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Scoring Aided Federated Learning on
Long-tailed Data for Wireless IoMT based
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Abstract— In this paper, we propose a novel federated
learning (FL) framework for wireless Internet of Medical
Things (IoMT) based healthcare systems, where multiple
mobile clients and one edge server (ES) collaboratively
train a shared model on long-tail data through wireless
channels. However, the presence of long-tailed data in this
system may introduce a biased global model which fails
to handle the tail classes. Additionally, the occurrence of
severe fading in wireless channels may prevent mobile
clients from successfully uploading local models to the
ES, thereby excluding them from participating in the model
aggregation. These situations adversely affect the perfor-
mance of FL. To overcome these challenges, we propose
a novel scoring aided FL framework that uses a scoring-
based sampling strategy to select mobile clients with more
tailed data and better transmission conditions to upload
their local models. Specifically, we leverage the logits to ex-
plore the data distribution among local clients and propose
a logits based scoring client selection method to alleviate
the impact of long-tailed data. Moreover, we address the im-
pact of severe fading by incorporating the channel state in-
formation (CSI) and data rate of clients into the logits based
scoring and proposing a novel logits and model upload
rate based client selection method. Experimental results
demonstrate the effectiveness of our proposed framework.
In particular, compared to the conventional FedAvg, the
proposed framework can achieve accuracy gains ranging
from 4.44% to 28.36% on the CIFAR-10-LT dataset with an
imbalance factor (IF) of 50.

Index Terms— FL, long-tailed data, IoMT, healthcare sys-
tem, wireless transmission, severe fading.

I. INTRODUCTION

In recent years, artificial intelligence (AI) has been widely
applied in many Internet of Things (IoT) networks, where
some intelligent algorithms should be employed to train a deep
model to help make decisions for the system’s operation. A
typical application of IoT networks is the Internet of Medical
Things (IoMT) based healthcare systems, where deep learning
models are trained for automatic diagnosis [1], especially
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Fig. 1. A typical example of the long-tail distributed dataset.

during COVID-19. In the IoMT networks, the medical clients
have to transmit a large amount of data to the server for
training a global model. As most of the medical content
is private, it should be strictly restricted to access and use
these data directly. In this case, machine learning may not
reach its full potential and fail to learn a high-performance
model. To tackle this issue, federated learning (FL), a new
distributed learning paradigm, has been proposed, where the
clients and server can collaboratively train a shared model
through exchanging local models without sharing the raw data,
which effectively avoids privacy disclosure [2]–[4]. However,
although FL has advantages in privacy protection, it still has
some challenges, detailed as follows.

One critical challenge in the FL training is the inho-
mogeneous data distribution of clients, which affects the
FL training performance significantly. In practical scenarios,
the occurrence of long-tailed data distribution is commonly
observed. For instance, the home video industry’s revenues
across products and the sales of “infinite-inventory” retailers
like Amazon follow long-tail distributions [5], [6]. As shown
in Fig. 1, in the long-tailed dataset, the number of data samples
on the head class is larger than that on the tail class. Although
the tail class contains fewer number of data, it has a significant
impact on the system training performance and test accuracy.
Failure to exploit such extremely imbalanced long-tailed data
characteristic will cause the training model perform poorly on
the tail class [7]–[12]. The impact of long-tailed data on the
deep learning models was initially studied in [13], where an
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unbiased extension was proposed to the softmax function and
meta learning was combined to estimate the optimal sampling
rate of each class on the long-tailed dataset to improve the
class re-balancing. In addition, the authors in [14] used the
mean classification score to evaluate the training performance
on each class, and obtained a performance improvement on
the long-tailed data through adjusting the decision boundary
and oversampling. Due to privacy protection, the user datas
in FL are often invisible, which makes the aforementioned
methods inapplicable. So far, the impact of the long-tailed data
on FL has been seldom studied. In this direction, the work in
[12] gave a comprehensive overview on the federated long-
tailed learning, and discussed the experimental setting for the
long-tailed data on FL. In addition, the authors in [15] used
the knowledge distillation method and introduced extra neural
networks to balance the knowledge in models and logits to
improve the performance of FL on the long-tailed data, at the
cost of increased resource consumption.

