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Abstract—Control- and user-plane separation (CUPS) and
network slicing are two key technologies to support increasing
network traffic and diverse wireless services. However, the benefit
of CUPS in decoupling the network coverage and data service
functions has not been fully utilized to facilitate network slicing.
In this paper, we present a novel CUPS-based end-to-end (CUPS-
E2E) network slicing scheme. First, the base stations (BS) are
classified into control BSs (CBS) that provide control plane
(CP) coverage and traffic BSs (TBS) that deliver user plane
(UP) traffic. Next, upon CBSs and TBSs being virtualized, we
define four typical end-to-end (E2E) network slices: one for CP
coverage, one for high-throughput services, one for computation-
intensive services, and the other for delay-sensitive services. The
utilities of the four E2E network slices are defined based on their
coverage, throughput, computing capability and delay require-
ments, respectively. Then, a deep deterministic policy gradient
(DDPG)-based algorithm is employed to maximize the long-term
sum-utility of the four E2E network slices by jointly optimizing
the allocation of communication and computing resources to the
four network slices and the activation of virtual TBSs, while
meeting the service requirements of all users. Simulation results
show that our proposed CUPS-E2E network slicing scheme
in conjunction with a DDPG-based sum-utility maximization
algorithm can support the CP wide-coverage and massive access
requirements as well as the UP high-throughput, computation-
intensive and delay-sensitive services simultaneously, and outper-
forms the existing E2E network slicing schemes in terms of the
sum-utility, coverage percentage, throughput and delay.

Index Terms—End-to-end network slicing, control- and user-
plane separation, utility, deep deterministic policy gradient.
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I. INTRODUCTION

AS a key technology for the next generation mobile
networks to support diverse application scenarios and

provide customized services, network slicing defines multiple
logical end-to-end (E2E) networks (each including the core
network (CN) and radio access network (RAN) ) on a shared
physical network infrastructure [1]. Each logical network con-
tains a set of virtual network functions (VNF) and resources.

Meanwhile, the drawbacks of traditional mobile networks
due to the tight coupling between network coverage and
data service become increasingly evident with the exponential
growth of wireless traffic, which has called for the control- and
user-plane separation (CUPS) [2]. CUPS decouples the control
plane (CP) and the user plane (UP), where the control base
stations (CBS) in the CP transmit control signals to users using
low frequency bands, while the traffic base stations (TBS)
in the UP transmit data signals using high frequency bands.
As a result, CUPS can alleviate the interference between
control signals and data signals [3] and can reduce the energy
consumption of the network by switching off TBSs with no
or few active users in coverage [4].

A. Related Works

VNF deployment and resource allocation for network slicing
have recently attracted a lot of research interests. Sattar et
al. [5] investigated the placement of CP functions and UP
functions (UPF) for CN slicing, and proposed a mixed-linear
integer programming-based algorithm to minimize the E2E
delay while maintaining intra-slice isolation among VNFs of
the same CN slice. Guan et al. [6] used complex network
theory to optimize the VNF deployment for Ultra Reliable
Low Latency Communication (URLLC), Enhanced Mobile
Broadband (eMBB), and massive Machine Type Communi-
cation (mMTC) E2E network slices.

Regarding resource allocation for network slicing, Sun et al.
[7] proposed a Stakelberg game-based radio resource alloca-
tion scheme to minimize the content download latency for the
low-delay slice while guaranteeing the data rate for the high-
rate slice with minimal transmit power consumption. Zhou et
al. [8] maximized a time-averaged utility by jointly optimizing
the allocation of virtual bandwidth and power for URLLC
and eMBB RAN slices via Lyapunov optimization. An Upper-
tier First with Latency-bounded Over-provisioning Prevention
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(UFLOP) algorithm was proposed in [9] to optimize the
allocation of computing and communication resources for the
eMBB, URLLC and mMTC E2E network slices in a multi-
tenant 5G network, while satisfying the latency constraints and
Service-level Agreements (SLA) of multiple tenants.

CUPS has been researched for mobility management, e.g.,
in a two-tier downlink ultra-dense network (UDN) [10], where
the small base stations (SBS) in the UP send data packets to
nearby user devices, and the macro base stations (MBSs) in
the CP manage the radio resource control. Sun et al. [11] pro-
posed a probability suffix tree (PST)-based predictive mobility
management algorithm for the urban UDN with CUPS. Yang
et al. [12] have shown that the CUPS architecture outperforms
the conventional network architecture in terms of the coverage
probability and the handover cost in UDNs. Liang et al.
[13] employed the stochastic geometry and queuing theory
to analyze the coverage probability of the CP assuming non-
line-of-sight (NLoS) transmissions and the energy efficiency
of the UP under the co-existence of both NLoS and line-of-
sight (LoS) transmissions.

Although the feasibility of combining CUPS with RAN
slicing was demonstrated through testbed experiments for three
types of RAN slices (i.e., continuous CP coverage, UP video
services and UP audio services) [14], the benefit of CUPS
in decoupling the CP coverage and UP traffic has not been
sufficiently studied or exploited to achieve customized E2E
network slicing. Moreover, [10]–[14] considered the CP and
the UP separately. Despite that the influence of the CP cov-
erage on the spectrum efficiency and the energy efficiency of
the UP for the CUPS-based cellular RAN was studied in [15],
the relevance between the CP and the UP in utility modeling
for E2E network slicing has not been fully researched.

Nowadays, the resource allocation in mobile networks in-
volves communication, storage and computing resources [16],
and the resource allocation problems become increasingly
complex. Traditional optimization algorithms show limitations
in solving high-complexity resource allocation problems. For-
tunately, deep reinforcement learning (DRL), where an agent
interacts with the environment constantly to learn the best
action that maximizes a cumulative reward under a given
state through the trial and error [17], has been employed to
solve complex resource allocation problems. Popular DRL al-
gorithms include: deep Q-learning (DQL) [18], policy gradient
(PG), actor-critic (AC), and deep deterministic policy gradient
(DDPG) [19]. Therein, the DQL algorithm was mainly used to
solve resource allocation problems with discrete action spaces
[20]–[22]. For resource allocation problems with continuous
action spaces, the DDPG algorithm was used, e.g., to solve the
joint optimization of continuous energy harvesting (EH) time
and transmit power allocation for maximizing the long-term
throughput of EH-assisted communications [23]. Jiang et al.
[24] used DDPG algorithm to maximize the number of the
access success devices in cellular internet of things networks
by dynamic optimize the access class barring factor. However,
it is important to note that the relevance between the CP and
the UP under CUPS will lead to new challenges in the utility
modeling and DRL-based resource allocation for E2E network
slicing.

B. Contributions

In this paper, we aim to solve the CUPS-based E2E (CUPS-
E2E) network slicing optimization of the four typical E2E net-
work slices: one typical mMTC slice for CP wide-coverage, t-
wo typical eMBB slices for UP high-throughput services (such
as panorama virtual reality [25]) and UP computation-intensive
services (such as augmented reality [26]), respectively, and one
typical URLLC slice for UP delay-sensitive services (such
as immersive virtual reality [27] and industry automation
[28]). We define the utilities of the four E2E network slices
based on their coverage percentage, throughput, computing
capability and delay requirements, respectively, while taking
the relevance between the CP coverage and the UP services
into consideration. Therein, the coverage percentage is defined
as the instantaneous fraction of all users covered by the CP
at the corresponding time. Then, we propose to maximize
the long-term sum-utility of the four E2E network slices by
jointly optimizing the virtual TBSs (vTBS) activation and the
allocation of communication and computing resources while
meeting the service requirements of users, which is formulated
into a non-convex optimization problem. It is important to note
that the joint optimization of vTBS activation and resource
allocation should be solved timely to meet the dynamic user
requirements and wireless channel states, which can hardly
be achieved by the traditional convex optimization methods.
We solve the sum-utility maximization problem with a high-
dimensional action space by devising a DRL-based algorithm,
in which the agent learns the mapping function between the
users’ real-time requests as well as wireless channel states
and the action. The main contributions of this work are
summarized as follows:

• We study a CUPS-based system that decouples the CP
coverage and the UP services in E2E network slicing. The
CUPS-E2E network slicing overcomes the restrictions
caused by the tight coupling between the CP and the UP
of traditional networks and allows for the customization
of CP coverage and UP services for each E2E network
slice. More specifically, the CP coverage and the UP
services are supported by dedicated virtual CBSs (vCBS)
(operating in low frequency bands) and vTBSs (oper-
ating in high frequency bands), respectively. The wide-
coverage slice builds on the virtualized CP only, whereas
the high-throughput, computation-intensive and delay-
sensitive slices involve both the virtualized UP and CP,
where the activation of vTBSs in the UP is determined
by the CP.

