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Abstract—In this paper, we investigate signal detection in
emerging dynamic spatial modulation (DSM) based MIMO
systems, where existing mapping methods do not work effi-
ciently. Therefore, we propose a combinatorial mapping-based
DSM (CM-DSM) scheme in this work. The proposed CM-
DSM scheme employs a combinatorial 3D mapping to avoid
the detection ambiguity and achieve a lower average number
of active antennas in the system. Additionally, this mapping
helps construct an appropriate decision tree for optimal signal
detection. By leveraging the combinatorial nature of CM-DSM,
we propose a memory-bounded tree search (METS) algorithm,
which efficiently finds the maximum likelihood (ML) estimate. To
further enhance detection efficiency, we propose a deep learning
boosted version of METS (DL-METS) that learns the optimal
heuristic function from implicit data patterns. Simulation results
indicate that both the proposed METS and DL-METS work well
in the system. In particular, the proposed DL-METS achieves
nearly optimal detection performance while maintaining almost
the lowest expected computational complexity. This strongly
validates the effectiveness of the algorithm proposed in this work.

Index Terms—Spatial modulation, variable active antennas,
MIMO detection, deep learning, tree search.

I. INTRODUCTION

MASSIVE multiple-input multiple-out (MIMO) commu-

nication systems have been considered as one of the

fundamental components for next-generation wireless com-

munication networks [1]. The usage of large antenna arrays

at both transmitter and receiver can significantly improve

transmission rate and spectral efficiency of wireless commu-

nication. However, conventional MIMO has the disadvantage

that the system complexity and deployment cost increase

rapidly with the number of antennas [1]. Taking this issue

into consideration, the concept of spatial modulation (SM)

[2]–[5], which carries information by using both the spatial

dimension and conventional 2D symbols, has recently attracted

much attention. In MIMO communication systems, SM only

activates a part of the transmit antennas for conveying infor-

mation. At the same time, extra bits can be transmitted via

the active antenna combination (AAC). Hence, we can still

achieve a high transmission data rate while employing fewer
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radio frequency (RF) chains. In other words, SM achieves a

comprehensive balance between energy efficiency and spectral

efficiency compared to traditional MIMO systems and has

been considered a promising technique for achieving ultra-

reliable and low-latency communication (URLLC) in future

wireless networks [3].

During the past decade, many variants of the SM family

have emerged. The original version of SM was first intro-

duced in [6], and it selects a dedicated antenna at each time

slot. Despite the fact that the transmitted information can be

identified by the AAC together with the transmitted symbol,

the overall performance improvement is limited, especially

when the number of antennas is large. Generalized spatial

modulation (GSM) was thereby studied in [7]–[9], which

activates a fixed number of transmit antennas at each instant

to further improve the spectral efficiency. In this case, GSM

has the potential to support a higher data transmission rate

than the original version. Since the number of active antennas

is fixed in GSM-MIMO systems, the information bits can

be separately mapped into AAC and symbols [7], and the

number of transmitted bits is proportional to the number of

active antennas. However, if the number of active antennas

is variable, then the lack of such information at the receiver

side will result in detection ambiguity, which will significantly

degrade the system bit error rate (BER) performance [10].

To tackle this issue and fully exploit the available RF chains

at the transmitter, dynamic spatial modulation (DSM) with

varying active transmit antennas has been investigated in [10]–

[12]. In contrast to GSM, information bits in DSM based

MIMO systems are jointly mapped into the complete 3D

constellation consisting of both the AAC and conventional 2D

symbols, such that we can alleviate the detection ambiguity

at the receiver [10]. Besides, this kind of mapping is also

known as 3D-mapping in the literature, and the choice is

unlimited. For example, the authors in [10] proposed JM-

VSM, which fixes the number of transmitted bits with pseudo-

Gray mapping. By using variable active antennas, DSM is able

to provide a much higher data rate compared to GSM, and

meanwhile achieves a higher energy efficiency compared to

the conventional systems.

Unfortunately, due to the increasing number of active an-

tennas, signal detection in SM family-based MIMO systems

becomes much more challenging compared to that in the

conventional MIMO systems [13]–[15]. In addition, the inter-

channel interference (ICI), signal sparsity and varying antenna

combinations also make the detection of transmitted signal

much more difficult [16], [17]. Specifically, a brute force
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enumeration to find the maximum likelihood (ML) estimate in

SM family-based MIMO systems will typically have to search

over the whole set of all possible AACs and symbols, which

can rapidly become computationally infeasible for massive

MIMO. To tackle this issue, some low-complexity and sub-

optimal detection algorithms have been proposed for the SM

and GSM variants, including the ordered-block minimum

mean squared error (OB-MMSE) algorithm [13], Gaussian

approximation [14], Bayesian cooperative detection [18] and

message passing-based detection algorithms [15], [19], [20].

The aforementioned algorithms all have lower computational

complexities than the brute force enumeration, but the BER

performances can not approach the optimal one.

To reduce the computational complexity while pursuing the

optimal BER performance, researchers have turned to tree

search-based signal detection algorithms [16], [17], [21]–[24].

Tree search algorithms convert the detection problem into a

search for the closest path on a decision tree, allowing for

a significant reduction in average computational complexity,

although the complexity of all tree search algorithms is

still exponential in the worst case [21]. For example, some

approaches employ an additional symbol “0” or NULL to

identify inactive antennas in GSM and use conventional sphere

decoding (SD) or K-best search algorithms to find the optimal

solution [21]–[24]. However, these approaches still have to

check each node, even if it is not a valid candidate, which

limits their complexity reduction. Sorting assisted successive

sphere decoding (SA-SSD) algorithm was developed in [16]

to address this issue by searching only on decision trees with

valid AACs. SA-SSD sorts all possible AACs and finds the

closest path accordingly, which is efficient for small numbers

of overall antenna combinations but not for larger scales.

Furthermore, a similar strategy that builds on SA-SSD was

proposed in [17], reducing computational complexity further

by using box-optimization and initial radius broadcasting.

Besides, in recent years, researchers have explored learning-

based methods to improve the efficiency of MIMO detection,

inspired by the unprecedented progress made in deep learning.

For instance, in [25], a model-driven MIMO detection method

was proposed that used deep learning. The approach modified

a conventional iterative detection algorithm by unfolding it

into a deep neural network (DNN) structure. Two auxiliary

parameters were introduced at each layer of the DNN for better

canceling multi-user interference (MUI). The learning to learn

iterative search algorithm (LISA) proposed in [26] employed

different DNN-based architectures as the parameterized policy

function based on the channel model. Through learning the

optimal parameters of this function, LISA provides improved

BER performance compared to its predecessors, and it is

feasible even with imperfect channel state information (CSI).

Additionally, meta-learning-based search algorithms have re-

cently been proposed in [27] and [28]. The EPNet in [27]

employs a deep unfolded DNN structure with the expectation

propagation algorithm for iterative detection and decoding.

