk from

where h(xk) represents the estimate of the minimum value of (14), and h(xm) = 0 holds since

the goal nodes have no successor at all. Therefore, f(xk) actually estimates the cost of the

shortest path of the sub-tree of xk. In particular, the optimal heuristic function always gives the

minimum value of (14) as

h∗(xk) = min
xm⊇xk

h(xk,xm). (17)

In this case, the optimal f -cost is given by

f ∗(xk) = g(xk) + h∗(xk). (18)

With the optimal heuristic function, A* only expands the shortest path, as it always guides the

search process towards the shortest path.

C. Optimality and Optimal Efficiency

We know that A* performs best with the optimal heuristic function, since only the nodes

lying along the shortest path would be expanded eventually. In practical, we however often

use a lower bound on (17) as the heuristic function, as finding the optimal heuristic function

requires exhaustively search as well. In general, if a heuristic function h(xk) never overestimates

the optimal heuristic, then it is admissible [22]. In further, h(xk) is said to be consistent if

h(xk) ≤ b(xk+1) + h(xk+1) holds for each node xk and its successors xk+1. In other words,

a heuristic function is consistent if it satisfies the triangle inequality [26]. It is clear that a

consistent heuristic is also admissible, but not the vice verse.

With an admissible heuristic function, A* is said to be optimal since it guarantees to find

the shortest path [26]. In particular, the simplest admissible heuristic is h(xk) = 0. Hence, the
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Fig. 2. Network structure adopted by the proposed algorithm.

existing approaches mainly focus on finding a more meaningful admissible heuristic function

based on the tighter lower bounds on (14) [20], [22]. In this case, A* is able to find the shortest

path faster than the simplest heuristic. However, the performance improvements are still limited

since the estimated heuristics are still far from the optimal heuristic.

With a consistent heuristic function, A* is said to be optimally efficient in terms of that not

only it is optimal but also no other optimal algorithm that uses the same heuristic would expand

fewer nodes than it [26]. In this case, reducing the estimation error between a consistent heuristic

and the optimal heuristic will only decrease the number of expanded nodes. Although A* can

perform much better than other search algorithms, it has a main issue that its space complexity

grows exponentially with the increasing search depth [26]. Consequently, finding a consistently

good estimate of the optimal heuristic and improving the memory efficiency become the two

essential approaches to improve the performance of A* in large-scale systems, which is also the

intuition behind the strategy we will introduce in the following section.

III. DEEP LEARNING ACCELERATED HEURISTIC BEST-FIRST SEARCH

In this section, we will propose a general heuristic tree search algorithm, which significantly

speeds up the heuristic BeFS algorithm by employing a DNN to estimate the optimal heuristic.

After that, we will introduce the training strategy and discuss its computational complexity.
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A. Proposed Deep Learning Based Search Strategy

Let h(xk|z,R,θ) denote the DNN parameterized by the trainable parameters θ. For conve-

nience, we will simplify it as hθ(x
k) in the sequel. Accordingly, we define the corresponding

f -cost as

fθ(x
k) = g(xk) + hθ(x

k). (19)

As shown in Fig. 2, we use a fully-connected neural network (FCNN) composed of L fully-

connected layers, and the number of neurons at the l-th (1 ≤ l ≤ L) layer is denoted by nl.

Formally, the output of the l-th layer will be proceeded by the rectified linear unit (ReLU) based

activation function, which can be expressed as

pl = max
{
0,W lpl−1 + bl

}
, (20)

where pl−1 ∈ R
nl−1 is the output of the prior layer. Notations W l ∈ R

nl×nl−1 and bl ∈ R
nl are

the learnable weight matrix and bias vector, respectively. Note that the max{·, ·} operation is

performed in component-wise manner. In particular, the input of the first layer is given by

p0 = z −R

⎡
⎣0(m−k)×1

xk

⎤
⎦ . (21)

In this case, the input size and output size are both fixed, which are set to n0 = m and nL = 1,

respectively. Hence, the structure of FCNN can be summarized as

{
m,n1, n2, · · · , nl, · · · , nL−1, 1

}
, (22)

and the set of trainable parameters is given by

θ =
{
W 1, b1, · · · ,W l, bl, · · · ,W L, bL

}
. (23)