Besides the above challenge from the long-tailed data,
wireless transmission is another challenge on the FL training
in the IoMT based healthcare systems. Specifically, the clients
and server in IoMT communicate with each other through
wireless transmission which may experience severe fading,
significantly affecting the transmission of the local models.
When the clients fail to upload the local models within a
latency threshold due to severe fading, they cannot participate
into the FL aggregation, causing a poor FL training perfor-
mance. To solve this problem, researchers have investigated the
impact of limited communication resources of clients on the
FL training, and proposed several resource allocation strategies
to accelerate the model upload [16], [17]. In addition, relaying
can be used to enhance the transmission quality of local
models, which is helpful for the FL training performance
[18]. Although the aforementioned works have investigated
the impact of severe fading on FL performance, there has been
little study on the impact of long-tailed data on FL in practical
severe fadings, which motivates the work in this paper.

In this paper, by taking into account the joint impact of long-
tailed data and severe fading on the FL training, we propose
a novel FL framework based on scoring, where the ES selects
the clients with more tailed data and better transmission con-
ditions to upload their local models. Specifically, the proposed
method employs the output logits and transmission rate to
evaluate the scores for clients in the client sampling process.
Experiments are performed to show the advantage of our
proposed methods in improving the FL training performance
with long-tailed data. The contributions of this paper are
summarized as follows:

• We propose a novel FL framework for IoMT based
healthcare systems, where the joint impact of long-tailed
data and severe fading is taken into account.

• We devise a novel scoring method based on the output
logits, which can help select the clients with more tailed
data samples to participate in the aggregation to alleviate
the impact of long-tailed data in the FL training, and
meanwhile protect the data privacy.

• In the FL, by taking the upload latency into account
in practical severe fading, we further jointly exploit the
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Fig. 2. System model of the federated learning network with M clients.

output logits and transmission rate to evaluate the scores
for clients.

• We conduct experiments on the long-tailed dataset under
a given latency threshold. The experiment results show
the advantage of our proposed methods in addressing the
impact of long-tailed data and severe fading on FL.

II. SYSTEM MODEL

Fig. 2 shows a federated learning network deployed in a
wireless network, where an edge server (ES) and M mobile
clients denoted by U = {Um|1 ≤ m ≤ M} cooperatively
train a shared model on a long-tailed dataset D, and the clients
upload local models to ES through wireless fading channels
hm. Specifically, the global dataset D with C classes denoted
by C = {c|1 ≤ c ≤ C} follows a long-tail distribution, and
we use nc to denote the number of data samples on class c
and sort the class index c in descending order of the number
of data samples, i.e., we have nc > nc′ , if c < c′. The long-
tailed dataset D is non-independent and identically distributed
(non-IID) among M clients, where D =

⋃M
m=1 Dm and Dm

denotes the local dataset of client Um.
In the considered federated learning network, at communi-

cation round r, ES firstly broadcasts the global model wr−1
g to

all clients through downlink channels. Then, from the global
model wr−1

g , client Um performs local training on Dm and
updates its local model as

wr
m = wr−1

g − η∇Floss(wr−1
g ;Dm), (1)

where wr
m denotes the updated model parameters of client

Um, η and Floss are the learning rate and loss function of
local training, and ∇ represents the gradient operation.

After the local update, clients need to upload their models to
ES. However, due to limited transmission resources in practice,
only K clients can be selected from U to upload their models.
The transmission rate of the selected client Um is [19]–[21]

Rm = W log2

(
1 +

P |hm|2

σ2

)
, (2)

where W is the wireless bandwidth, P is the transmit power,
|hm|2 is the channel gain of the wireless channel from client
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Um to ES, and σ2 is the variance of additive white Gaussian
noise (AWGN). Note that to obtain the value of Rm, the client
Um sends some pilot signals to the server before uploading
models. Then, the server estimates the channel parameters hm

based on the received signal and pilot signals and calculates
the value of Rm by the Shannon formula. The details of this
procedure of estimating channels and data rate Rm can be
found in the literature, such as the works in [22]–[25].