A meta-learning-based mechanism was developed for online

training to provide significant robustness in practical deploy-

ment. Furthermore, an intelligent MIMO detection network

was proposed in [28], which used DNN and meta learning

to significantly reduce the complexity of the K-best search

algorithm.
While many algorithms have been proposed to address the

signal detection problem in MIMO systems based on SM

or GSM variants, there is still a lack of studies on efficient

detection algorithms for DSM in the literature. This is because

existing detection methods were mainly designed for spatial

modulation systems with a fixed number of active antennas

and separate mapping. In this case, most existing detection

algorithms fail to work well due to the variable number of

active antennas and joint 3D mapping in DSM. For example,

existing message passing-based detection algorithms typically

assume knowledge of the fixed sparsity constraint [15], [19],

[20], which is impractical due to the variable sparsity in

DSM. To the best of our knowledge, two most recent attempts

for designing an effective detection algorithm for DSM with

variable number of active antennas were introduced in [29] and

[30]. In [29], the authors modified the OB-MMSE algorithm

and proposed OWMMSE-CML to support variable active

antenna and joint 3D mapping. However, this algorithm still

tries to enumerate all possible antenna combinations, which

will bring degraded performance in large-scale systems. In

[30], the authors proposed a partitioning and sorting based

sphere decoding (PS-SD) detector for the signal detection with

variable active antennas and the JM-VSM 3D-mapping scheme

[10]. Firstly, PS-SD partitions and sorts the transmission

vectors according to the number of active antennas as well as

the probability of antenna being activated. After that, PS-SD

employs sphere decoding to estimate the sorted transmission

vectors. However, the complexity of PS-SD still grows rapidly

with the increasing number of antennas. Therefore, designing

a low-complexity optimal signal detection algorithm with vari-

able number of active antennas still remains a very challenging

issue, which is also the motivation of this work.
In this paper, we are interested in designing an efficient

search algorithm for the fast optimal signal detection in

DSM-MIMO. To this end, we first propose a novel com-

binatorial mapping based DSM (CM-DSM) MIMO system,

which enables us to utilize the combinatorial nature of DSM

to construct a combinatorial tree for the signal detection.

Based on CM-DSM, we then develop a memory-bounded tree

search (METS) algorithm which can utilize the proposed CM-

DSM structure to find the optimal ML estimate with reduced

complexity. In further, we propose a deep learning boosted

version of METS (DL-METS), which provides almost the

optimal detection performance and meanwhile can achieve

nearly the lowest complexity. To summarize our work, the

main contributions of this paper are,

‚ We propose a novel 3D-mapping approach, namely CM-

DSM, to address the detection ambiguity problem by

leveraging the combinatorial nature of the spatially mod-

ulated signal. In contrast to the existing 3D-mapping

schemes which rely on pre-stored mapping tables, the

proposed CM-DSM is a real-time scheme which maps

binary bits according to their computed combinatorial

order. In this way, not only hardware and operation costs

are reduced, but also the detection complexity can be

reduced by exploiting the resultant combinatorial decision
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tree.

‚ We propose a low-complexity optimal detection algo-

rithm, namely METS, in order to address the optimal

detection problem in spatial modulations with variable

number of active antennas. The proposed METS utilizes

the combinatorial decision tree of the CM-DSM scheme

to prune many unpromising nodes, resulting in that it

can achieve the exact optimal detection performance with

considerably reduced complexity.

‚ We further propose an improved version of METS,

namely DL-METS, by combining deep learning and the

proposed CM-DSM scheme to guide the METS towards

the most promising path during the search process. We

show that by using DNN to predict the least remaining

cost of each branches, we can further avoid visiting

many unpromising intermediate nodes. By comparing to

the existing detection approaches, this strategy enables

further significant complexity reduction, which does not

compromise on the detection performance.

The rest of this paper is arranged as follows. Section

II details the proposed CM-DSM-based MIMO system and

explains how the proposed CM-DSM scheme can further

decrease the average number of active antennas in the sys-

tem. Section III proposes the METS algorithm for effective

detection in the above system, while Section IV presents the

DL-METS algorithm, a deep learning boosted version of the

METS algorithm that enhances its detection efficiency. Finally,

Section V discusses related simulation results, and Section VI

presents the conclusion of this paper.

II. PROPOSED CM-DSM BASED MIMO SYSTEM

A. System Model for the CM-DSM Scheme

In this section, we will first describe the proposed CM-

DSM based MIMO system. Then, we will detail the proposed

METS algorithm, and show how it can efficiently utilize the

CM-DSM structure to find the optimal ML estimate.

As illustrated in Fig. 1, we consider a MIMO system in

which Nt and Nr antennas are deployed at the transmitter

and receiver, respectively. In addition, only NRF (Nr ě Nt ě
NRF ) RF chains are available at the transmitter. Let Na denote

the number of active antennas at the transmitter, and then

obviously we have Na ď NRF . Unlike GSM, the number

of active antennas in DSM is varied, and the total number of

bits that can be transmitted per instant is given by

K “
[
log2

#
NRFÿ
Na“1

ˆ
Nt

Na

˙
|X |Na

+_
, (1)

where
`
Nt

Na

˘ “ Nt!
Na!pNt´Naq denotes the binomial coefficient,

X is the constellation set for quadrature amplitude modulation

(QAM) or phase shift keying (PSK) modulation, and t¨u
denotes the floor operation. As pointed out in [10], a major

issue of variable activate antennas is that it will cause detection

ambiguity at the receiver if we map information bits separately

into AACs and symbols. With separate mapping methods,

a variable number of bits is transmitted, and the receiver

will not know how many bits are transmitted exactly. This

Algorithm 1 Combinatorial Encoding and Decoding

1: procedure ENCODING(c)

2: Calculate the combinatorial index k based on (2)

3: return k
4: end procedure
5:

6: procedure DECODING(k)

7: Set c “ rc0, c1, . . . , cn, . . . , cNt´1s as zeros

8: r “ k
9: for k “ Na to 1 do

10: for n “ Ne ` k ´ 1 to k ´ 1 do
11: if r ě `

n
k

˘
then

12: cn “ 1
13: r “ r ´ `

n
k

˘
14: break
15: end if
16: end for
17: end for
18: return c
19: end procedure

detection ambiguity will result in a substantial degradation of

the detection performance of the system. To solve this issue,

one possible approach is to employ 3D-mapping methods

which jointly map information bits over the complete set of

all possible combinations of AACs and symbols. However,

the existing mapping methods like the JM-VSM introduced

in [10] will increase the expected number of active antennas,

since the priority of AACs is not exploited.

Consequently, we hereby propose a novel combinatorial

mapping method, which takes the priority of AACs into

account, and jointly maps binary bits according to their com-

binatorial order. The main idea of the proposed CM-DSM is to

rank all the 2K possible combinations of AACs and symbols

in the order of fewer number of active antennas first. This

enables us to reduce the average number of active antennas.

It is important to note that not all combinations are valid for

mapping, since only 2K combinations can be used to convey

information. Basically, all combinations will firstly be ranked

lexicographically according to their AACs, and then they are

ordered in terms of the transmitted symbols. In this case, the

number of transmitted bits is fixed to K, and we can thereby

avoid the detection ambiguity at the receiver.

In the proposed CM-DSM scheme, we first lexicographi-

cally order all the AACs that have an identical number of

active antennas. The ranking can be done based on the combi-

natorial ranking method introduced in [31], [32]. Specifically,

given an AAC of c “ rc0, c1, ¨ ¨ ¨ , cNt´1s, the matching index

can be computed as

k “
Nt´1ÿ
n“0

cn

ˆ
n

kn

˙
, (2)

where kn “ řn
i“0 ci, and

`
n
kn

˘ “ 0 holds for any n ă k. Based

on (2), we are able to construct a coding trellis for converting

AACs to indices and vice versa. The coding and decoding

procedures of this coding trellis are shown in Algorithm 1.
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Fig. 1. Diagram of the proposed CM-DSM based MIMO system.