• In order to better characterize the heterogeneous per-
formance metrics of the E2E network slices, we define
the utilities of the four slices in terms of their gains
in coverage percentage, throughput, computing capability
and delay minus their corresponding costs, respectively.
The costs for each slice include the backhaul link capacity
and the downlink bandwidth. In addition, the costs of
the wide-coverage slice include the vCBS transmit power
consumption; while the costs of the high-throughput,
computation-intensive and delay-sensitive slices include
both the vTBS transmit power and vTBS computing
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power comsumptions. These slice-specific utilities enable
the joint optimization of communication and computing
resources allocation, as well as a comprehensive perfor-
mance evaluation, for each E2E network slice.

• In our proposed CUPS-E2E network slicing model, if a
user is not covered by the CP, then it will not be served by
the UP, i.e., it will not be allocated with any UP commu-
nication or computing resource. This dependence of UP
services on the CP coverage is embodied in our utility
model. Accordingly, the utilities of the high-throughput,
computation-intensive, and delay-sensitive slices contain
only the throughput, computing capability, and delay of
the users covered by the CP, respectively.

• The CUPS-E2E network slicing optimization is for-
mulated into a problem that maximizes the long-term
sum-utility of the four E2E network slices by jointly
optimizing the vTBS activation and the allocation of
communication and computing resources while meeting
the service requirements of all users. The formulated
problem is non-convex and hard to solve using traditional
optimization methods. We design a DDPG-based sum-
utility maximization algorithm to find the optimal vTBS
activation and resource allocation policy in the continuous
action space. More specifically, we obtain the optimal
vTBS activation and the optimal allocation of communi-
cation and computing resources to the four E2E network
slices, including the CP subcarrier and vCBS transmit
power for the wide-coverage slice, as well as the back-
haul link capacity, UP subcarrier, vTBS transmit power
and vTBS computing capability for the high-throughput,
computation-intensive and delay-sensitive slices.

The remainder of this paper is organized as follows. The
CUPS-based system model is proposed in Section II. Section
III formulates the sum-utility maximization problem. The
DDPG-based sum-utility maximization algorithm is presented
in Section IV. In Section V, simulation results are presented.
Finally, the paper is concluded in Section VI.

II. SYSTEM MODEL

This section presents a CUPS-based system, where the E2E
network model contains the CN and the RAN. The CN mainly
consists of the Access and Mobility Management Function
(AMF), Session Management Function (SMF) and UPF, etc.
Therein, the AMF is responsible for the access and mobility
of users, while the SMF and UPF are in charge of the UP
services [29].

In the RAN, we assume that there are NC physical CBSs
and NT physical TBSs distributed within a sufficiently large
area Spl, and the symbols NC and NT are used to denote the
sets of the physical CBSs and TBSs, respectively. The CBSs
send control signals at the low frequency bands to provide the
CP coverage for users and control the switching on-off for
the TBSs, whereas the TBSs process and send UP data at the
high frequency bands to provide the UP services for users.
Moreover, the densities of the physical CBSs and TBSs are
λC = NC/Spl and λT = NT /Spl, respectively.

There are Nu users distributed in the given area with the
density of λu = Nu/Spl, and the symbol Nu is used to denote

the set of users. If a user has a data service request, then the
user is deemed as an active user. All users will receive control
signals from their serving CBSs, but only the active users can
receive data services from their serving TBSs. The physical
network model is shown in Fig. 1.

Backhaul Link

(Between CN and CBS)

Backhaul Link

(Between CN and TBS)
Backhaul Link

(Between CBS and TBS)

CBS

TBS

Cloud CN

Computing

Server

Wireless Access Link

(Control Signals)

Wireless Access Link

(Data Signals)

Users

Fig. 1: Physical Network Model

The network operator provides one wide-coverage slice
and three data service slices for users’ high-throughput,
computation-intensive and delay-sensitive requests, respective-
ly. Firstly, the CN and the backhaul links that connect the CN,
the CBSs and the TBSs will be abstracted and virtualized
into several virtual CNs (vCN) and virtual backhaul links,
respectively. Next, each physical TBS is mapped to several
vTBSs by virtualization, and each vTBS will be related to
one specific UP service. Each physical CBS is mapped to four
vCBSs by virtualization, wherein one vCBS will be associated
with the CP coverage, while the other three will control the
activation of vTBSs. Accordingly, the CP is mapped to four
virtualized CPs, which are deployed in the four E2E network
slices, respectively; the UP is mapped to three virtualized
UPs, which are deployed in the high-throughput, computation-
intensive and delay-sensitive slices, respectively. Meanwhile,
the communication and computing resources in the system are
abstracted into virtual resources to facilitate resource sharing.
The network slicing model is shown in Fig. 2. The t-th time s-
lot has the time interval of [t, t+1), where t∈{0, 1, 2, ..., T−1}
and the duration of each slot is one second.
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Fig. 2: Network Slicing Model
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A. Network Coverage

The network coverage is supported by the wide-coverage
slice (i.e., slice C), which involves only the virtualized CP.

The coverage control signals are transmitted from the AMF
of the vCN to the vCBSs associated with the CP coverage,
and then the vCBSs send the control signals to all users [30].

Each physical CBS is connected with the CN by a backhaul
link with the capacity of RbCB , and the maximum transmit pow-
er of each physical CBS is PCB . The total downlink bandwidth
of the CP is BC , which is evenly divided into NC

sub subcarriers
forming the set of CP subcarriers NC

sub =
{
1, 2, · · ·, NC

sub

}
,

and each CP subcarrier has a bandwidth of BC/NC
sub. And we

define yC(t) =
{
yCk,l(t)

} (
k ∈Nu, l ∈NC

sub

)
as the set of

binary CP subcarrier allocation indicators, where yCk,l(t) = 1

if CP subcarrier l is allocated to user k at slot t and yCk,l(t) = 0
otherwise. We assume that the transmission of control signal
for each user will occupy a small backhaul link capacity of
RbC and only one CP subcarrier because its traffic is low.
Then, we denote the vCBS transmit power allocated to user k
at slot t by PCk (t), and the set of vCBS transmit power levels
at slot t is given by PC(t)=

{
PCk (t)

}
(k∈Nu).

The distance between CBS j (j∈NC) and user k (k∈Nu)
is denoted by rCj,k. Since the number of vCBSs in slice C
equals to the number of physical CBSs and does not change
over time, we still denote the set of vCBSs in slice C by NC .
Each user is associated with its nearest vCBS, and a binary
vCBS association indicator gCj,k (j ∈NC , k ∈Nu) is defined
such that gCj,k = 1 if user k is associated with vCBS j, namely
j = argmin

1≤j≤NC
rCj,k, and gCj,k = 0 otherwise.