From (2), the transmission latency of client Um uploading
its local model is

Tm =
ζ

Rm
, (3)

where ζ is the size of the local model parameter. Note that the
randomness of hm directly impacts the transmission rate Rm,
leading to the variation in Tm, and hence affects whether the
clients can upload models to ES in time and participate in the
aggregation or not.

For synchronized federated learning, a latency threshold
should be set for model upload. Specifically, the latency
threshold γt is set for the transmission latency of clients.
Therefore, ES aggregates the received local models and up-
dates the global model as

wr
g =

1∑K
i=1 I(Tm ≤ γt)

K∑
i=1

wr
i · I(Tm ≤ γt), (4)

where I(·) is a indicating function which returns 1 if the
condition holds or 0 otherwise. Note that the indicating
function returns 1 when the transmission latency Tm of the
client Um does not exceed the latency threshold γt. Therefore,
the aggregation function in (4) shows that, under the impact
of severe fading, only the clients who upload local models to
ES on time can successfully participate into the aggregation.

Note that there are two critical challenges in the system
design of the considered federated learning networks. One
critical challenge is the data imbalance caused by long-tail
and non-IID data distribution among mobile clients, which will
lead to a biased global model and low prediction accuracy on
the tail classes. The other challenge is the impact of severe
fading, which may cause the failure of model upload and
accordingly deteriorate the FL training performance. More
importantly, these two challenges have a joint impact on the
FL training, where the failure upload caused by the severe
fading may increase the bias caused by the long-tailed data.
Thus, for the purpose of improving prediction accuracy for all
classes, we will propose a scoring aided FL framework and
corresponding scoring methods in the next section to address
these two challenges.

III. PROPOSED METHOD

In this section, we propose a scoring aided FL framework
and corresponding scoring method to address the joint impact
of long-tailed and severe fading. Specifically, to alleviate the
deteriorated training performance caused by long-tailed data,
we introduce a logits based scoring method, which can use
the model output logits to score mobile clients, yielding a
higher score and sampling importance to the clients with

more tailed data. On this basis, we further jointly consider
the impact of long-tailed data and severe fading on the FL
training performance and design a scoring method by taking
into account the channel state information (CSI) and the logits.

A. Scoring aided FL framework
Fig. 3 shows the proposed scoring aided framework, where

all M clients receive the broadcast model from ES and
conduct the local model training on their local datasets at
each communication round. Subsequently, ES selects K clients
among M clients to upload the updated models. To tackle
the joint impact of long-tailed data and severe fading, we
employ a scoring based sampling approach to select clients for
global aggregation in order to enhance the performance of FL.
This approach involves scoring all clients based on their data
distribution and transmission rate, and then sampling clients
according to their scores. In the following, we will detail the
procedure of the proposed scoring method.

B. Logits based scoring method
To deal with the impact of long-tailed data, re-sampling can

be used to balance and calibrate the imbalanced distribution
by over-sampling the tail classes and under-sampling the head
classes in centralized machine learning [26]–[28]. However,
due to the privacy concern in FL, ES can not collect the raw
data or data distribution of mobile clients, making it difficult
to perform re-sampling on the training data. Thus, we turn to
use a logits based scoring method to sample mobile clients
instead of re-sampling the training data, where the logits are
the model’s raw output that can retain information on the local
data distribution. In the following, we will detail the logits
based scoring method.

To perform the logits based scoring at ES, we firstly need
to transmit the logits Lm = {l1m, l2m, ..., lcm, ..., lCm} to ES after
the local training, where Lm is the logits of client m’s updated
local model on dataset Dm and lcm is the logit of dataset Dm

on class c. After collecting the logits from all M clients, the
global logit of class c on dataset D can be given by

lcg =

M∑
m=1

lcm. (5)

In order to capture the data imbalance of each class, we further
normalize each class’s logit as

lc =
lcg∑C
c=1 l

c
g

. (6)

In the long-tailed learning, the data imbalance may cause
a performance gap between the head classes and tail classes.
For the purpose of balancing and calibrating the imbalanced
distribution, we evaluate the tail classes with higher scores
and assign lower scores to the head classes. Thus, the score
of class c can be given by

Sc = (lc)−a, (7)

where a ≥ 0 is a hyperparameter to characterize the imbalance
in the score of classes. Specifically, a large a indicates a severe
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Fig. 3. Scoring aided FL framework with long-tailed dataset.

imbalance in the score of classes, while a smaller a leads to
a flatter score of classes. In particular, a = 0 yields an equal
score among all classes.