Algorithm 2 Mapping Algorithm for CM-DSM based MIMO

Systems

Input: Information bits b “ rbK , bK´1, ¨ ¨ ¨ , b1s of length K;

Output: Transmitted signal s;

1: Convert the binary sequence b to decimal number n “řK
i“0 bi2

i´1;

2: for Na “ 1, 2, ¨ ¨ ¨ , NRF do
3: if n ă řNa

i“1

`
Nt

i

˘|X |i then
4: r “ n´řNa´1

i“1

`
Nt

i

˘|X |i;
5: k “

Y
r

|X |Na

]
;

6: q “ r ´ k|X |Na ;

7: Interpret decimal number k as AAC according to

the decoding procedure in Algorithm 1;

8: Interpret decimal number q as binary sequence b̂ “
rb̂Na

, b̂Na´1, ¨ ¨ ¨ , b̂1s of length Na;

9: Convert the binary sequence b̂ as symbols accord-

ing to the selected conventional constellation;

10: Construct transmitted signal s according to the

selected AAC and symbols;

11: return s;

12: end if
13: end for

By exploiting this coding trellis, the combinatorial 3D-

mapping scheme can be constructed by jointly selecting the

AAC and symbols according to the information bits, and then

recovering the bits from the transmitted symbols. Specifically,

we provide the details of the proposed mapping and demap-

ping algorithms in Algorithms 2 and 3, respectively. As shown

in Algorithm 2, while mapping bits into signal vectors, we first

determine the number of active antennas by checking whether

the total number of possible combinations activating at most

Na antennas is larger than the decimal number represented by

the information bits. After that, we determine which kind of

combination should be used according to the index number k
of the AAC. Then, the symbols can be determined according

to the residual number q and conventional BPSK or QAM

constellations. While demapping signal vectors into bits, we

just apply the reverse procedure of the mapping process, as

shown in Algorithm 3. In addition, we also provide examples

Algorithm 3 Demapping Algorithm for CM-DSM based

MIMO Systems

Input: Transmitted signal s;

Output: Information bits b “ rbK , bK´1, ¨ ¨ ¨ , b1s of length

K and the corresponding index number n;

1: Get the AAC c and number of active antennas Na from

the signal vector s;

2: Encode the AAC c as an index number k according to

(2);

3: Convert the Na non-zero symbols of s to a binary se-

quence b̂ of length Na log2p|X |q;
4: Compute the corresponding decimal number q from the

binary sequence b̂;

5: r “ k|X |Na ` q;

6: n “ r `řNa´1
i“1

`
Nt

i

˘|X |i;
7: Convert the decimal number n to a binary sequence b of

length K;

8: return b and n;

for the proposed combinatorial mapping scheme in Appendix

A, in order to help better understand the proposed mapping

and demapping procedures.

Intuitively, the proposed combinatorial mapping can reduce

the average number of active transmit antennas, since the

AACs with more active antennas can be excluded as many

as possible. Specifically, all possible antenna combinations

can be encoded as binary sequences. These binary sequences

can then be ranked lexicographically, which means that all

AACs are also ranked in a lexicographical order of fewer

active antennas first. Moreover, we order all possible transmit

signal vectors in terms of both the corresponding AAC and

symbols, which eventually results in a combinatorial mapping

between the input bits and signal candidates. In this manner,

it is clear that the signal candidates with more active antennas

will be considered in a low priority. Since not all AACs will

be used for mapping, those AACs with more active antennas

will be excluded from this mapping as many as possible.

Therefore, the mapping in the proposed scheme can actually

achieve a lower average number of active antennas if we

consider that there is no prior information on the incoming

data. Mathematically, the average number of active antennas
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of the proposed CM-DSM based MIMO system can be given

by

ĎNa “ 1

2K

NRFÿ
i“1

Npiq, (3)

where

Npiq “ min

#ˆ
Nt

i

˙
|X |i,max

#
0, 2K ´

i´1ÿ
j“1

ˆ
Nt

j

˙
|X |j

++
(4)

represents the number of valid candidates with i active anten-

nas. In contrast, the other mapping methods fail to incorporate

such priority, e.g., JM-VSM [10], and take into account the

AACs with more active antennas in the mapping table, which

thereby results in a higher average number of active antennas.

III. MEMORY-BOUNDED TREE SEARCH FOR CM-DSM

BASED MIMO SYSTEMS

After mapping the information bits into signal vectors, the

formed signal vector s P SNt will be transmitted via the

wireless channel, and thus we have the received signal as

y “Hs`w, (5)

where H P C
NrˆNt represents the full channel state in-

formation (CSI) matrix, w P C
Nrˆ1 stands for the additive

white Gaussian noise (AWGN) having a zero mean and unit

variance. It should be noted that the effective constellation set

of the CM-DSM based MIMO system is S “ X Yt0u, where

X is the alphaset of conventional 2D modulation and “0” is

used for identifying inactive antennas (e.g. X “ t´1,`1u
and S “ t´1, 0,`1u if BPSK modulation is adopted). More-

over, the system model described in (5) can be represented

alternatively as the effective subsystems given by

y “
Naÿ
j“1

hjsj `w “ H̄s`w, (6)

where hj represents the column of H corresponding to the j-

th non-zero element sj of s, and H̄ “ rh1, ¨ ¨ ¨ ,hj , ¨ ¨ ¨ ,hNa
s

is the effective sub-CSI matrix.

Based on (5), the mathematically optimal approach to esti-

mate signals in CM-DSM based MIMO systems is provided

by

s˚ “ argmin
sPSNt

}y ´Hs}2, (7)

which exhaustively searches the closest Euclidean point inside

the search space. Note that the optimal estimate in (7) involves

a computational complexity exponentially increasing with the

problem scale. To reduce the complexity, we will formulate the

problem as a search on the decision tree, such that we can find

the optimal estimate efficiently according to a specific search

strategy. Specifically, we first employ the QR factorization on

the CSI matrix, which is given by

H “ “
Q1 Q2

‰l jh n
Q

„
R
0

j
“ Q

„
R
0

j
, (8)

where Q1 P C
NrˆNt and Q2 P C

NrˆpNr´Ntq consist of

orthogonal columns, and R P C
NtˆNt denotes an upper

triangular matrix. By applying the orthogonal transformation

into (7), we then have

s˚ “ argmin
sPSNt

››››QHy ´
„
R
0

j
s

››››2 , (9)

“ argmin
sPSNt

Ntÿ
j“1

››››zk ´ kÿ
j“0

rk,jsj

››››2, (10)

“ argmin
sPSNt

Ntÿ
j“1

bpskq, (11)

where z � QH
1 y, ri,j represents the pi, jq-th component of

R by counting inversely, and the j-th increment bpskq “›››zk ´řk
j“0 rk,jsj

›››2 can be determined by the partially de-

termined vector sk “ rsk, sk´1, ¨ ¨ ¨ , s1s only. Moreover, we

denote the cumulative cost as gpskq “ řk
i“1 bpsiq. Obviously,

we have the successive identity gpsk`1q “ gpskq ` bpsk`1q,
and a decision tree is constructed. Thus, we can find the

optimal estimate by searching the corresponding decision tree

for the shortest path.
An example of the decision tree is presented in Fig. 2 for

illustration, where NRF “ 2, Nt “ 3, and BPSK modulation

is adopted. In this decision tree, a node located on the k-th

level of the tree is denoted as sk, which also denotes the path

starting from the root to that node. In particular, we refer to the

nodes as goal nodes when they are located on the deepest level,

i.e., when k “ Nt, since they represent complete solutions.

Obviously, the cumulative cost of goal nodes also represents

the Euclidean distance of the associated signal vector. We

shall emphasize that not all the goal nodes are associated with

valid DSM signals, and only the goal nodes with valid DSM

signals are valid candidates. We can now easily check whether

an intermediate node is leading to valid goal nodes or not

through exploiting the structure of the proposed CM-DSM,

and checking whether the index number of the intermediate

node calculated from Algorithm 3 is smaller than 2K or not.
Since invalid intermediate nodes can be quickly identified

by using the CM-DSM structure, we can now find the optimal

estimate of the transmitted signal, i.e., the shortest valid path

of the corresponding decision tree. To this end, we propose

an memory-bounded tree search (METS) algorithm, which

can utilize the combinatorial nature of CM-DSM to find the

optimal solution. Basically, our proposed METS is developed

based on the tree search algorithm introduced in [33], where

the original algorithm counts the tree level from the leaf nodes

while our proposed METS counts the tree level from the root.