We assume that the downlink channels of CBSs exhibit
independent Rayleigh fading and have a path loss exponent of
αC . Therefore, the downlink SINR between user k (k ∈Nu)
and its associated vCBS j (j ∈ NC) on CP subcarrier l
(l ∈NC

sub) at slot t is

SINRCk,l(t)=
yCk,l(t)g

C
j,kP

C
k (t)h

C
j,k,l(t)(r

C
j,k)
−αC∑

i∈NC
i6=j

∑
w∈Nu
w 6=k

yCw,l(t)g
C
i,wP

C
w(t)h

C
i,k,l(t)(r

C
i,k)
−αC+σ2

,

(1)
where rCj,k and rCi,k denote the transmission distances between
user k and its associated vCBS or interfering vCBSs, re-
spectively, and σ2 denotes the power of the additive white
noise. While hCj,k,l(t) and hCi,k,l(t) are the channel power
gains of the desired transmission path and interference path
at slot t, respectively, following two independent unit-mean
exponential distributions. The sets of channel power gains of
the desired transmission path and interference path at slot t are
denoted by hC(t) =

{
hCj,k,l(t)

}
and hC

inte(t) =
{
hCi,k,l(t)

}(
i, j∈NC , k∈Nu, l∈NC

sub

)
, respectively. Besides, yCk,l(t)

and yCw,l(t) represent that the desired signal and interference
signals are transmitted in the common CP subcarrier l at slot t,
while gCj,k and gCi,w are the binary vCBS association indicators
of user k and the interference users, respectively.

Due to the fact that only one CP subcarrier is allocated to
a user, the downlink SINR between user k and its associated

vCBS at slot t is given by

SINRCk (t) =
∑

l∈NC
sub

yCk,l(t)·SINRCk,l(t), (2)

where the binary CP subcarrier allocation indicator yCk,l(t) has
to satisfy that

∑
l∈NC

sub

yCk,l(t) = 1.

For any user, if its downlink SINR is above a pre-defined
threshold x0, the user is covered by the CP. Then, we define
a binary coverage indicator dCk (x0, t) (k ∈ Nu) to represent
whether user k is covered by the CP at slot t or not, i.e.,
dCk (x0, t)=1 if SINRCk(t)>x0 and dCk (x0, t)=0 otherwise.

Accordingly, the number of users covered by the CP at slot
t is given by

N cov
u (x0, t) =

∑
k∈Nu

dCk (x0, t), (3)

and the coverage percentage of slice C at slot t is

pcov
C (x0, t) =

N cov
u (x0, t)

Nu
. (4)

Next, we will analyze the costs of slice C, including
the backhaul link capacity, downlink bandwidth, and vCBS
transmit power consumption.

The backhaul link capacity of slice C is given by

RbCtot = RbCNu. (5)

For the downlink bandwidth of slice C, let us analyze it
from the perspective of the CP subcarrier allocation. Firstly,
any CP subcarrier l will be idle if it is not allocated to any
user at slot t, i.e., the CP subcarrier allocation indicator yCk,l(t)
satisfies that yCk,l(t) = 0 and 1 − yCk,l(t) = 1 for any user k.
At this time, the cumulative product of 1 − yCk,l(t) satisfies

that
∏

k∈Nu

[
1−yCk,l(t)

]
= 1. However, CP subcarrier l will

be occupied if it is allocated to at least one user at slot t,
i.e., there exist a user k (k∈Nu) enables that yCk,l(t) = 1

and 1 − yCk,l(t) = 0. At this time, the cumulative product

of 1−yCk,l(t) satisfies that
∏

k∈Nu

[
1−·yCk,l(t)

]
= 0. From the

above analysis, we find that the expression
∏

k∈Nu

[
1−yCk,l(t)

]
can be used to indicate whether CP subcarrier l is idle at
slot t or not, and the number of the idle CP subcarriers

is
∑

l∈NC
sub

( ∏
k∈Nu

[
1−yCk,l(t)

])
. Therefore, the number of the

occupied CP subcarriers can be calculated as the total number
of the CP subcarriers NC

sub minus the number of the idle CP
subcarriers, and the downlink bandwidth of slice C at slot t
is the total bandwidth of the occupied CP subcarriers, i.e.,

BCtot(t)=
BC
NC
sub

·

NC
sub −

∑
l∈NC

sub

( ∏
k∈Nu

[
1−yCk,l(t)

]). (6)

The total vCBS transmit power consumption of slice C at
slot t is expressed as

PCtot(t) =
∑
k∈Nu

PCk (t). (7)
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B. Data Service

The high-throughput slice (i.e., slice 1), the computation-
intensive slice (i.e., slice 2) and the delay-sensitive slice (i.e.,
slice 3) provide data services for active users with different
service requirements if the users are covered by the CP [31].

We take the video services as an example, the whole
procedure of data services in slice s (s ∈ {1, 2, 3}) includes
the backhaul link transmission, video processing, and wireless
access link transmission. If the active users have video request-
s, the requested videos will be first delivered from the cloud
to the vTBSs through the virtual backhaul links. Then, the
videos will be processed and rendered by the vTBSs, which
consumes computing resource. After the video processing, the
vTBSs will deliver the videos to the corresponding users who
request them over the wireless access links [25].

In the CN, the UPF is in charge of forwarding the video data
requested by the active users from the data center in the cloud
to the vTBSs over the virtual backhaul links, and the SMF is
responsible for managing and controlling the data forwarding
of the UPF [29].

The RAN of slice s (s ∈ {1, 2, 3}) involves both the
virtualized UP and CP, and the vCBSs in the virtualized CP
control the activation of the vTBSs in the virtualized UP
according to the users’ requesting states. In this process, the
vCBSs send control signals to the vTBSs to switch them on
or off [2]. The communication between the vCBSs and the
vTBSs is through the virtual backhaul links between them. For
simplicity, we ignore this process when analyzing the utilities
of the data service slices because its traffic is extreme low.

We define a
(s)
T (t) =

{
a
(s)
j (t)

}
(j∈NT , s∈{1, 2, 3}) 1 as

the set of vTBSs activation indicators, therein, a(s)j (t) is a
binary variable, where a

(s)
j (t) = 1 if vTBS j in slice s is

activated at slot t and a
(s)
j (t) = 0 otherwise. Therefore, the

number of activated vTBSs in slice s at slot t is expressed as

N
(s)
T (t) =

∑
j∈NT

a
(s)
j (t). (8)

and we denote the set of activated vTBSs in slice s at slot t
by N

(s)
T (t).

In addition, we deem the active users requesting the high-
throughput, computation-intensive or delay-sensitive services
at slot t as the users in slice 1, slice 2 or slice 3 at current slot.
We denote o(s)k (t) as a binary user service requesting indicator,
where o(s)k (t) = 1 if user k is in slice s at slot t and o(s)k (t) = 0
otherwise, and the set of user service requesting indicators is
denoted by o

(s)
u (t)=

{
o
(s)
k (t)

}
(k∈Nu, s∈{1, 2, 3}). Hence,

the number of active users in slice s at slot t is given by

N (s)
u (t) =

∑
k∈Nu

o
(s)
k (t). (9)

and we denote the set of active users in slice s at slot t by
N

(s)
u (t).
Each physical TBS is connected with the CN by a backhaul

link with the capacity of RbTB . We assume that the total
downlink bandwidth of the UP is BU and the maximum

1Note that the superscript (s) in all symbols represents slice s(s∈{1, 2, 3}).

transmit power of each physical TBS is PTB . The communica-
tion resource, including the backhaul link capacity, downlink
bandwidth and vTBS transmit power will only be allocated to
the active users covered by the CP.