We shall emphasize that the DNN’s structure is not limited to FCNN, and it should be chosen

according to the problem scale and resources. In this paper, we consider FCNN since it is

very simple and can be easily implemented by hardware to improve the efficiency. Besides,

FCNN will be a good candidate if we consider that the signal detection problem in MIMO

systems has typically much lower dimensions with comparison to computer vision tasks like

image reconstruction. It should be noted that the major objective of this paper is to show

the power of DNN based heuristic, and the presented DNN structure in this work is just for

reference. In practice, we may choose convolutional neural networks (CNNs) to further reduce
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the computational complexity when the problem scale is very large. On the other hand, recursive

neural networks (RNNs) will be a good candidate if the channel is correlated over time. Therefore,

we need to select an appropriate network structure to approximate the heuristic according to the

specific applications and available resources for the considered system.

To leverage the DNN based heuristic function, we can combine it with heuristic BeFS search

algorithms. Since A* may require prohibitively large memory space in large-scale problems,

we will use the SMA* algorithm [24] as the underlying search strategy. As a variant of A*,

SMA* is able to perform BeFS with limited memory space, and it is still equivalent to A* with

enough memory size. By combining SMA* with the aforementioned deep heuristic function, we

thus propose a hyper-accelerated tree search (HATS) algorithm for the optimal signal detection

in large-scale MIMO problems. The pseudo code of HATS is detailed in Algorithm 2, and the

associated utility functions are presented in Algorithm 3. In general, HATS works just like the

A* algorithm. It keeps expanding the deepest least-f -cost node until ACTIVE is full, and the f -

cost of each generated successor is computed according to (19). In particular, since the memory

size is limited, HATS will forget the most unpromising node from ACTIVE, and remember its

key information in its parent. Thus, the memory size can be bounded. After safely deleting the

most unpromising node, the proposed algorithm is able to move forward, and recover back once

there is no any other path better than the forgotten paths. Based on this strategy, HATS maintains

a partially expanded sub-tree of the whole tree. Hence, the most unpromising node shall be the

shallowest highest f -cost leaf node. It should be noted that a node is said to be a “leaf” node

in terms of the partially expanded sub-tree. Thus, the forgotten leaf node is not necessary to be

the goal node. While maintaining the partially expanded sub-tree, the proposed algorithm will

recursively adjust the expanded node’s cost according to the costs of its successors, and thereby

the sub-tree is updated. In conclusion, at each iteration, the proposed algorithm expands the best

node from memory, generates one successor and inserts the generated successor to ACTIVE at

the time, and deletes the worst leaf node when the memory is full.

B. Training Strategy

It is clear that the training strategy is to minimize the average error between the estimated

heuristic and the optimal one. To achieve this goal, we first know that with the optimal heuristic,

the f -costs of the nodes on the shortest path of each sub-tree are all equal to the cumulative

cost of the deepest node on that path. This can be easily proven according to the definition of
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Algorithm 2 Proposed HATS Algorithm

Input:z and R

Output:x̂ (estimate of the transmitted signal x)

1: Insert the root node x0 into ACTIVE

2: loop

3: if ACTIVE is empty then

4: return ∅ with failure

5: end if

6: x̂k ← deepest least-cost node in ACTIVE

7: if xk is a goal node (k = Nt) then

8: return x̂k with success

9: end if

10: x̂k+1 ← next not-generated valid successor or best forgotten successor of x̂k

11: Insert x̂k+1 into its parent’s generated successor list

12: if x̂k+1 is not a forgotten node then

13: f(x̂k+1)← max
(
f(x̂k), fθ(x̂

k+1
)
)

14: else

15: Recover ŝk+1’s cost from its parent

16: end if

17: ADJUST(x̂k)

18: MAKESPACE()

19: Insert x̂k+1 in ACTIVE

20: if x̂k is expanded then

21: remove x̂k from ACTIVE

22: end if

23: end loop=0

the optimal heuristic. Following this point, one straightforward training strategy is to minimize

the average �2 loss

L(θ|D) = ED
{∣∣g(xm

φ )− fθ(x
k
φ)
∣∣2} , (24)
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Algorithm 3 Utility Functions for HATS