With different sizes of available memory space, METS will

search the optimal solution with different policies. Specifically,

it will search the tree in a best-first manner if the memory

space is large enough. Otherwise, it will work in a depth-

first manner. Since best-first runs much faster than depth-first,

the algorithm can search the optimal path faster with enough

memory space. Mathematically, the minimum memory size

requirement of the algorithm can be expressed as [33]

L “ pNt ´ 1qp|S| ´ 1q ` 1. (12)
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6

Fig. 2. Structure of the CM-DSM based MIMO decision tree with Nt “ 3, NRF “ 2, and BPSK modulation. A path is valid if and only if it contains only
red nodes.

Accordingly, given the currently available memory size of L̂,

the minimum visitable tree level is given by [33]

kminpL̂q “ max

#
Nt ´ 1´

[
L̂

|S| ´ 1

_
, 0

+
. (13)

By jointly using the above two equations as well as the

demapping algorithm presented in Algorithm 3, our proposed

METS is established, and the pseudo codes are presented in

Algorithm 4. Specifically, METS will always start searching

from a dummy root s0. At each iteration, it always visits the

best node among the visitable nodes in memory according

to (13). When visiting the node sk, METS will find all the

children which not only fall within the predefined sphere,

but also have an index number calculated from Algorithm 3

smaller than 2K . It should be noted that if the intermediate

node has only zero elements, then its index is calculated by

setting its first element to the least element of the alphaset

X . For example, if Nt “ 4 and X “ t´1,`1u (BPSK),

then the index number for an intermediate node s2 “ r0, 0s
is calculated from s4 “ r´1, 0, 0, 0s. In this case, many

unpromising nodes can be pruned to make the search much

faster. In particular, METS will update the radius and prune

the tree whenever a valid goal node is generated. Under this

strategy, the size of search space will be reduced multiple

times during the search, and the algorithm will find the optimal

solution if a goal node is eventually visited.

IV. PROPOSED DEEP LEARNING BOOSTED

MEMORY-BOUNDED TREE SEARCH

In this section, we will first describe the proposed deep

learning based memory efficient search algorithm for signal

detection in DSM-MIMO. Then, we will discuss its computa-

tional complexity.

A. Estimating the Optimal Heuristic with Deep Learning

Generally, the best-first search based algorithm will employ

a heuristic function to guide the search process towards the

Algorithm 4 METS Algorithm for CM-DSM based MIMO

Systems

Input: Full CSI matrix H and received signal y;

Output: Estimated signal ŝ, and the number of visited nodes

Nv;

1: Initialize the search radius R “ 8;

2: Initialize the currently available memory size as L̂ “ L;

3: Push the dummy root s0 into memory, and set L̂ “ L̂´1;

4: Set the currently visiting tree level k “ 0, and set the node

to be visited as sk “ s0;

5: Set the number of currently visited nodes as Nv “ 0;

6: while k ‰ Nt do
7: Start visiting sk, and set Nv “ Nv ` 1;

8: Find all the M (M ď |S|) children sk`1 of sk which

not only fall within the sphere gpsk`1q ď R, but also have

an index number calculated from Algorithm 3 smaller than

2K ;

9: Remove sk from memory, and then append the M
children into the memory;

10: Set L̂ “ L̂´M ` 1;

11: if any child sk`1 is a goal node with k “ Nt´1, and

gpsk`1q ă R then
12: Update the radius as R “ gpsk`1q;
13: Prune the tree with the updated radius, and update

the memory accordingly;

14: end if
15: Suppose that the nodes inside memory are grouped

according to their levels, and the nodes of each group are

sorted in an ascending order of their cost gpskq. Then, we

find the best node among the first nodes of each group,

with a restriction to only consider the nodes with a tree

level not less than kminpL̂q. After finding the best node,

we denote it as sl.
16: Set the next node to be visited as sk “ sl;
17: end while
18: return ŝ “ sk, and Nv;
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most promising path. Mathematically, the remaining cost from

the node sk to another node sj is defined as

hpsj , skq “ gpsjq ´ gpskq, @sj Ě sk, (14)

where sj Ě sk denotes that sj is the descendent of sk. Then,

the optimal heuristic h˚pskq estimates the least remaining cost

from sk to all goal nodes of the sub-tree of that node, given

by

h˚pskq “ min
xNtĚsk

hpsNt , skq. (15)

Moreover, we will use the optimal heuristic to estimate the cost

of the shortest complete path via that node, which is given by

f˚pskq “ gpskq ` h˚pskq. (16)

Now it is clear that if we are able to estimate the optimal f -

cost precisely, then we can always guide the search towards

the optimal path. Unfortunately, it is very difficult to estimate

the optimal heuristic since it requires to check all the goal

nodes of the sub-tree. Therefore, we hereby propose to use

deep learning to find the best heuristic function. Once the

optimal heuristic can be estimated precisely by learning the

implicit patterns from data, we can significantly boost the

search process to improve the detection efficiency.

Specifically, we denote the DNN based heuristic function

as hpsk|θq, where θ is the set of learnable parameters of

the DNN. Then, we can compute the f -cost of a node as

fpsk|θq “ gpskq`hpsk|θq. In order to find the best heuristic,

a fully connected neural network (FCNN) with I layers is

considered in our proposed algorithm. For the i-th layer,

we denote the number of neurons as ni, and the activation

function of each layer is the rectified linear unit (ReLU) based

activation function. Thus, the output of the i-th layer can be

expressed by

pi “ maxtW ipi´1 ` bi,0u, (17)

where maxp¨, ¨q executes element-wisely, pi´1 represents the

input of layer i, and W i P R
niˆni´1 and bi P R

niˆ1 are the

learnable parameters, respectively. In particular, we denote the

input of the first layer as p0 “ rRpw̃q, Ipw̃qsT , where Rp¨q and

Ip¨q denote the real and imaginary parts, respectively, and the

complex vector w̃ is given by

w̃ “ z ´R

„
0pNt´kqˆ1

sk

j
, (18)

where the rest (Nt ´ k) elements of sk are set to zero.

By leveraging deep learning to find the optimal heuristic

function, METS algorithm can be significantly improved.

The pseudo codes of the resulting deep learning boosted

METS (DL-METS) algorithm are presented in Algorithm 5.

Generally, the DL-METS algorithm runs just like the METS

algorithm, except the ability to estimate the initial radius and

guide the search towards the shortest path. Specifically, DL-

METS will estimate the initial radius as R “ fps0|θq, by

estimating the heuristic of the dummy root node with the well-

trained DNN. Moreover, when visiting nodes, DL-METS will

check the estimated f -cost rather than g-cost, which will make

the algorithm prune many unnecessary nodes. In particular,

DL-METS employs an increase factor λ (λ ą 1) to increase

the radius as R “ λR if the search is failed. This is because

that the estimated heuristic may cause the algorithm fail to

append any child into the memory such that the algorithm

can not find the next node to be visited. When the number of

failures grows, the radius will eventually be large enough to

ensure a success search, such that the algorithm will eventually

find an appropriate estimate of the transmitted signal. In

conclusion, the major differences between DL-METS and

METS are two-folds:

‚ DL-METS can estimate a good initial radius to reduce

the size of search space before searching. As a contrast,

METS initializes the radius to infinity at the beginning,

which will significantly increases the size of search space.