We denote the backhaul link capacity allocated to user k
(covered by the CP) in slice s at slot t by Rb

(s)
k (t), and

Rb(s)(t) =
{
Rb

(s)
k (t)

} (
k ∈N

(s)
u (t), s ∈ {1, 2, 3}

)
is the

set of backhaul link capacities of slice s at slot t.
The downlink bandwidth in the UP is evenly divided

into NU
sub subcarriers forming the set of UP subcarriers

NU
sub =

{
1, 2, ..., NU

sub

}
, and each UP subcarrier has a

bandwidth of BU/N
U
sub. We define y(s)(t) =

{
y
(s)
k,l (t)

}(
k ∈N

(s)
u (t), l ∈NU

sub, s ∈ {1, 2, 3}
)

as the set of binary

UP subcarrier allocation indicators, where y(s)k,l (t) = 1 if UP
subcarrier l is allocated to user k (covered by the CP) in slice
s at slot t and y(s)k,l (t) = 0 otherwise.

The vTBS transmit power allocated to user k (cov-
ered by the CP) in slice s on UP subcarrier l at s-
lot t is denoted by p

(s)
k,l (t), and p(s)(t) =

{
p
(s)
k,l (t)

}(
k ∈N

(s)
u (t), l ∈NU

sub, s ∈ {1, 2, 3}
)

is the set of vTBS
transmit power levels in slice s at slot t. Therefore, the overall
vTBS transmit power allocated to user k (covered by the CP)
in slice s at slot t is the sum of vTBS transmit power on all
the UP subcarriers allocated to the user, i.e.,

P
(s)
k (t) =

∑
l∈NU

sub

y
(s)
k,l (t) · p

(s)
k,l (t) (10)

Besides, we denote the set of downlink channel power
gains of slice s at slot t by h(s)(t)=

{
hTj,k,l(t)|k∈N

(s)
u (t)

}(
j∈N (s)

T (t), l∈NU
sub, s ∈ {1, 2, 3}

)
, and hTj,k,l(t) is the

downlink channel power gain between TBS j and user k on
UP subcarrier l at slot t.

The distance between TBS j (j ∈NT ) and user k(k ∈Nu)
is denoted by rTj,k. Each active user is associated with it-
s nearest vTBS, and a binary vTBS association indicator
g
(s)
j,k(t)

(
j ∈N

(s)
T (t), k ∈N

(s)
u (t), s ∈ {1, 2, 3}

)
is defined

such that g(s)j,k(t) = 1 if user k (covered by the CP) in slice s
is associated with vTBS j at slot t, namely j = argmin

1≤j≤N(s)
T (t)

rTj,k,

and g(s)j,k(t) = 0 otherwise.
We assume that the downlink channels of vTBSs exhibit

independent Rayleigh fading and have a path loss exponent
αT . Therefore, the SINR between user k

(
k∈N (s)

u (t)
)

and

its associated vTBS j
(
j ∈N

(s)
T (t)

)
on UP subcarrier l(

l ∈NU
sub

)
in slice s at slot t is

SINR
(s)
k,l (t) =

y
(s)
k,l (t)g

(s)
j,k(t)p

(s)
k,l (t)h

T
j,k,l(t)

(
rTj,k

)−αT
∑

i∈N
(s)
T
(t)

i6=j

∑
w∈N

(s)
u(t)

w 6=k

y
(s)
w,l(t)g

(s)
i,w(t)p

(s)
w,l(t)h

T
i,k,l(t)

(
rTi,k

)−αT
+σ2

,

(11)
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where rTj,k and rTi,k denote the transmission distances be-
tween user k and its associated vTBS or interfering vTB-
Ss, respectively, and σ2 denotes the power of the additive
white noise. While hTj,k,l(t) and hTi,k,l(t) are the channel
power gains of the desired transmission path and inter-
ference path on the common UP subcarrier l at slot t,
which follow two independent unit-mean exponential distri-
butions. Specifically, the set of interfering channel power
gains is denoted by h

(s)
inte(t) =

{
hTi,k,l(t)|k ∈N

(s)
u (t)

}(
i ∈N

(s)
T (t), l ∈NU

sub, s ∈ {1, 2, 3}
)

. Furthermore, y(s)k,l (t)

and y
(s)
w,l(t) represent that the desired signal and interference

signals are transmitted in the common UP subcarrier l in slice
s at slot t, while g(s)j,k(t) and g(s)i,w(t) are the vTBS association
indicators of user k and the interference users in slice s at
slot t, respectively. Accordingly, we obtain the downlink rate
of user k on UP subcarrier l in slice s at slot t as

r
(s)
k,l (t) =

BU
NU
sub

· log2
[
1+SINR

(s)
k,l (t)

]
. (12)

and the overall downlink rate of user k in slice s at slot t is the
sum of the downlink rate on all the UP subcarriers allocated
to the user, i.e.,

R
(s)
k (t) =

∑
l∈NU

sub

y
(s)
k,l (t) · r

(s)
k,l (t). (13)

The throughput of user k (covered by the CP) in slice s at
slot t is min

{
R

(s)
k (t), Rb

(s)
k (t)

}
[32]. Therefore, we have the

total throughput of E2E network slice s at slot t, i.e.,

R
(s)
tot(t) =

∑
k∈N(s)

u (t)

min
{
R

(s)
k (t), Rb

(s)
k (t)

}
.

(14)

The computing resource of the network is represented by
computing capability in CPU cycle/s [33], and the maximum
computing capability of each physical TBS is FTB . The vTBS
computing capability allocated to user k (covered by the CP) in
slice s at slot t is denoted by f (s)k (t), and f

(s)
k (t) =

{
f
(s)
k (t)

}(
k ∈N

(s)
u (t), s ∈ {1, 2, 3}

)
is the set of vTBS computing

capabilities in slice s at slot t. Therefore, we obtain the total
vTBS computing capability of E2E network slice s at slot t
as

f
(s)
tot (t) =

∑
k∈N(s)

u (t)

f
(s)
k (t).

(15)

To analyze the delay performance of the E2E network
slicing, three data queues are discussed. Let G(s)(t) ={
G

(s)
k (t)

}
, Z(s)(t) =

{
Z

(s)
k (t)

}
and H(s)(t) =

{
H

(s)
k (t)

}(
k∈N (s)

u (t), s∈{1, 2, 3}
)

denote the current backhaul link
data queue backlogs, computing queue backlogs and wireless
access link data queue backlogs in slice s at slot t, respectively.
We define Ah(s)(t)=

{
Ah

(s)
k (t)

} (
k∈N (s)

u (t), s∈{1, 2, 3}
)

as the random data arrivals on the backhaul links in slice
s at slot t, where Ah(s) is assumed to be independent and
identically distributed (i.i.d.) over time and follows a Poisson
arrival process with the average rate γ(s)a (in bits/s). Therefore,
we model the backhaul link data queuing process for user k

(covered by the CP) in slice s by

G
(s)
k (t+1)=max

{
G

(s)
k (t)−Rb(s)k (t), 0

}
+Ah

(s)
k (t),∀k, s.

(16)
Since the data will be processed at the vTBS after the

backhaul link transmission, the arrival of the computing queue
is the departure of the backhaul link data queue. Then, the
computing queuing process for user k (covered by the CP) in
slice s is modeled by

Z
(s)
k (t+1)=max

{
Z

(s)
k (t)−f (s)k (t)/c

(s)
k , 0

}
+Rb

(s)
k (t),∀k, s.

(17)

where c(s)k is the number of CPU cycles required per bit in
CPU cycle/bit [33] and

[
f
(s)
k (t)/c

(s)
k

]
is the computing rate,

i.e., the number of bits that computed per second for user k
in slice s at slot t, which is expressed in bit/s.

The data will be transmitted to users over the wireless
access links after the vTBS processing, hence, the arrival of the
wireless access link queue is the departure of the computing
queue. We model the wireless access link data queuing process
for user k (covered by the CP) in slice s by

H
(s)
k (t+1)=max

[
H

(s)
k (t)−R(s)

k (t), 0
]
+f

(s)
k (t)/c

(s)
k ,∀k, s.