From (7), we can finally define the total score of client
Um by summing up the product of each class’s logit and the
associated score, given by

SI
m =

C∑
c=1

(Sc · lcm). (8)

From (5)-(8), we can find that, from the logits of one client,
it is not possible to explore the global data distribution, and
then it is challenging to distinguish which client has more
tailed data. Therefore, based on the logits of all clients, we
first explore the global data distribution and distinguish the
tail classes through (5), (6) and (7). And then, the clients
are scored based on the scores of classes and their local data
through (8), which effectively scores the clients with more
tailed data higher.

C. Logits and model upload rate based scoring method
Although the above logits based scoring method can balance

and calibrate the imbalanced training dataset by scoring clients
based on the logits, it ignores the impact of the severe
fading on the FL training performance. In practice, due to
the severe fading, the clients may not be able to upload
models to the server within the latency threshold γt and fail to
participate in the aggregation. The reduction in the number of
clients participating in the aggregation deteriorates the training
performance of FL [16]. In particular, in the FL with long-
tailed data, the clients with high scores but poor transmission

conditions may fail to take part in the model aggregation,
resulting in a mismatch of the logits based scoring method.
Therefore, we should further design a scoring method that
takes into account the joint impact of the failure of model
upload caused by the severe fading and long-tailed data to
enhance the FL training performance.

From (2)-(4), we can find that the model upload rate directly
affects the model upload latency which affects whether the
clients can participate in the aggregation or not. Thus, a
feasible way to overcome the joint impact of the severe fading
and long-tailed data is to further design the scoring method by
multiplying the exponential function of the transmission rate,
which can be written as

SII
m = exp {Rm} · SI

m, (9)

where the first part exp {Rm} is an exponential function of
Rm, and the second part SI

m is a score obtained by the logits
based method in (8). Note that SI

m inherits the solution of
the impact of long-tailed data from the logits based method,
and the explosive function exp {Rm} explosively increases the
score of client Um with the transmission rate. Therefore, the
selected client has better transmission conditions to increase
the likelihood of the successful upload of local models. By
taking the logarithmic operation, we can further write the score
as

lnSII
m = Rm + ln

( C∑
c=1

(Sc · lcm)
)
, (10)

where Rm is the transmission-related term showing the trans-
mission conditions of client Um, and ln

(∑C
c=1(Sc · lcm)

)
is

the data-related term which is decided by the data of client
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Um. From (10), we can discuss the design of scoring method
II more essentially. From the viewpoint of information theory,
the term ln

(∑C
c=1(Sc · lcm)

)
in (10) can be presented as a

kind of data rate related to the score of client Um. If client Um

has a higher score on the classes of local dataset, the overall
data rate of client Um will increase, which yields a better
opportunity to participate in the FL training. On the contrary, if
client Um has a lower score on the classes of local dataset, the
overall data rate of client Um will decrease, yielding a worse
opportunity to participate in the FL training. With the latency
constraint, the update of the global model is affected by the
number of uploaded local models arriving at the server within
the latency threshold γt. Therefore, the communication state
of clients is the first factor for scoring clients. After ensuring
the update of the global model, the scores of the long-tailed
data in (8) can be used to improve the update quality, in order
to enhance the FL training performance.

To summarize, we provide the procedure of the proposed
scoring aided FL in Algorithm 1. Specifically, after the local
training, each client firstly transmits its local logits to ES, and
then ES computes the corresponding scores according to (8).
Then, ES assigns sampling probability to all mobile clients by
normalizing their scores and samples K clients to upload their
models according to the sampling probability.

Algorithm 1: Proposed scoring aided FL
Input: U , K
Output: global model wg

ES chooses a scoring method FS .
for Round r = 0, ..., R-1 do

Each client obtains the global model wr
g from ES.