1: function ADJUST(x̂k)

2: if all of x̂k’s successors are generated then

3: x̂k+1 ← least-cost successor among all generated successors and forgotten successors

of x̂k+1

4: if x̂k+1’s cost is finite and not equal to x̂k’s cost then

5: Update x̂k’s cost to x̂k+1’s cost

6: ADJUST(x̂k’s parent)

7: end if

8: end if

9: end function

10: function MAKESPACE()

11: if ACTIVE is not full then

12: return

13: end if

14: Remove shallowest highest-cost leaf node x̂k
j from ACTIVE

15: Remove x̂k
j from its parent’s generated successor list

16: Remember x̂k
j ’s cost in its parent’s forgotten successor list

17: if the parent is not in ACTIVE then

18: Insert the parent into ACTIVE MAKESPACE

19: end if

20: end function

where the empirical expectation is taken on the data set D, and D can be generated by traversing

the shortest path at each time slot. Specifically, the data set of T time slots can be expressed as

D =
{
S1
1 , · · · , Sm−1

1 , · · · , S1
t , · · · , Sk

t , · · · , Sm−1
T

}
, (25)

where Sk
t denotes the k-th (1 ≤ k ≤ m−1) sample drawn at time slot t (1 ≤ t ≤ T ). Specifically,

Sk
t includes

Sk
t =

{
z,R,xk

φ,x
m
φ

}
, (26)
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where z, R, xm
φ are the associated received signal, triangular matrix and ML estimate at the

time. Notation xk
φ is the k-th node on the shortest path x0 → xm

φ . It should be noted that

the time index is only used for identifying the symbols randomly drawn from different trees.

After successfully collecting enough samples from different time slots, we will further shuffle

the whole data set before training the model. Hence, the time index has no impact on the final

prediction. Base on the data set, we can optimize the network parameters θ by employing mini-

batch gradient descent methods (e.g. the SGD optimizer [40] and ADAM optimizer [41]) to find

the optimal parameters as

θ∗ = argmin
θ

L(θ|D). (27)

Nevertheless, we still have to compute the ML estimate, which will slow down the sampling

efficiency during the training. To tackle this problem, we can use the transmitted vector x rather

than the ML estimate xm
φ . This is a reasonable approximation in the sense of signal estimation,

since the ML estimate is most likely to be x, especially for high SNR regimes. By using this

strategy, we can train the model well very soon, and still have a very good performance. In

summary, the advanced training procedure for the proposed algorithm is detailed in Algorithm

4.

C. Computational Complexity

The computational complexity of HATS depends on both the number of visited nodes and the

visitation costs. While visiting a node xk, the computational complexity is

O
(
k +

L∑
l=1

nlnl−1 + nl

)
, (28)

where the first term denotes the complexity of computing g(xk) and the second term denotes the

complexity of computing hθ(x
k). When the DNN estimates the optimal heuristic precisely, the

algorithm visits the fewest nodes. Thus, the lower bound on the average complexity of HATS

is given by

O
(
m2 +m

(
L∑
l=1

nlnl−1 + nl

))
, (29)

since only the m nodes lying on the shortest path would be eventually expanded. When the

estimation is imperfect, the optimality and the optimal efficiency can not be guaranteed, and

the complexity may grow exponentially with the problem scale in the worst case. However,
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Algorithm 4 Training Procedure for HATS

1: // Generate the training set

2: Set the number of mini-batches as B

3: Set the number of time slots for each mini-batch as T

4: initialize the data set Dall = ∅
5: for j = 1, 2, · · · , B do

6: for t = 1, 2, · · · , T do

7: Randomly collect z, R and x with random SNR

8: // Traverse the approximately shortest path of the whole tree

9: for k = 1, 2, · · · ,m do

10: Select the k-th node xk on the path x

11: Collect Sk
t = {z,R,x,xk}

12: Dall = Dall ∪ {Sk
t }

13: end for

14: end for

15: end for

16: // Training with random samples

17: Randomly initialize the DNN’s parameters θ

18: for j = 1, 2, · · · , B do

19: Randomly select a mini-batch of samples D from Dall

20: Compute the average loss on D according to (24)