(18)
According to Little’s Theorem [34], the user’s average queu-

ing delay is proportional to the average queue length, therefore,
we can represent the delay of user k in slice s by the sum
of the queue length Y (s)

k (t) =
[
G

(s)
k (t) + Z

(s)
k (t) +H

(s)
k (t)

]
[35]. The access delay is not considered here because of its
small proportion [36]. Hence, we optimize the delay of the
E2E network slicing by minimizing the total queue length.
The total queue length of slice s at slot t is given by

Y
(s)
tot (t) =

∑
k∈N(s)

u (t)

Y
(s)
k (t)

=
∑

k∈N(s)
u (t)

[
G

(s)
k (t) + Z

(s)
k (t) +H

(s)
k (t)

]
.

(19)

and the average delay of slice s can be calculated as

D(s)
ave(t) =

Y
(s)
tot (t)

γ
(s)
a N

(s)
u (t)

. (20)

Specifically, since slice 1, slice 2 and slice 3 can only serve
users covered by the CP, no communication or computing
resource will be allocated to the users not covered, i.e., if
dCk (x0, t) = 0, then Rb

(s)
k (t) = 0, y(s)k,l (t) = 0, p(s)k,l (t) = 0

and f (s)k (t) = 0; and there is no data arrival for the users not
covered, i.e., if dCk (x0, t) = 0, then Ah(s)k (t) = 0.

Afterwards, we analyze the costs of the data service slices,
including the backhaul link capacity, downlink bandwidth,
vTBS transmit and vTBS computing power consumptions.

The backhaul link capacity of slice s at slot t is given by

Rb
(s)
tot(t) =

∑
k∈N(s)

u (t)

Rb
(s)
k (t),

(21)

For the downlink bandwidth of slice s, let us analyze it from
the perspective of the UP subcarrier allocation. Firstly, any UP
subcarrier l will be occupied in slice s if it is allocated to at
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least one user (covered by the CP) in slice s at slot t, i.e., there
exist a user k

(
k∈N (s)

u (t) and dCk (x0, t)=1
)

enables that

y
(s)
k,l (t) = 1 and 1−y(s)k,l (t) = 0. At this time, the cumulative

product of 1− y(s)k,l(t) satisfies that
∏

k∈N(s)
u (t)

[
1−·y(s)k,l(t)

]
= 0

and 1−
∏

k∈N(s)
u (t)

[
1−y(s)k,l (t)

]
=1. However, UP subcarrier l will

be idle if it is not allocated to any user in slice s at slot t,
i.e., the UP subcarrier allocation indicator y(s)k,l (t) satisfies that
y
(s)
k,l (t) = 0 and 1 − y

(s)
k,l (t) = 1 for any user k in slice s.

At this time, the cumulative product of 1 − y(s)k,l (t) satisfies

that
∏

k∈N(s)
u (t)

[
1−y(s)k,l (t)

]
=1 and 1−

∏
k∈N(s)

u (t)

[
1−y(s)k,l (t)

]
=0.

From the above analysis, we find that the expression 1−∏
k∈N(s)

u (t)

[
1−y(s)k,l (t)

]
can be used to indicate whether UP sub-

carrier l is occupied in slice s at slot t or not, and the number of

the occupied UP subcarriers is
∑

l∈NU
sub

1− ∏
k∈N(s)

u (t)

[
1−y(s)k,l (t)

].

Therefore, the downlink bandwidth of slice s at slot t is the
total bandwidth of the occupied UP subcarriers, i.e.,

B
(s)
tot(t) =

BU
NU
sub

·
∑

l∈NU
sub

1− ∏
k∈N(s)

u (t)

[
1−y(s)k,l (t)

]. (22)

The vTBS transmit power consumption of slice s at slot t
is expressed as

P
(s)
tot (t) =

∑
k∈N(s)

u (t)

P
(s)
k (t). (23)

The vTBS computing power consumption of user k in slice
s at slot t is [33]

P
(s)
ck (t) = κ·

[
f
(s)
k (t)

]3
, (24)

accordingly, the vTBS computing power consumption of slice
s at slot t is given by

P
(s)
ctot(t) =

∑
k∈N(s)

u (t)

P
(s)
ck (t).

(25)

III. SUM-UTILITY MAXIMIZATION PROBLEM

In this section, we will define the utilities of the wide-
coverage, high-throughput, computation-intensive and delay-
sensitive slices, respectively, and then the sum-utility maxi-
mization problem will be formulated.

A. Utility Definition

From the perspective of the network operator, the utility of
CUPS-E2E network slicing is defined as the income minus
the costs of the physical network. For slice C, the utility is
defined as the difference between the income quantified by the
number of users covered by the CP minus the costs in terms
of the backhaul link capacity, the downlink bandwidth and the
vCBS transmit power consumption in slice C, i.e.,

UC(t) = mCN
cov
u (x0, t)−ξ ·max {ρ−pcovC (x0, t), 0}

−
[
ωRbCtot + δBCtot + βPCtot(t)

]
,

(26)

where mC is the income from each user covered by the CP,
while ω, δ and β are the costs per unit backhaul link capacity,
per unit downlink bandwidth and per unit power consumption,
respectively. To guarantee the fundamental coverage for the
users, the CP coverage percentage has to satisfy the con-
straint: pcovC (x0, t) ≥ ρ, ∀t, x0 ≤ −5dB, where ρ is the
threshold of the CP coverage percentage. The coverage penalty
ξ ·max {ρ−pcovC (x0, t), 0} will be paid if the constraint on
the CP coverage percentage is violated, where ξ is a positive
penalty coefficient.

For slice 1, providing high throughput has the priority.
Therefore, the utility of slice 1 is defined as the difference
between the income from the total throughput provided and the
costs of slice 1, including the backhaul link capacity, downlink
bandwidth, the vTBS transmit power and vTBS computing
power consumptions in slice 1, i.e.,

U (1)(t) = m1R
(1)
tot(t)

−
{
ωRb

(1)
tot(t)+δB

(1)
tot (t)+β

[
P

(1)
tot (t)+P

(1)
ctot(t)

]}
,

(27)
where m1 is the income per unit throughput.

Providing high computing capability is the primary target
for slice 2. Accordingly, the utility of slice 2 is defined as the
income from the total computing capability provided minus
the costs in terms of the backhaul link capacity, downlink
bandwidth, the vTBS transmit power and vTBS computing
power consumptions in slice 2, i.e.,

U (2)(t) = m2f
(2)
tot (t)

−
{
ωRb

(2)
tot(t)+δB

(2)
tot (t)+β

[
P

(2)
tot (t)+P

(2)
ctot(t)

]}
,

(28)
where m2 is the income per unit computing capability.