Each client updates the local model as
wr

m = wr
g − η∇Floss(wr

g;Dm).
Each client uploads the local logits Lm to ES.
ES computes client scores Sm based on FS and

assigns the sampling probability of clients as
Pm = Sm∑|U|

u=1 Su

.
ES samples K clients from U according to Pm.
The sampled K clients upload their local models
wr

m.
ES updates the global model as

wr+1
g = 1∑K

i=1 I(Ti≤γt)

∑K
i=1 wr

i · I(Ti ≤ γt).
end
ES obtains the output global model as wg =wR

g .

IV. EXPERIMENTS

In this part, we perform some experiments to verify the
proposed studies on the FL framework. Specifically, following
the basic FL settings in [15], the DL model is ResNet-8, and
the dataset D is CIFAR-10-LT and CIFAR-100-LT. By default,
the federated learning runs 200 communication rounds with 20
clients, among which 40% clients are selected in each round.
The clients perform the local training by using the mini-batch
SGD as the optimizer, where the batch size is set to 128,
the local training epoch is 10, and the learning rate is set

to 0.1. For the non-IID data setting, the dirichlet distribution
is used to generate the non-IID data with the concentration
parameter α = 0.1. Moreover, for the experimental setting of
the communication environment, the transmit power of each
client is 3W, the noise variance γ2 is set to 0.01, the bandwidth
of each client is 5MHz, and the local model upload latency
threshold is 0.20s. In particular, in the network, the upload
wireless channels used by the clients to upload local models
and the downlink channels used by the server to broadcast the
global model all experience Rayleigh flat fading. Without loss
of generality, the average channel gains of the upload wireless
channels and downlink channels are set to unity. For the sake
of brevity, we use proposed method I to denote logits based
scoring method, and proposed method II to denote logits and
model upload rate based scoring method.

A. Results of the proposed method I for long-tailed data

Table I shows the test accuracy of the proposed method I
on CIFAR-10-LT and CIFAR-100-LT, where IF is set to 50
and 100. For comparison, we list the test accuracy of several
typical methods under the same experiment setting [15]. As
observed from this table, we can find that the proposed method
I achieves the highest test accuracy on both long-tailed datasets
in different IF cases. Specifically, for the FL methods on
CIFAR-10-LT, the test accuracy of the proposed method I is
28.36% and 21.23% higher than that of the baseline FedAvg
when IF = 50 and IF = 100, respectively. Such accuracy
improvement is achieved due to the fact that the proposed
method I samples clients based on the score of clients’ logits
exploring the data distribution of clients, which is helpful
in improving the performance of the global model on the
long-tailed dataset. Moreover, the proposed method I performs
better than the imbalance-oriented FL methods. This is because
the proposed method I employs the logits to score clients,
making the local models trained on the data of tail classes
successfully uploaded to contribute to the global model. In
further, the slightly inferior performance of the distillation-
based FL methods in comparison to our proposed method
could be attributed to the fact that the knowledge used for
distillation is intrinsically imbalanced, which exacerbates the
test error of the global model.

Table II displays the test accuracy of different class cases of
the proposed method I on CIFAR-10-LT with IF= 50 and IF =
100, where the CIFAR-10-LT is divided into three class cases
as Many case (class 1 ∼ class 3), Medium case (class 4 ∼ class
6), and Few case (class 7 ∼ class 10). Note that it is a general
way to use an auxiliary dataset to help train the global model
in FL. Hence, we compare the proposed method I with or
without an auxiliary dataset to the corresponding FL methods.
As observed from Table II, we can find that, in Few case,
the proposed method I has a higher test accuracy than that
of other methods. Specifically, without the auxiliary dataset,
the accuracy of the proposed method I is about 7.73% higher
than that of the baseline FedAvg on CIFAR-10-LT with IF=
50. Such performance superiority is due to that the proposed
method I assigns higher scores and sampling probabilities to
the clients who have more tail class data, so that the clients
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TABLE I
TEST ACCURACY (%) FOR PROPOSED METHOD I ON CIFAR-10-LT AND CIFAR-100-LT WITH DIFFERENT IFS.