‚ Instead of using the cumulative g-cost in METS, DL-

METS can guide the search process towards the shortest

path, by leveraging a deep network to estimate the

shortest remaining cost at each node. This enables DL-

METS to find the solution much faster.

B. Training Procedure

Now it is obvious that our training objective is to train

the DNN for estimating the optimal heuristic as precise as

possible. Then, a straightforward approach is to minimize

the estimation error between the estimated heuristic and the

optimal heuristic. Moreover, for every node on the best path

of each sub-tree, its f -cost should be equal to the g-cost of

the full path. It is easy to prove this fact by the definition of

the optimal heuristic. Following this, the training objective is

to minimize the mean squared estimation error,

LDpθq “ Etsk,sNtuPD
�}gpxNtq ´ fpsk|θq}2( , (19)

in which the empirical expectation is taken on the dataset,

D “ tzt,Rt, s
1
t , s

2
t , ¨ ¨ ¨ , skt , ¨ ¨ ¨ , sNt

t uTt“1, (20)

where the time index t denotes that the corresponding data

item is randomly drawn from different decision trees of

different time slots, and the total number of time slots is T .

It should be noted that the nodes sk inside the dataset D are

only taken from the optimal complete path. Based on the loss

function and data set, we can employ the mini-batch gradient

descent optimizer to train the network as

θ˚ “ argmin
θ

LDpθq. (21)

However, finding the ML estimate is still needed during the

training. For simplicity, we will take the nodes from the path

leading to the transmitted signal rather than the shortest path.

This is because that the transmitted signal is most likely to

be the shortest path, such that finding the ML estimate is

no longer needed during the training. Based on this strategy,

the DNN can be trained well very fast, while the proposed

algorithm’s performance is still good. The complete training

procedure of DL-METS is presented in Algorithm 6.

It should be emphasized that the network structure in this

paper is not limited to the FCNN, and it can be other forms

by jointly exploiting the number of antennas and the available
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Algorithm 5 DL-METS Algorithm for CM-DSM based

MIMO Systems

Input: Full CSI matrix H , received signal y and the increase

factor λ ą 1.0;

Output: Estimated signal ŝ, and the number of visited nodes

Nv;

1: Initialize the search radius R “ fps0|θq;
2: Initialize the currently available memory size as L̂ “ L;

3: Push the dummy root s0 into memory, and set L̂ “ L̂´1;

4: Set the currently visiting tree level k “ 0, and set the node

to be visited as sk “ s0;

5: Set the number of currently visited nodes as Nv “ 0;

6: while k ‰ Nt do
7: Start visiting sk, and set Nv “ Nv ` 1;

8: Find all the M (M ď |S|) children sk`1 of sk

which not only fall within the sphere fpsk`1|θq ď R, but

also have an index number calculated from Algorithm 3

smaller than 2K ;

9: Remove sk from memory, and then append the M
children into the memory;

10: Set L̂ “ L̂´M ` 1;

11: if any child sk`1 is a goal node with k “ Nt´1, and

fpsk`1|θq ă R then
12: Update the radius as R “ fpsk`1|θq;
13: Prune the tree with the updated radius, and update

the memory accordingly;

14: end if
15: Suppose that the nodes inside memory are grouped

according to their levels, and the nodes of each group are

sorted in an ascending order of their cost gpskq. Then, we

find the best node among the first nodes of each group,

with a restriction to only consider the nodes with a tree

level not less than kminpL̂q. After finding the best node,

we denote it as sl.
16: if sl is found then
17: Set the next node to be visited as sk “ sl;
18: else
19: Initialize the search radius R “ λR;

20: Initialize the currently available memory size as

L̂ “ L;

21: Push the dummy root s0 into memory, and set L̂ “
L̂´ 1;

22: Set the node to be visited as sk “ s0;

23: end if
24: end while
25: return ŝ “ sk and Nv;

resources. In this paper, FCNN is adequate as the heuristic

network implementation, since it is simple and hardware-

friendly. In general, FCNN is suitable for low-dimensional

tasks, since the MIMO signal detection problem typically

involves much smaller dimensions compared to other tasks

like image recognition. Besides, this paper is mainly concerned

with verifying the effectiveness of the deep heuristic network,

and the structure of the network considered in this paper

is merely intended as a guide. In practice, it is important

to employ convolutional neural networks (CNNs) to reduce

Algorithm 6 Training Procedure for DL-METS

1: // Randomly generate symbols for the training data set;

2: Set the total number of time slots as T ;

3: Initialize the data set Dall “ H;

4: for t “ 1, 2, ¨ ¨ ¨ , T do
5: Randomly generate zt, Rt and sNt

t with random

signal-to-noise ratio (SNR);

6: Dall “ Dall Y tzt,Rt, s
Nt
t u;

7: // Generate samples by enumerating the nodes on the

transmitted signal;

8: for k “ 0, 1, ¨ ¨ ¨ , Nt ´ 1 do
9: Select the node skt on the k-th level of the path st;

10: Dall “ Dall Y tskt u;
11: end for
12: end for
13: // Training the model with the generated samples;

14: Initialize the network parameters θ to random values;

15: loop
16: Randomly pick a subset of samples D from the whole

data set Dall;

17: According to (19), we then calculate the average loss

on the data set D;

18: Update the network’s parameters θ with stochastic

gradient decent;

19: end loop

the computational complexity for very large-scale systems.

Moreover, recursive neural networks (RNNs) can be helpful

for temporally correlated channels. Therefore, selecting an

appropriate heuristic network for a given system should be

based on its particular requirements and resource limitations.

C. Computational Complexity

Essentially, there are two factors that play a dominant role

together in measuring the computational complexity of DL-

METS algorithm: the number of visited nodes and the cost of

visiting nodes. Mathematically, the cost of visiting node sk is

given by

O
˜
k `

Iÿ
i“1

nini´1 ` ni

¸
, (22)

which is the corresponding computational complexity when

computing the f -cost. This includes the costs of computing the

increment bpskq as well as the heuristic hpsk|θq. In particular,

when the optimal heuristic is estimated precisely by the heuris-

tic network, i.e., hpsk|θq “ h˚pskq, the search algorithm will

visit the least number of nodes. In this case, only the Nt nodes

that lie on the optimal path will eventually be visited. Thus,

we have the lower bound on the computational complexity of

the proposed DL-METS as

O
˜
N2

t `Nt

˜
Iÿ

i“1

nini´1 ` ni

¸¸
. (23)

On the other hand, if imperfect estimate of the optimal heuris-

tic occurs, there will be no guarantee on the optimality. In other

words, it may result in exponential complexity growing with
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the problem scale when meeting the worst case. However, the

computational complexity of the proposed DL-METS can still

be significantly improved if we provide high quality estimates

of the optimal heuristic. As we will show in the following

simulation results, the BER performance and search speed

can be improved significantly with low estimation errors. In

particular, the proposed DL-METS can achieve almost the

optimal BER performance, while it still visits nearly the least

number of nodes in low SNR regimes. More specifically, when

the number of antennas is greater than 24, we achieve a four-

fold complexity reduction compared with PS-SD. From the

superiority of the proposed method, we can obtain a useful

insight on the system design that the proposed deep model-

driven learning can serve as a promising detection approach for

future low-complexity and high-performance communication

systems.

V. SIMULATIONS RESULTS AND DISCUSSIONS

In this section, simulation results will be presented to

validate the effectiveness of the proposed METS and DL-

METS algorithms.