The main objective of slice 3 is to provide users as lower
delay as possible. Consequently, the utility of slice 3 is defined
as the difference between the income defined by the queuing
delay gain [8] and the costs in terms of the backhaul link
capacity, downlink bandwidth, the vTBS transmit power and
vTBS computing power consumptions in slice 3, i.e.,

U (3)(t) =
[
ψN (3)

u (t)−m3Y
(3)
tot (t)

]
−η ·max

{
D(3)
ave(t)−ζ, 0

}
−
{
ωRb

(3)
tot(t)+δB

(3)
tot (t)+β

[
P

(3)
tot (t)+P

(3)
ctot(t)

]}
,

(29)
where m3 is the income per unit queue length, i.e., the unit
price of delay gain, and ψ is an initial maximum benefit
coefficient of slice 3 to guarantee the non-negativity of the
utility [37]. To ensure the quality of service (QoS) requirement
for users in the delay-sensitive slice 3, the average delay of
slice 3 has to meet the constraint: D(3)

ave(t) ≤ ζ, ∀t, where ζ is
the threshold of the average delay of slice 3. If the constraint
on the average delay is violated, the average delay penalty
η · max

{
D

(3)
ave(t)−ζ, 0

}
will be paid, where η is a positive

penalty coefficient.
Hence, we have the sum-utility of the entire network as the

sum of UC(t), U (1)(t), U (2)(t) and U (3)(t), i,e,

U(t) = UC(t) + U (1)(t) + U (2)(t) + U (3)(t). (30)



8

B. Sum-utility Maximization Problem Formulation
We aim to maximize the expected cumulative discounted

sum-utility of CUPS-E2E network slicing, while satisfying
the vTBS activation and resource allocation constraints, in-
cluding the vCBS transmit power, CP subcarrier, backhaul
link capacity, UP subcarrier, vTBS transmit power and vTBS
computing capability allocations. We formulate the sum-utility
maximization problem as follows

min
{V(t)}

∞∑
n=0

−γnU(t+ n)

s.t. C1 :
∑
k∈Nu

gCj,k ·yCk,l(t)≤1,∀j∈NC ,∀l∈NC
sub,

C2 :
∑

l∈NC
sub

yCk,l(t)=1,∀k∈Nu,

C3 : PCk (t)≤PCmax,∀k∈Nu,

C4 :
∑
k∈Nu

PCk (t)·gCj,k≤PCB ,∀j∈NC ,

C5 :
∑

s∈{1,2,3}

∑
k∈N(s)

u (t)

Rb
(s)
k (t)·g(s)j,k(t)≤Rb

T
B ,∀j∈N

(s)
T (t),

C6 :
∑

k∈N(s)
u (t)

g
(s)
j,k(t)·y

(s)
k,l (t)≤1,∀j∈N (s)

T (t),

∀l∈NU
sub, s∈{1, 2, 3},

C7 :
∑

s∈{1,2,3}

1− ∏
k∈N(s)

u (t)

[
1−y(s)k,l (t)

]≤1,∀l∈NU
sub,

C8 : P
(s)
k (t)≤P (s)

max,∀k∈N (s)
u (t), s∈{1, 2, 3},

C9 :
∑

s∈{1,2,3}

∑
k∈N(s)

u (t)

P
(s)
k (t)·g(s)j,k(t)≤P

T
B ,∀j∈N

(s)
T (t),

C10 :
∑

s∈{1,2,3}

∑
k∈N(s)

u (t)

f
(s)
k (t)·g(s)j,k(t)≤F

T
B ,∀j∈N

(s)
T (t),

C11 : a
(s)
T (t), y

(s)
k,l (t)≤{0, 1},∀k∈N

(s)
u (t),

∀l∈NU
sub, s∈{1, 2, 3},

C12 : pcovC (x0, t)≥ρ,∀x0≤−5dB,
C13 : D(3)

ave(t)≤ζ,
(31)

where γ ∈ [0, 1] is the discount factor, and variable set V (t) =[
yC(t),PC(t),a

(s)
T (t),Rb(s)(t),y(s)(t),p(s)(t),f (s)(t)

]
.

Besides, PCmax and P (s)
max are the maximum vCBS and vTBS

transmit power that can be allocated to a single user in slice
C and slice s, respectively. In the constraints, C3 and C8 are
the vCBS and vTBS transmit power constrains, respectively.
C1 and C6 guarantee that one CP subcarrier or UP subcarrier
can only be allocated to at most one user associated with the
same vCBS or vTBS at the same slot, respectively, while
C2 ensures that only one CP subcarrier can be allocated to
one user. C7 guarantees that one UP subcarrier can only be
allocated to users in at most one slice, which guarantees the
bandwidth isolation among network slices. From the analysis
in Section II-B, the expression

(
1−
∏
k∈N(s)

u (t)

[
1−y(s)k,l (t)

])
can be used as an indicator to represent whether UP subcarrier

l is allocated to slice s at slot t or not, therefore, the sum of
the indicators of three data service slices means the number
of slices that the same UP subcarrier allocated to at the same
slot, which should not be more than 1. C4, C5, C9 and
C10 guarantee that the total vCBS transmit power, backhaul
link capacity, vTBS transmit power and vTBS computing
capability allocated to all the users associated with one CBS
or TBS should not exceed the total available vCBS transmit
power, backhaul link capacity, vTBS transmit power and
vTBS computing capability of the CBS or TBS, respectively.
C11 represents the value range of the binary variables a(s)T (t)

and y
(s)
k,l (t). C12 and C13 are the CP coverage percentage

constraint of slice C and the average delay constraint of slice
3, respectively.

IV. DDPG-BASED SUM-UTILITY MAXIMIZATION

In this section, we will firstly give a brief introduction about
DDPG algorithm. Then, we will present the state space, action
space, and reward function of the sum-utility maximization
problem. Next, a DDPG-based sum-utility maximization algo-
rithm is designed to solve the sum-utility maximization prob-
lem for CUPS-E2E network slicing. Finally, the complexity of
our algorithm will also be analyzed.

A. DDPG Algorithm

As a deep reinforcement learning algorithm, DDPG can be
applied for high-dimensional continuous joint vTBS activation
and resource allocation for CUPS-E2E network slicing, which
involves two online neural networks and two target neural
networks: online critic network, online actor network, target
critic network and target actor network with the network
parameters θQ, θµ, θQ

′
and θµ

′
, respectively [38].

The objective function of DDPG algorithm is defined as the
expectation of the discounted accumulative reward, i.e.,

J(θµ) = E
[
r0 + γr1 + γ2r2 + · · ·+ γnrn

]
, (32)

where r0, r1, · · ·, rn denote the rewards at each time step.
The online actor network is used to learn the action selection

under a given state, which maps the current state st to a
certain action at based on the present policy µ(st|θµ). The
online critic network evaluates the action by a state-action
value function Q(st, at|θQ), the input of which includes
both the current state and the action obtained by the online
actor network. And the online critic network parameter θQ is
updated by the stochastic gradient descent method to minimize
the loss function of the online critic network. The loss function
L is represented by the mean square error, i.e.,

L = E[(yt−Q(st, at|θQ))2], (33)

where yt is the target state-action value, which contains the
current reward and the state-action value of the next time step.
Deep neural network (DNN) is used to approximate the policy
function µ(st|θµ) and state-action value function Q(st, at|θQ).
To make the state-action value more stable during the training
stage, the target actor network and target critic network are
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used to select the action and calculate the state-action value
of the next time step, respectively. Therefore, yt is given by

yt = rt+γQ′(st+1, µ′(st+1|θµ
′
)|θQ

′
), (34)

The online actor network parameter θµ is updated by the
gradient descent method, i.e.,

∇θµJ ≈ E[∇aQ(st, µ(st|θµ)|θQ)·∇θµµ(st|θµ)]. (35)

To explore potentially better strategies, a stochastic noise
No is introduced to affect the action selection during the
network model training stage, and the action selection with
the stochastic noise is expressed as

at = µ(st|θµ) +No, (36)

The target critic network parameter θQ
′

and target actor
network parameter θµ

′
are updated by the soft update method

with a small constant τ , i.e.,{
θQ

′←τθQ+(1−τ)θQ′
,

θµ
′ ← τθµ + (1−τ)θµ′

.
(37)

B. DDPG-based Sum-utility Maximization Algorithm

We design a DDPG-based sum-utility maximization algo-
rithm to find the optimal joint vTBSs activation, communica-
tion and computing resources allocation policy for CUPS-E2E
network slicing while ensuring that the long-term sum-utility
is maximum. The state space, action space and reward function
are as follows:

1) State Space: The state space St includes the wireless
channel states, user’s service requesting states and data ar-
rivals. Therein, the channel states contains the desired channel
power gains and interfering channel power gains in slice C and
slice s (s = 1, 2, 3) at current slot:

St = [hC(t),hC
inte(t),h

(s)(t),h
(s)
inte(t),o

(s)
u (t),Ah(s)(t)].