21: Perform a stochastic gradient decent step on the network’s parameters θ

22: end for

23: Save the well-trained parameters θ

as we have discussed in Sec. II-C, decreasing the estimation error will significantly improve

the BER performance and search speed. Therefore, the performance and complexity of HATS

rely on both the estimation quality of DNN and the system’s SNR. In fact, as we will show in

the simulations, the proposed algorithm achieves almost the optimal BER performance, while it

reaches almost the lowest complexity in low SNR regimes. That is, with the proposed training

strategy, the network is able to predict the optimal heuristic accurately. Thus, HATS can often
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reach the optimal efficiency under practical scenarios, which indicates that the proposed algorithm

is applicable in large-scale systems.

IV. SIMULATION RESULTS

In this section, we will present simulation results and discussions to show the effectiveness

of the proposed algorithm. Specifically, we will first introduce the environment setup and the

implementation details of our model. Then, we will introduce the competing algorithms and

discuss the related simulation results afterwards.

A. Environment Setup

In the simulations, we consider a MIMO system model where there are mc and nc antennas

at the transmitter and receiver, respectively. Therefore, we have m = 2mc and n = 2nc. In

addition, the signal is modulated by QPSK or 16-QAM, and the transmission experiences a

random wireless channel. Moreover, the channel information can be known perfectly at the

receiver. In practice, the columns of the CSI matrix may be somehow correlated. To perform

simulations over correlated channels, we adopt the well-known Kroneker model introduced in

[42] to generate the correlated channel matrices. Mathematically, the complex channel matrix

Hc in Kroneker model is given by

Hc = R
1
2
r H̃cR

1
2
t , (30)

where H̃c denotes a Rayleigh flat fading channel matrix with independent and identically

distributed (i.i.d.) random entries, and Rr and Rt are two covariance matrices at the receiver

and transmitter, respectively. Without lost of generality, we assume that the correlation occurs

at the transmitter, and Rr and Rt are set as

Rr = I, Rt =

⎛
⎜⎜⎜⎜⎜⎝
1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ · · · ρ 1

⎞
⎟⎟⎟⎟⎟⎠ , (31)

where ρ ∈ [0, 1] is the correlation coefficient.

As to the DNN structure, we use the same DNN structure for all experiments, where there

are 4 hidden layers in total and the neuron numbers of the four hidden layers are set to 128, 64,

32, and 16, respectively. According to (22), the structure of DNN can be summarized as

{2Nt, 128, 64, 32, 16, 1} . (32)
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To train the model, we employ the Adam optimizer [41] with the learning rate of 10−6 for all

experiments. The mini-batch size is set to 128 time slots, and the total batch size is 10 million

in the training. The training samples are randomly generated within a range of SNRs varying

from 0 dB to 30 dB. For the performance test, we will test the aforementioned algorithms with

enough times to ensure a stable BER performance.

B. Competing Algorithms

To verify the effectiveness of the proposed algorithm, we compare the proposed algorithm with

several competitive algorithms. Before discussing the results, we first introduce the following

abbreviations,

• MMSE: The conventional minimum mean squared error estimator.

• OAMP-Net2: The orthogonal approximate message passing network 2 introduced in [30].

• SD: The sphere decoding algorithm introduced in [1].

• DL-SD: The DL based sphere decoding algorithm introduced in [37].

• A*: The A* algorithm introduced in [24]. Note that the heuristic is set to zero constantly

for comparison.

• HATS(M ): The proposed algorithm in this paper, where M denotes the memory capacity.