A. Environment Setup

In general, the simulations are performed under several

different CM-DSM based MIMO systems, where we employ

QPSK as the modulation scheme. To show the robustness of

the proposed algorithm, we consider the practical scenarios

with spatially correlated Rayleigh channels, where the Kro-

necker model [34] is employed. Formally, the channel model

is given by

H “ R
1
2
r H̃R

1
2
t , (24)

where H̃ represents an independent and identically distributed

(i.i.d.) Gaussian matrix, Rr represents the correlation matrix

at the receiver, while Rt represents the correlation matrix at

the transmitter. In our simulations, the channel correlation only

occurs at the transmitter. Thus, Rr and Rt are given by

Rr “ I, Rt “

¨̊
˚̋̊1 τ ¨ ¨ ¨ τ
τ 1 ¨ ¨ ¨ τ
...

...
. . .

...

τ ¨ ¨ ¨ τ 1

‹̨‹‹‚, (25)

where τ P r0, 1s denotes the correlation coefficient. In par-

ticular, the channel is uncorrelated if τ “ 0. Otherwise,

the channel is somehow correlated, and the correlation level

increases with a larger τ .

For the implementation of DNN, the same DNN structure

is used for all the simulations. Specifically, a FCNN with

4 hidden layers is employed, and the sizes of these layers

are 128, 64, 32, and 16, respectively. Moreover, the Adam

optimizer with a learning rate of 10´6 is employed for the

stochastic gradient descending during training. Each mini-

batch contains 128 time slots, and the training set has a total

batch size of 10 million time slots. In further, we randomly

collect training samples with a SNR range from 0 dB to 30
dB.

B. Competing Algorithms

To validate the effectiveness of the proposed METS and DL-

METS algorithms, the proposed algorithms will be contrasted

with several competitive rivals. However, due to the lack of

signal detection algorithms in DSM, we will mainly compare

our proposed algorithms with the optimal MLD for the BER

performance comparison, since the optimal MLD performance

can be treated as the lower-bound of all detection algorithms.

On the other hand, we will show the efficiency of the proposed

algorithms based on the number of visited nodes during

searching. In summary, we use the following abbreviations

in the simulation results,

1) OWMMSE-CML: The ordered weight MMSE based

conditional maximum likelihood search algorithm in-

troduced in [29]. This algorithm will firstly enumerate

all possible antenna combinations, and then compute

the MMSE estimate of each antenna combination. After

that, it finds the best MMSE estimate by maximum

likelihood search.

2) PS-SD: Partitioning-and-ordering aid sphere decoding

introduced in [30]. This algorithm can achieve the opti-

mal BER performance as ML.

3) METS(L): The memory-bounded tree search algorithm

introduced in this paper, where L denotes the number

of available memory size.

4) DL-METS-Basic(L, λ): The deep learning boosted ver-

sion of METS introduced in this paper, where L rep-

resents the number of available memory size, and λ is

the increase factor. The notation “Basic” indicates that

the algorithm will only estimate the initial radius, and it

will still use the g-cost to guide the search.

5) DL-METS(L, λ): This is the full-power version of DL-

METS. It will not only estimate the initial radius, but

also use the f -cost to guide the search.

6) ML: the conventional maximum likelihood detection

algorithm in (7), whose BER performance can serve as

the lower-bound of all algorithms.

The main purpose to compare DL-METS-Basic and DL-

METS is to show the effect of the following two major

differences between DL-METS and METS. Specifically, by

only estimating the initial radius, DL-METS-Basic is able

to run much faster than METS, while it still guarantees to

find the optimal ML estimate. As a contrast, DL-METS will

not only estimate the initial radius, but also estimate the f -

cost to boost the search process. This enables DL-METS to

find the solution much faster than DL-METS-Basic. However,

it becomes possible for DL-METS to miss the optimal ML

estimate due to the estimation error. In other words, the

optimality is not guaranteed in DL-METS, as it depends on

the accuracy of the estimated heuristic.

C. Results and Discussions

Fig. 3 depicts the average number of active antennas versus

the number of antennas for the proposed CM-DSM based

MIMO system. In this experiment, we compare the proposed

scheme with JM-VSM, which is a joint mapping method

introduced in [10]. According to this figure, we can observe
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Fig. 3. Average number of active antennas versus the number of antennas
for CM-DSM based MIMO systems with Nr “ Nt “ NRF and QPSK
modulation.
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Fig. 4. Average traning loss for the proposed DL-METS in the CM-DSM
based MIMO systems with NRF “ 8, τ “ 0 and QPSK modulation.

that the proposed CM-DSM outperforms JM-VSM as it always

activates fewer transmit antennas at different problem scales.

Specifically, when Nt “ Nr “ NRF “ 12, the proposed CM-

DSM will be expected to activate 8.6 transmit antennas while

this number is 9.4 for JM-VSM. By activating fewer transmit

antennas on average, the proposed CM-DSM scheme can help

reduce the operating cost in practice.

Fig. 4 shows the average training loss of the proposed

DL-METS in the proposed CM-DSM system with QPSK

modulation, where NRF “ 8 and τ “ 0. We can find

from this figure that there are several inflections in the deep

model training of DL-METS due to the usage of stochastic

gradient descending, which can help avoid local optimums in

the deep search. After some numbers of searching epoches

along with several inflections, our proposed training strategy

can eventually converge to a low level very fast. This indicates

the effectiveness of the proposed DL-METS strategy.

Fig. 5 demonstrates the BER versus SNR for the afore-

mentioned algorithms in the proposed CM-DSM based MIMO

system with QPSK modulation, where the wireless channel is
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Fig. 5. BER versus SNR for CM-DSM based MIMO systems with Nr “
Nt “ 12, NRF “ 8, τ “ 0 and QPSK modulation.
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Fig. 6. Number of visited nodes versus SNR for CM-DSM based MIMO
systems with Nr “ Nt “ 12, NRF “ 8, τ “ 0 and QPSK modulation.

uncorrelated, and the numbers of transmit antennas, receive

antennas, and RF chains are set to 12, 12, and 8, respectively.

From Fig. 5, we can find that the BER performances of

METS and DL-METS-Basic both achieve the exact optimal

ML performance, which is because that these two algorithms

both guarantee to find the shortest path on the decision tree.

As a contrast, the BER performance of OWMMSE-CML is

far from the optimal ML performance. In addition, the BER

performance of DL-METS is very close to the optimal ML

performance. Specifically, when the SNR is 15 dB, the DL-

METS algorithm only produce 132% error with respect to the

optimal ML detection. Moreover, when the SNR is 15 dB,

DL-METS can reduce the error of OWMMSE-CWL to about

4%. These results imply that the estimated heuristic is very

close to the optimal heuristic such that the search is always

towards to the shortest path.

In order to show the efficiency of the proposed algorithms,

we further present the complexity comparison results in Fig. 6,

where the results are taken under the same setting of Fig. 5.

Note that we measure the complexity of the aforementioned
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Fig. 7. BER versus correlation level for CM-DSM based MIMO systems
with QPSK modulation, where Nr “ Nt “ 12, NRF “ 8, and SNR“ 15
dB.

algorithms based on the number of visited nodes, as the

computational complexity of search algorithms is mainly

determined by the number of visited nodes. In particular,

the total number of signal candidates in this system is 225,

which can be treated as the complexity of the brute-force ML

detection. From Fig. 6, we can find that the number of visited

nodes of the proposed METS and DL-METS algorithms both

converge to a low value with the increasing SNR. In addition,

the complexity of OWMMSE-CL almost remains unchanged

for different SNRs since it searches a fixed number of can-

didates regardless of the SNR. Obviously, by comparing to

the brute-force enumeration and OWMMSE-CWL, significant

complexity reduction is achieved by both METS and DL-

METS. Specifically, within a wide range of SNR, the number

of nodes visited by both DL-METS-Basic and DL-METS

maintains a very low number which is very close to the lower

bound of Nt “ 12. Moreover, we can find that DL-METS-

Basic visits much fewer nodes than METS, which indicates

that the estimated initial radius is accurate such that the initial

search space is significantly reduced. In further, DL-METS

outperforms DL-METS-Basic in the low SNR region, which

reveals that the estimated heuristic is accurate, and it can

significantly boost the search process.