(38)

2) Action Space: The network operator has to decide the
activation of vTBSs and the allocation of communication
and computing resources for CUPS-E2E network slicing. For
network coverage slice (slice C), the network operator has
to decide the allocation of CP subcarrier and vCBS transmit
power. For data service slices (slice 1, slice 2 and slice 3),
the network operator has to decide the allocation of backhaul
link capacity, UP subcarrier, vTBS transmit power and vTBS
computing capability. Accordingly, we have the action space
vector At as:

At=[yC(t),PC(t),a
(s)
T (t),Rb(s)(t),y(s)(t),p(s)(t),f (s)(t)].

(39)

Especially, we relax the binary variables in yC(t), a(s)
T (t)

and y(s)(t) to continuous variables with the range of [0, 1]
to satisfy the continuity condition of the action space in
DDPG algorithm. Importantly, the network operator will check
whether the selected actions content the constraints of the sum-
utility maximization problem or not at each time slot, and
the actions which violate the constraints will be discarded or
modified. Specifically, some of the selected actions PC(t),
Rb(s)(t), p(s)(t) and f (s)(t) will be modified to the lower

values to satisfy the resource allocation constraints if they
exceed the limitations in constraints C3, C4, C5, C8, C9 and
C10. Besides, if some of the selected actions yC(t) and y(s)(t)
violate the CP subcarrier allocation indicator constraints C1
and C2 or the UP subcarrier allocation indicator constraints
C6 and C7, only one of the CP subcarrier allocation indicators
for a user or one of the UP subcarrier allocation indicators will
be reserved and the others will be modified to zero to satisfy
the constrains C1, C2, C6 and C7.

3) Reward Function: The reward function is denoted by the
sum-utility of CUPS-E2E network slicing, which is determined
by the current state St and action At:

Ret=U(St,At). (40)

Algorithm 1 Training Stage of DDPG-based Sum-utility
Maximization Algorithm

1: Initialization:
Initialize the parameters of online critic network θQ and
online actor network θµ;
Initialize the parameters of target critic network θQ

′← θQ

and online actor network θµ
′← θµ;

Initialize the sizes of replay buffer D and mini-batch M ;
2: for episode = 1, 2, ··· K do
3: Receive initial observation state S1: [hC(1),hC

inte(1),

h(s)(1),h
(s)
inte(1),o

(s)
u (1),Ah(s)(1)];

4: for t = 1, 2, ··· T do
5: Select action At based on the current deterministic

policy µ with the stochastic noise according to (36);
6: Take action At, obtain the immediate reward Ret

and generate the next state St+1;
7: Store the data set (St,At,Ret,St+1) in D;
8: if Replay buffer D is full do
9: Select M data sets randomly from D and build

a mini-batch (Si, Ai, Rei, Si+1) (i=1, 2, ···M);
10: Set Qi = ri+γQ

′(si+1, µ
′(si+1|θµ

′
)|θQ′

);
11: Update θQ by gradient descent method to

minimize the loss ∇θQJ ≈ 1
M

∑M
i [(Qi −

Q(si, ai|θQ)) ·∇θQQ(si, ai|θQ)];
12: Update θµ by gradient descent method according

to (35)
∇θµJ ≈ 1

M

∑M
i [∇aQ(si, ai|θQ)·∇θµµ(si|θµ)];

13: Soft update θQ
′

and θµ
′

according to (37);
14: Update the state: St←St+1;
15: end if
16: end for
17: end for
18: return

Our algorithm contains the training stage and validating
stage as shown in Algorithm 1 and Algorithm 2, respectively.
The agent learns the mapping function between the users’
UP service requests as well as wireless channel states and
the action, including the vTBS activation and resource alloca-
tion in the training stage. The vTBS activation and resource
allocation are determined based on the current deterministic
policy µ according to the current state St at each time step.
With the selected vTBS activation and resource allocation,
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Algorithm 2 Validating Stage of DDPG-based Sum-utility
Maximization Algorithm

1: Receive initial observation state S1: [hC(1),hC
inte(1),

h(s)(1),h
(s)
inte(1),o

(s)
u (1),Ah(s)(1)];

2: for t = 1, 2, ··· T do
3: Select action At based on the trained deterministic

policy µ: At = µ(St|θµ);
4: Take action At, obtain the immediate reward Ret and

generate the next state St+1;
5: Update the state: St←St+1;
6: end for
7: return Validating Results

the immediate reward Ret and the state of the next step
St+1 will be generated. In the training stage, the data set
(St,At,Ret,St+1) of each time step will be stored in a
space named replay buffer as the training data. A mini-batch of
the training data is sampled from the reply buffer at each time
step to update the parameters of the online critic network θQ

and online actor network θµ. In the validating stage, the joint
vTBS activation and resource allocation are determined by
the trained deterministic policy µ, and the immediate reward
is obtained at the same time.

C. Complexity Analysis

In this subsection, we analyse the computation complexity
of the training process of the DDPG-based Sum-utility Maxi-
mization Algorithm. DNNs are used as function approximators
for both the actor and critic networks of the DDPG-based al-
gorithm. The DNNs have one input layer, one output layer, and
several hidden layers, which are fully connected. Accordingly,
the computation complexity analysis is mainly based on the
DNN model [39].

The actor network takes the users’ requests and wireless
channel states as input and outputs the actions including the
resource allocation and vTBS activation policy, while the critic
network inputs the state and action information and outputs the
corresponding state-action value to evaluate the action selected
by the action network. Let Na

L and N c
L denote the numbers of

hidden layers of the actor and critic networks, respectively, and
the numbers of neurons in the mth hidden layer of the actor
and critic networks are denoted by nam and ncm, respectively.
In addition, we denote the dimensions of the state and action
spaces by |S1| and |A1|, respectively, which can be obtained
based on (38) and (39), and assume that the parameters of
the DNNs will converge after F conv1 episodes and N conv

1

time slots. Accordingly, the complexity of the DDPG-based
algorithm is expressed as

O

N conv
1 F conv1

na1 · |S1|+N
a
L−1∑
m=1

namn
a
m+1 + naNaL · |A1|

+

N conv
1 F conv1

nc1 · (|S1|+|A1|)+
NcL−1∑
m=1

ncmn
c
m+1+n

c
NcL

.
(41)

Next, we analyze the complexity of the DQL-based algo-
rithm. Firstly, the DQL algorithm requires to discretize the
action space of the sum-utility maximization problem. We
denote the dimension of the state space and the size of the
discretized action space of the DQL-based algorithm by |S2|
and |A2|, namely the dimensions of input and output of the
DQL network, respectively. Therein, |S2| = |S1|, and |A2|
depends on the resolution of discretization of the action space.
Let NQ

L and nQm denote the number of hidden layers of the
DQL network and the number of neurons in the mth hidden
layer, respectively, and assume that the parameters of the DQL
network will converge after F conv2 episodes and N conv

2 time
slots. Therefore, the complexity of the DQL-based algorithm
is expressed as

O

N conv
2 F conv2

nQ1 · |S2|+NQL −1∑
m=1

nQmn
Q
m+1 + nQ

NQL
· |A2|

.
(42)