Family Method
CIFAR-10-LT CIFAR-100-LT

IF=100 IF=50 IF=100 IF=50

FL methods

FedAvg [4] 52.12 52.43 25.81 28.19
FedAvgM [29] 53.64 54.42 25.11 28.82
FedProx [30] 52.75 55.07 25.43 27.77
FedNova [31] 52.93 56.53 26.81 28.91

Imbalance-oriented FL Methods

Fed-Focal Loss [32] 49.66 52.02 24.66 26.04
Ratio Loss [33] 54.15 57.77 26.72 28.83

FedAvg+cRt [34] 51.74 55.87 30.73 31.47
FedAvg+τ -norm [34] 44.38 45.59 19.59 22.07
FedAvg+LWS [34] 44.48 46.20 20.70 23.24

Distillation-based FL Methods
FedDF [35] 50.33 52.58 25.60 28.79
FedBE [36] 44.05 50.66 22.46 23.77
FEDIC [15] 63.11 63.82 33.67 34.74

Proposed method Proposed method I 63.19 67.30 35.66 38.62

TABLE II
TEST ACCURACY (%) OF DIFFERENT CLASS CASES FOR DIFFERENT

METHODS ON CIFAR-10-LT WITH DIFFERENT IFS.

Auxiliary dataset Method Many Medium Few

IF=50

✘

FedAvg 84.37 65.98 55.67

FedProx 85.90 66.65 49.33

Proposed method I 88.33 61.43 63.40

✔
FEDIC 65.40 60.01 71.03

Proposed method I 75.53 66.33 78.33

IF=100

✘

FedAvg 88.93 59.65 47.63

FedProx 87.27 64.43 42.50

Proposed method I 88.30 61.65 53.17

✔
FEDIC 65.63 58.00 68.23

Proposed method I 73.93 63.50 74.97

can be selected to participate in aggregation. In contrast, the
proposed method I is slightly inferior to other methods in
Many case and Medium case. Such performance deterioration
can be tolerable, as it is worth improving the test accuracy on
the tail classes significantly at a slight expense of head classes
in the long-tailed data.

B. Results of proposed methods for long-tailed data
under the given latency threshold

In this part, we plot the test accuracy of the proposed
method II, the proposed method I, FedProx [30] and FedAvg
[4] on long-tailed data to show the performance of the pro-
posed method II under the given latency threshold. To perform
a comprehensive comparison, we also provide the results of
transmission-oriented methods, namely CSI-based Sampling
and CSI-based greedy client selection (CSI-based GCS), where
only CSI is used for client selection and the impact of data
distribution is ignored. Specifically, the CSI-based Sampling
method employs the proposed scoring-based sampling method
with (9) to select clients, but the score of data distribution
SI
m is set to a constant value, which allows us to isolate the

influence of data distribution. Moreover, the CSI-based GCS
method performs client selection in a greedy approach, where
the clients with better CSI will be prioritized to select until

the desired number of clients is reached [16].
Fig. 4 shows the impact of latency threshold on the test

accuracy of the proposed methods, where the training dataset
is CIFAR-10-LT and the latency threshold γt varies from 0.15s
to 0.35s. Specifically, Fig. 4(a) and Fig. 4(b) depict the test
accuracy with IF = 50 and IF = 100, respectively. According
to Fig. 4, for either IF = 50 or IF = 100, the test accuracy
of all methods improves as γt increases, since more clients
can participate in aggregation under a larger latency threshold.
Moreover, all methods perform worse on IF = 100 compared
to that on IF=50, among which the proposed method II still
performs the best, indicating the robustness of the proposed
method II with various IFs. In further, the proposed method
II performs the best when the latency threshold γt varies, as
it jointly considers the logits and the CSI to select clients
to upload local models. Furthermore, under the same latency
threshold, the proposed method I achieves higher test accuracy
than Fedprox and FedAvg, which proves the superiority of the
proposed method I for the FL network on the long-tailed data.