Among these algorithms, OAMP-Net2, DL-SD and the proposed HATS algorithm are DL based

algorithms. Besides, SD, DL-SD, A* and HATS are search algorithms. In particular, DL-SD

requires linear space with the search depth, while A* has exponential space complexity. More-

over, we will take simulations for HATS with different memory sizes. In particular, HATS(∞)

denotes that the memory size is unlimited. In this case, HATS(∞) is equivalent to A* except that

the heuristic is estimated by a DNN. Since SD, DL-SD and A* are optimal search algorithms,

we will simply denote their BER performances as “ML” for convenience. Unlike the existing

literature that measures the complexity in terms of the number of visited lattice points (goal

nodes) [37], we will compare the complexities of search algorithms based on the number of

visited nodes in the simulations, since it is more accurate to measure the complexity.

C. BER Performance and Complexity Comparison On Uncorrelated Channels

Figs. 3-5 illustrate the BER comparisons of the aforementioned algorithms in different-scale

MIMO systems, where the channel is uncorrelated, and the numbers of antennas are 8, 16, 32

at both the transmitter and receiver, respectively. In addition, SNR varies from 5 dB to 15 dB.
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Note that algorithms have to search the closest lattice point among 264 candidates to reach the

exact optimal BER performance in 32× 32 MIMO, which is a very big challenge. It should be

noted that all the ML performances in these figures are simulated based on the SD algorithm. In

particular, the BER results of “ML” with SNR ranging from 5 dB to 9 dB are not plotted in Fig.

5, since the computational complexity of SD becomes prohibitively large in this regime. From

these figures, we can find that HATS achieves almost the optimal BER performance in all three

systems. When SNR = 15 dB, HATS produces only slightly 10%, 10% and 15% more error than

the optimal search algorithms in 8× 8, 16× 16 and 32× 32 MIMO systems, respectively. As a

contrast, for the sub-optimal algorithms like MMSE and OAMP-Net2, their BER performances

are significantly far from the optimal one in all three MIMO systems, especially when the

problem scale becomes prohibitively large. Moreover, we can also find from these figures that

the performance gaps between HATS and the other sub-optimal algorithms enlarge with the

increasing SNR. In particular, when SNR = 15 dB, HATS reduces the error of MMSE and

OAMP-Net2 to only about 0.0052% and 1.504% in 32 × 32 MIMO, respectively. Besides, the

SNR gains of HATS over OAMP-Net2 are about 3.2 dB, 2.1 dB and 1.8 dB at the BER levels of

10−3, 10−4, and 10−5 in 8× 8, 16× 16 and 32× 32 MIMO systems, respectively. In conclusion,

these results show that the proposed algorithm is robust and almost optimal even in large-scale

problems.

In order to show the impact of SNR and memory constraint on the computational complexity

of the proposed algorithm, Figs. 6-8 are provided to show the complexity comparison under the

same setup as Figs. 3-5. From the results in Figs. 6-8, we can conclude that with difference

memory sizes, HATS still visits much fewer nodes than SD, DL-SD and A*. The numbers of

nodes visited by SD, DL-SD and A* all grow exponentially with the decreasing SNR, which

indicates that they are not applicable in large-scale problems. As a contrast, the number of nodes

visited by HATS increases almost linearly in low SNR regimes. Moreover, we can find from

these figures that HATS can reach the lowest complexity in a wide range of acceptable SNRs,

whereas the complexities of SD, DL-SD and A* are still very high in the regime. Specifically,

for the 32 × 32 MIMO where the size of search space is 264 and SNR = 18 dB, SD, DL-SD

and A* have to visit average about 1800, 1100 and 1000 nodes to find the optimal solution,

while HATS only needs to visit about average 150 nodes. In particular, we can also find that

HATS is not sensitive to the memory size, and it can perform well with bounded memory size.

Specifically, when the memory size is bounded, the performances of HATS(128), HATS(1024)
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and HATS(∞) are almost the same in all the three systems. This indicates that HATS can reach

almost the optimal efficiency with bounded memory in practice.

Fig. 9 illustrates the computational complexity comparison of the competing algorithms versus

the problem scale, where the number of antennas varies from 8 to 24 and the associated SNR is

set to 15 dB. From this figure, we can observe that the complexities of HATS(128), HATS(1024)

and HATS(∞) increase almost linearly with the number of antennas, while the complexities

of SD, DL-SD, A* increase exponentially with the problem scale. This implies that HATS is

much more efficient and less sensitive to the problem scale by comparing to the other optimal

search algorithms. As it has been shown in Figs. 3-8 that HATS can reach almost the optimal

BER performance in large-scale systems, one is able to conclude that the proposed algorithm

almost meets the optimal efficiency in large-scale problems, which indeed further verifies the

effectiveness of the proposed algorithm.