To further show the robustness of the proposed algorithm,

simulation results under spatially correlated channels are pre-

sented in Fig. 7, where Nr “ Nt “ 12, NRF “ 8, and SNR is

set to 15 dB. In this figure, the spatial correlation coefficient

τ varies from 0 to 0.9. From Fig. 7, we can find that even

when the channel is somehow correlated in the spatial domain,

METS and DL-METS-Basic both guarantee to find the shortest

path on the decision tree, as their BER performances are the

same as the optimal ML performance. In addition, in the high

correlated channel, DL-METS still outperforms OWMMSE-

CWL, and achieves almost the optimal ML detection perfor-

mance, which shows that the proposed algorithms are robust

and can be applied in practical scenarios.

In order to further verify the effectiveness of the proposed

algorithms, we provide the simulation results versus the num-
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Fig. 8. BER versus the number of antennas for CM-DSM based MIMO
systems with QPSK modulation, where Nr “ Nt, NRF “ 8, τ “ 0 and
SNR“ 10 dB.
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Fig. 9. Number of visited nodes versus the number of antennas for CM-DSM
based MIMO systems with QPSK modulation, where Nr “ Nt, NRF “ 8,
τ “ 0 and SNR“ 15 dB.

ber of antennas in Fig. 8 and Fig. 9, where Nr “ Nt,

NRF “ 8, and τ “ 0. In addition, the number of transmit

antennas Nt ranges from 12 to 24, and SNR is specified as

10 dB and 15 dB in Fig. 8 and Fig. 9, respectively. We can

find from Fig. 8 that the proposed METS and DL-METS still

outperform OWMMSE-CML at different number of antennas.

Specifically, when SNR “ 10 dB and Nt “ 24, DL-METS

leads to a significant reduction in the detection errors of

OWMMSE-CML to about 1.4%. In addition, it can also be

concluded from Fig. 8 that DL-METS maintains the near-

optimal BER performance, since METS guarantees to find the

shortest path and DL-METS achieves nearly the same BER

performance as METS.

Moreover, by combining the results in both Figs. 8 and 9,

we can find that the proposed METS and DL-METS not only

achieve nearly the optimal BER performance, but also achieve

much lower computational complexity with comparison to

OWMMSE-CML. This is because that OWMMSE-CML enu-
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merates all possible antenna combinations, while the proposed

algorithms can efficiently prune many unnecessary nodes. In

further, the complexity of the proposed DL-METS algorithm

grows slowly with the increasing number of antennas, while

the other competing algorithms can quickly become compu-

tationally intractable. This is because that the proposed DL-

METS can accurately estimate the optimal heuristic function,

which results in a very low complexity even for large-scale

MIMO systems. These results provide further evidence of the

effectiveness of the proposed DL-METS algorithm.

VI. CONCLUSIONS

In this paper, we investigated the signal detection problem

in DSM enabled MIMO systems, where we firstly addressed

the detection ambiguity problem in DSM by proposing a

novel CM-DSM scheme based on the combinatorial nature

of the signal structure. The proposed CM-DSM can map the

information bits with fixed length into the complete set of

antenna combinations and symbols. Moreover, it can reduce

the number of active antennas by incorporating the priority of

AACs into the mapping table. Based on the proposed CM-

DSM scheme, we then constructed a decision tree for the

optimal signal detection in variable active antenna systems.

To find the optimal ML estimate efficiently, the METS algo-

rithm was further proposed to prune the tree based on the

combinatorial nature of CM-DSM. Furthermore, we improved

the METS with a DNN boosted heuristic function to reduce

the computational complexity, and thus the DL-METS was

proposed to find the solution more efficiently. The proposed

DL-METS can not only efficiently estimate the initial radius

of search space, but also guide the search towards the most

promising path by estimating the shortest remaining cost of

each node. This strategy enables DL-METS to find the nearly

optimal path, and meanwhile significantly reduces the number

of visited nodes.

APPENDIX A

EXAMPLES FOR THE PROPOSED COMBINATORIAL

MAPPING SCHEME

In this part, we provide examples for mapping bits and

demapping signal vectors in the proposed CM-DSM system.

For reference, the resulting mapping table of the proposed

CM-DSM system with QPSK modulation is illustrated in

Table I, where Nt “ NRF “ 3. In this table, the zero

elements in AACs and transmitted signal vectors indicate that

the corresponding transmit antenna is inactivated. It should be

noted that the following examples will be presented based on

this system as well.

A. Mapping Bits

Suppose that the input bits are b “ “
1 0 0 1 1 0

‰
,

which corresponds to the decimal number of n “ 38. At the

beginning, we need to find the number of active antennas. This

is done by finding the least Na satisfying
řNa

i“1

`
Nt

i

˘|X |i ą 38.

In this case, we will have Na “ 2, which means that we should

activate 2 antennas for transmission. With Na “ 2, we know

TABLE I
3D-MAPPING TABLE FOR CM-DSM BASED MIMO SYSTEMS WITH

QPSK MODULATION, WHERE Nt “ NRF “ 3.