Fig. 5 demonstrates the test accuracy of the proposed
method II on CIFAR-10-LT versus the wireless bandwidth W ,
where Fig. 5(a) and Fig. 5(b) correspond to the test accuracy
with IF = 50 and IF = 100, respectively. From Fig. 5, we can
observe that the performances of all methods improve when
the wireless bandwidth W increases from 2MHz to 6MHz, as
a larger bandwidth leads to a smaller model upload latency,
which allows more selected clients to upload local models
successfully under the given latency threshold. Moreover, the
proposed methods outperform other methods both on IF =
50 and IF = 100, which proves that our proposed methods
are robust on different IFs. In further, except for the case
of W = 2 MHz, where the clients are hard to upload
local model successfully causing the inability to aggregate the
global model, the proposed method II outperforms the baseline
methods including FedProx and FedAvg as well as the CSI-
based methods such as CSI-based Sampling and CSI-based
GCS, for various values of W . This is because the proposed
method II assigns more sampling probability for the clients
with better transmission conditions and more tailed data in
client sampling.
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Fig. 4. Test accuracy of the proposed methods on CIFAR-10-LT versus
the latency threshold γt.

Fig. 6 describes the impact of transmit power on the
test accuracy of the proposed methods, where the wireless
bandwidth of each client is 3MHz, the training dataset is
CIFAR-10-LT and the transmit power P varies from 2W to
4W. Specifically, Fig. 6(a) and Fig. 6(b) show the test accuracy
with IF = 50 and IF = 100, respectively. From Fig. 6, we
can see that all methods achieve a higher test accuracy as
the transmit power P becomes larger, since a larger transmit
power results in a smaller model upload latency and the clients
are easier to upload their local modes successfully. Then, the
number of clients participating in the aggregation increases,
which improves the test accuracy of the global model [16].
Moreover, though the performance of all methods with IF =
100 is worse than that with IF =50, the proposed methods
still outperform other methods, as the output logits used in
the proposed methods are obtained according to the dataset.
In further, compared with the baseline methods and the CSI-
based methods, the proposed method II achieves a better
performance, as it combines the logits and the CSI to overcome
the joint impact of long-tailed data and severe fading.

Overall, the performance comparison in Figs. 4-6 illustrate
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Fig. 5. Test accuracy of the proposed methods on CIFAR-10-LT versus
the wireless bandwidth.

the effectiveness of the proposed methods for the considered
FL system. Specifically, with the development of 6G, it is
a major trend to deploy FL in wireless networks, where
severe fading may deteriorate the training of FL. Fig. 4 shows
this impact by plotting the changes in test accuracy of the
global model under different latency thresholds, and it is
very meaningful to guide the deployment of FL on wireless
networks. Moreover, Figs. 5-6 present the performance of
several methods for FL with various transmission conditions,
where our methods have the best performance under severe
fading. This guides that, it is a good way to enhance the
performance of the FL deployed in wireless networks on long-
tailed data through jointly exploiting logits and CSI.

V. CONCLUSION

In this paper, we investigated the FL deployed in wireless
networks with long-tailed data, where the long-tailed data led
to the global model bias and the severe fading affected the
upload of local models. To enhance the performance of the
FL, we proposed the scoring aided FL framework, where
two client scoring methods were designed. Specifically, the
proposed method I used the logits to explore the local data
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Fig. 6. Test accuracy of the proposed methods on CIFAR-10-LT versus
the transmit power.

distribution, making the clients with more tailed data have
higher scores to be selected to participate in the aggregation,
and thus enhancing the performance of the FL with long-tailed
data. Moreover, the proposed method II integrated the logits
and the CSI to overcome the joint impact of the long-tailed
data and model upload failure caused by the severe fading.
Experiments were finally given to show the effectiveness of
the proposed methods. In particular, the test accuracy of the
proposed method I is about 28.36% higher than that of the
baseline FedAvg on the dataset CIFAR-10-LT with IF = 50.
In the present work, the clients with more tailed data and
poor transmission conditions may fail to participate in the
aggregation, resulting in a negative impact on the performance
of the FL on long-tailed data. Therefore, in future work, we
will focus on exploring communication resource allocation
schemes that enable clients with more tailed data and poor
transmission conditions to successfully upload their local
models to participate in the aggregation.
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