D. Further Results on Correlated Channels and Higher-Order Modulation

To show the robustness of the proposed HATS in practical scenarios, we further present

simulation results in Figs. 10-13, in which the channels are correlated (ρ > 0) and 16-QAM is

adopted. Specifically, Fig. 10 demonstrates the average training loss of the proposed HATS on

two different MIMO systems, where the numbers of transmit antennas are both 32, while the

numbers of receive antennas are 32 and 160, and the channel correlation coefficients are 0.5 and

0.2, respectively. We can find from Fig. 10 that the average training losses of the proposed HATS

rapidly converge to a low value in both of the two systems, which indicates that the proposed

network structure and training strategy are effective for different practical systems.

Besides, Fig. 11 depicts the BER performance comparison results of the aforementioned

algorithms, where the correlation coefficient ρ varies in {0.1, 0.3, 0.7}, and SNR varies from

10 dB to 30 dB. From this figure, we can see that even when the size of search space grows

very largely to 2128 for a 16-QAM modulated 32 × 160 large-scale MIMO system, and the

channels are slightly (ρ = 0.1), moderately (ρ = 0.3), or strongly (ρ = 0.7) correlated, HATS

can still be able to reach almost the optimal ML performance in a wide range of SNRs. This

indicates that the estimated heuristic is nearly admissible such that the algorithm can always

successfully find the ML estimate. Moreover, Fig. 12 demonstrates the complexity comparison

over SNR for the corresponding BER results of ρ = 0.1 in Fig. 11. We can find from this figure

that the proposed HATS still outperforms the A* and DL-SD algorithms in a wide range of SNRs,
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and it visits nearly only the 512 necessary nodes connecting the shortest path for this system.

This indicates that the estimated heuristic is nearly optimal, by the fact that the proposed HATS

not only achieves almost the optimal BER performance, but also reaches almost the optimal

efficiency. In further, we present the complexity comparison results over the correlation level in

Fig. 13, where the correlation coefficient ρ ranges from 0 to 0.8. It can be seen from Fig. 13 that

the proposed HATS is not sensitive to the correlation level with comparison to the original A*

and DL-SD algorithms. The proposed HATS will maintain the average complexity at a low level

until the correlation level grows really high to 0.8, while the other two algorithms’ complexities

will grow rapidly with the increasing correlation level. This indicates that the proposed model

can still estimate a high-quality heuristic even when the channel is strongly correlated, which

indeed further verifies the robustness of the proposed algorithm.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we investigated the optimal signal detection problem with focus on large-scale

MIMO systems. The problem can be regarded as search on the decision tree, and the optimal

solution is obtained by finding the shortest path. In order to improve the search speed while

does not compromise the optimality, we proposed a DL based heuristic search algorithm, namely,

HATS. The proposed algorithm was shown to be almost optimally efficient, since it can reach

almost the optimal BER performance while still visit almost the fewest nodes in large-scale

systems. Hence, we do believe that the proposed algorithm is attractive for optimal signal

detection in practical large-scale MIMO systems, especially when the problem scales largely

and the optimal performance is required.

Generally, this paper have focused mainly on producing hard-decision output. However, chan-

nel coding is often used in modern MIMO systems to enhance the reliability, and thereby having

probabilistic soft-output will help enhance the performance of wireless transmission. Therefore,

one interesting future topic of this work is to provide soft-decisions with HATS, and this could

be a challenge for all tree search based algorithms. A feasible solution to address this challenge

is to employ the max-log approximation to compute log-likelihood ratios (LLRs) of bits, such

that we will only need to visit the nodes neighbouring to the shortest path [43]. In this way, we

can easily compute LLRs of bits by designing an additional pruning strategy to neglect all the

nodes which have no contributions to LLRs, which indicates that it becomes possible to provide

soft-output while still visit as fewer nodes as possible.
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