Index Bits AAC Transmitted Signal Vector
0 [0 0 0 0 0 0] [1 0 0] r´1 ´ 1j,`0 ` 0j,`0 ` 0js
1 [0 0 0 0 0 1] [1 0 0] r´1 ` 1j,`0 ` 0j,`0 ` 0js
2 [0 0 0 0 1 0] [1 0 0] r`1 ´ 1j,`0 ` 0j,`0 ` 0js
3 [0 0 0 0 1 1] [1 0 0] r`1 ` 1j,`0 ` 0j,`0 ` 0js
4 [0 0 0 1 0 0] [0 1 0] r`0 ` 0j,´1 ´ 1j,`0 ` 0js
5 [0 0 0 1 0 1] [0 1 0] r`0 ` 0j,´1 ` 1j,`0 ` 0js
6 [0 0 0 1 1 0] [0 1 0] r`0 ` 0j,`1 ´ 1j,`0 ` 0js
7 [0 0 0 1 1 1] [0 1 0] r`0 ` 0j,`1 ` 1j,`0 ` 0js
8 [0 0 1 0 0 0] [0 0 1] r`0 ` 0j,`0 ` 0j,´1 ´ 1js
9 [0 0 1 0 0 1] [0 0 1] r`0 ` 0j,`0 ` 0j,´1 ` 1js
10 [0 0 1 0 1 0] [0 0 1] r`0 ` 0j,`0 ` 0j,`1 ´ 1js
11 [0 0 1 0 1 1] [0 0 1] r`0 ` 0j,`0 ` 0j,`1 ` 1js
12 [0 0 1 1 0 0] [1 1 0] r´1 ´ 1j,´1 ´ 1j,`0 ` 0js
13 [0 0 1 1 0 1] [1 1 0] r´1 ´ 1j,´1 ` 1j,`0 ` 0js
14 [0 0 1 1 1 0] [1 1 0] r´1 ´ 1j,`1 ´ 1j,`0 ` 0js
15 [0 0 1 1 1 1] [1 1 0] r´1 ´ 1j,`1 ` 1j,`0 ` 0js
16 [0 1 0 0 0 0] [1 1 0] r´1 ` 1j,´1 ´ 1j,`0 ` 0js
17 [0 1 0 0 0 1] [1 1 0] r´1 ` 1j,´1 ` 1j,`0 ` 0js
18 [0 1 0 0 1 0] [1 1 0] r´1 ` 1j,`1 ´ 1j,`0 ` 0js
19 [0 1 0 0 1 1] [1 1 0] r´1 ` 1j,`1 ` 1j,`0 ` 0js
20 [0 1 0 1 0 0] [1 1 0] r`1 ´ 1j,´1 ´ 1j,`0 ` 0js
21 [0 1 0 1 0 1] [1 1 0] r`1 ´ 1j,´1 ` 1j,`0 ` 0js
22 [0 1 0 1 1 0] [1 1 0] r`1 ´ 1j,`1 ´ 1j,`0 ` 0js
23 [0 1 0 1 1 1] [1 1 0] r`1 ´ 1j,`1 ` 1j,`0 ` 0js
24 [0 1 1 0 0 0] [1 1 0] r`1 ` 1j,´1 ´ 1j,`0 ` 0js
25 [0 1 1 0 0 1] [1 1 0] r`1 ` 1j,´1 ` 1j,`0 ` 0js
26 [0 1 1 0 1 0] [1 1 0] r`1 ` 1j,`1 ´ 1j,`0 ` 0js
27 [0 1 1 0 1 1] [1 1 0] r`1 ` 1j,`1 ` 1j,`0 ` 0js
28 [0 1 1 1 0 0] [1 0 1] r´1 ´ 1j,`0 ` 0j,´1 ´ 1js
29 [0 1 1 1 0 1] [1 0 1] r´1 ´ 1j,`0 ` 0j,´1 ` 1js
30 [0 1 1 1 1 0] [1 0 1] r´1 ´ 1j,`0 ` 0j,`1 ´ 1js
31 [0 1 1 1 1 1] [1 0 1] r´1 ´ 1j,`0 ` 0j,`1 ` 1js
32 [1 0 0 0 0 0] [1 0 1] r´1 ` 1j,`0 ` 0j,´1 ´ 1js
33 [1 0 0 0 0 1] [1 0 1] r´1 ` 1j,`0 ` 0j,´1 ` 1js
34 [1 0 0 0 1 0] [1 0 1] r´1 ` 1j,`0 ` 0j,`1 ´ 1js
35 [1 0 0 0 1 1] [1 0 1] r´1 ` 1j,`0 ` 0j,`1 ` 1js
36 [1 0 0 1 0 0] [1 0 1] r`1 ´ 1j,`0 ` 0j,´1 ´ 1js
37 [1 0 0 1 0 1] [1 0 1] r`1 ´ 1j,`0 ` 0j,´1 ` 1js
38 [1 0 0 1 1 0] [1 0 1] r`1 ´ 1j,`0 ` 0j,`1 ´ 1js
39 [1 0 0 1 1 1] [1 0 1] r`1 ´ 1j,`0 ` 0j,`1 ` 1js
40 [1 0 1 0 0 0] [1 0 1] r`1 ` 1j,`0 ` 0j,´1 ´ 1js
41 [1 0 1 0 0 1] [1 0 1] r`1 ` 1j,`0 ` 0j,´1 ` 1js
42 [1 0 1 0 1 0] [1 0 1] r`1 ` 1j,`0 ` 0j,`1 ´ 1js
43 [1 0 1 0 1 1] [1 0 1] r`1 ` 1j,`0 ` 0j,`1 ` 1js
44 [1 0 1 1 0 0] [0 1 1] r`0 ` 0j,´1 ´ 1j,´1 ´ 1js
45 [1 0 1 1 0 1] [0 1 1] r`0 ` 0j,´1 ´ 1j,´1 ` 1js
46 [1 0 1 1 1 0] [0 1 1] r`0 ` 0j,´1 ´ 1j,`1 ´ 1js
47 [1 0 1 1 1 1] [0 1 1] r`0 ` 0j,´1 ´ 1j,`1 ` 1js
48 [1 1 0 0 0 0] [0 1 1] r`0 ` 0j,´1 ` 1j,´1 ´ 1js
49 [1 1 0 0 0 1] [0 1 1] r`0 ` 0j,´1 ` 1j,´1 ` 1js
50 [1 1 0 0 1 0] [0 1 1] r`0 ` 0j,´1 ` 1j,`1 ´ 1js
51 [1 1 0 0 1 1] [0 1 1] r`0 ` 0j,´1 ` 1j,`1 ` 1js
52 [1 1 0 1 0 0] [0 1 1] r`0 ` 0j,`1 ´ 1j,´1 ´ 1js
53 [1 1 0 1 0 1] [0 1 1] r`0 ` 0j,`1 ´ 1j,´1 ` 1js
54 [1 1 0 1 1 0] [0 1 1] r`0 ` 0j,`1 ´ 1j,`1 ´ 1js
55 [1 1 0 1 1 1] [0 1 1] r`0 ` 0j,`1 ´ 1j,`1 ` 1js
56 [1 1 1 0 0 0] [0 1 1] r`0 ` 0j,`1 ` 1j,´1 ´ 1js
57 [1 1 1 0 0 1] [0 1 1] r`0 ` 0j,`1 ` 1j,´1 ` 1js
58 [1 1 1 0 1 0] [0 1 1] r`0 ` 0j,`1 ` 1j,`1 ´ 1js
59 [1 1 1 0 1 1] [0 1 1] r`0 ` 0j,`1 ` 1j,`1 ` 1js
60 [1 1 1 1 0 0] [1 1 1] r´1 ´ 1j,´1 ´ 1j,´1 ´ 1js
61 [1 1 1 1 0 1] [1 1 1] r´1 ´ 1j,´1 ´ 1j,´1 ` 1js
62 [1 1 1 1 1 0] [1 1 1] r´1 ´ 1j,´1 ´ 1j,`1 ´ 1js
63 [1 1 1 1 1 1] [1 1 1] r´1 ´ 1j,´1 ´ 1j,`1 ` 1js

that the input bits should be the r “ 38´řNa

i“1

`
Nt

i

˘|X |i “ 26-

th candidate from the set of all the possible candidates with

Na “ 2. Since each AAC will cover at most |X |Na “ 16
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symbol combinations, we know that the combinatorial index

of the corresponding AAC should be k “
Y

r
|X |Na

]
“ 1.

Based on this index, we can get the AAC as
“
1 0 1

‰
by decoding the combinatorial index k with the decoding

algorithm in Algorithm 1. After that, we need to determine

the symbols to be transmitted with the active antennas. Since

q “ r ´ k|X |Na “ 10, we know that the corresponding

symbol combination should be the 10-th combination with

the same AAC of
“
1 0 1

‰
. Base on this, we convert q

into a binary sequence of b̂ “ “
1 0 1 0

‰
. By mapping

b̂ with conventional QPSK constellation, we have the symbol

vector as ŝ “ “
1´ 1j 1´ 1j

‰
. Finally, the complete signal

vector s “ `
1´ 1j 0` 0j 1´ 1j

˘
can be generated by

combining the QPSK symbols with the selected AAC.

B. Demapping Signal Vector

In principle, the demapping process is just the rever-

sion of mapping bits. Specifically, for the received signal

s “ `
1´ 1j 0` 0j 1´ 1j

˘
, we have Na “ 2, and

the corresponding AAC is
“
1 0 1

‰
. Then, we can get

the combinatorial index of this AAC by applying the en-

coding algorithm in Algorithm 1, which should be k “ 1.

Besides, we extract the QPSK symbols from the received

signal as ŝ “ “
1´ 1j 1´ 1j

‰
, and demap it as the bits of

b̂ “ “
1 0 1 0

‰
. After that, we get the decimal number

of b̂ as q “ 10, and we have r “ k|X |Na ` q “ 26.

Hence, the decimal number for the resulting bits is given by

n “ r ` řNa´1
i“1

`
Nt

i

˘|X |i “ 38, which corresponds to the

binary sequence of b “ “
1 0 0 1 1 0

‰
.
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