Based on the above analysis, we can see that the complexity
of the DDPG-based algorithm is higher than that of the DQL-
based algorithm. This is because the complexity analysis of
the DDPG-based algorithm covers both the actor and critic
networks. However, the DQL-based algorithm divides the
continuous action space into a discrete action space, and
restricts the resource allocation for CUPS-E2E network slicing
to the finite discrete quantities, which deteriorates the sum-
utility obtained by the DQL-based algorithm as compared with
the DDPG-based algorithm.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present the simulation results to validate
our analysis. The simulation experiments are performed using
Python 3.7 with TensorFLow. According to [18], [32] and
[35], we set the parameters as follows unless special stated:
αC =4, αT =3.2, σ2 =−90dBm, κ=10−26(W ·s3/cycle3),
γ = 0.9, τ = 0.01, ρ = 0.70, ζ = 0.6ms, ξ = 0.3, η = 0.3.
We set λC = 0.0001(CBSs/m2), λT = 0.0200(TBSs/m2),
λu = 0.5000(users/m2), Spl = 10km×10km. Besides, we
assume that the maximum transmit powers of one physical
CBS and TBS are PCB =400W and PTB =30W , respectively,
and the maximum computing capability of one physical TBS
is FTB = 20M CPU cycle/s. The capacities of the backhaul
link connecting the CN with one physical CBS and TBS
are RbCB = 20Mbps and RbTB = 500kbps, respectively. The
downlink bandwidth in the UP is BU = 30MHz. Moreover,
according to the unit price settings of the utility in [8],
[40], [41] and [42], we set the unit prices of the incomes
and costs as follows: mC = 3000(/user), m1 = 0.001(s/bit),
m2 = 0.00005(s/CPU cycle), m3 = 1(/bit), ω = 0.0002(s/bit),
δ=0.005(/Hz) and β=50(/W).

To verify the performance of the proposed scheme, we
provide two coupled network slicing schemes and two bench-
mark resource allocation algorithms for comparison. Firstly,
we compare the proposed CUPS-E2E network slicing scheme
with two coupled schemes: 1) Conventional E2E network
slicing scheme where the CP and the UP are tightly coupled
[17]: the control signals and data signals are transmitted by
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the same physical base station (BS) in the common band-
width. 2) Software-Defined Hyper-Cellular Networks (SD-
HCN)-based E2E network slicing scheme: traditional BSs are
classified in to CBSs and TBSs, and the control and data
signals are transmitted by the dedicated CBSs and TBSs,
respectively in the common bandwidth [43]. Then, to reflect
the advantage of the DDPG-based algorithm in solving the
sum-utility maximization problem, we compare two typical
algorithms: the asynchronous advantage actor-critic (A3C)-
based algorithm and the fixed resource allocation algorithm
with the DDPG-based algorithm in terms of the throughput,
computing capability and sum-utility. Both A3C and DDPG
are actor-critic algorithms and can solve problems with con-
tinuous action spaces, therefore, we choose A3C algorithm
as a comparison algorithm. With the fixed resource allocation
algorithm, the communication and computing resources are
empirically allocated to each slice and keep constant no
matter how the data service requesting states change over time
[44]. Besides, the convergence of the DQL-based algorithm is
also compared with that of the DDPG-based and A3C-based
algorithms.
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Fig. 3: The reward under different actor’s learning rates and critic’s
learning rates
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Fig. 4: The reward under different sizes of replay buffer and mini-batch

The convergence of the DDPG-based algorithm is shown
in Fig. 3 and Fig. 4. Therein, Fig. 3 shows the convergence
for the DDPG-based sum-utility maximization algorithm under
different values of the actor’s learning rate αµ and critic’s
learning rate αQ as well as the convergence for the DQL-based
and A3C-based algorithms. As can be seen from Fig. 3, under
the same critic’s learning rate αQ = 10−3, the convergence
of the algorithm is faster when αµ = 10−2 than it when
αµ = 10−3. Similarly, under the same actor’s learning rate
αµ=10−3, the algorithm has a faster convergence when the
critic’s learning rate is larger (αQ=10−3). Fig. 4 shows the
impact of the sizes of replay buffer and mini-batch on the
convergence. In Fig. 4, we can see that under the same size
of mini-batch, the algorithm has a faster convergence when
the size of replay buffer is smaller. Similarly, under the same
size of replay buffer, the convergence is faster when the size
of mini-batch is 32 than it when the size of mini-batch is 50.
Besides, Fig. 3 and Fig. 4 show that the convergence of the
DDPG-based algorithm is slightly faster than the DQL-based
algorithm and the A3C-based algorithm under the same αµ

and αQ or the same sizes of replay buffer and mini-batch.
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Fig. 5 and Fig. 6 depict the CP coverage percentage of slice
C versus the SINR threshold x0 and the density of users,
respectively, for the proposed CUPS-E2E network slicing
scheme under various λC and other network slicing schemes.
The simulation results consider the distances among the users
and the CBSs when calculating the SINR for each user.
Compared with the conventional E2E network slicing scheme,
the SD-HCN-based E2E network slicing scheme could provide
a better coverage performance. This is because the coverage
control signals are transmitted via dedicated CBSs in the SD-
HCN-based E2E network slicing scheme, and the dedicated
CBSs would provide a higher transmit power. Moreover, both
Fig. 5 and Fig. 6 show that the CP coverage percentage of
the proposed CUPS-E2E network slicing scheme is higher
than that of the SD-HCN-based E2E network slicing and
conventional E2E network slicing schemes. For the proposed
scheme, coverage control signals and data signals are transmit-
ted in different frequency bands, and the interference between
them is reduced significantly, which improves the CP coverage
percentage of the network. Besides, Fig. 6 shows that the
CP coverage percentage decreases slightly with the increasing
density of users because the growing number of users in the
given area reduces the vCBS transmit power allocated to each
user, but the proposed CUPS-E2E network slicing scheme
can still provide a high CP coverage percentage (over 70%)
when the density of users is greater than 1.0 users/m2, which
guarantees massive user access even when the density of users
is high.
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Fig. 7: Throughput versus the density of TBSs

Fig. 7 plots the throughput of two typical eMBB slices
versus the density of TBSs for the proposed CUPS-E2E
network slicing scheme and other benchmark algorithms or
schemes. We observe that when the density of TBSs is below
0.0225 TBSs/m2, the interference from other TBSs is limited,
and the throughput increases with the density of TBSs because
of the reduction of path loss and the raising of vTBS transmit
power allocated to each user. With the increasing density of
TBSs (from 0.0225 to 0.0300 TBSs/m2), the interference
enhances and the throughput shows a decreasing trend. The

throughput of the CUPS-E2E network slicing scheme precedes
the SD-HCN-based E2E network slicing and conventional
E2E network slicing schemes, which shows the advantage of
the proposed scheme. We can also note that the throughput
obtained by DDPG-based algorithm is 3.2%, 40.7% higher
as compared with the A3C-based algorithm and the fixed
resource allocation algorithm, respectively. In addition, it is
worth noting that the throughput of slice 1 is also much higher
than that of slice 2, which satisfies the throughput performance
requirement of slice 1.
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Fig. 8: Computing capability versus the density of TBSs

Fig. 8 shows the computing capability of two typical eMBB
slices versus the density of TBSs for all algorithms and
schemes. Upon increasing density of TBSs, the number of
users associated with one physical TBS decreases, and the TBS
is able to provide a higher computing capability for each user.
Therefore, the computing capability is also increased almost
linearly with the density of TBSs. Compared with the A3C-
based algorithm and the fixed resource allocation algorithm,
we can obtain better computing performance by the DDPG-
based algorithm. The computing capability of the proposed
CUPS-E2E network slicing scheme is same as that of the
SD-HCN-based E2E network slicing and conventional E2E
network slicing schemes because the separation of the CP and
the UP will not affect the allocation of computing resource.
Moreover, the computing capability of slice 1 is much lower
than slice 2, which contents the computing capability require-
ment of slice 2.

Fig. 9 plots the average delay of slice 3 versus the density of
TBSs for all algorithms and schemes. We note that when the
density of TBSs is below 0.0225 TBSs/m2, the average delay
decreases rapidly with the increasing density of TBSs because
of the promotion of the backhaul link capacity, computing
capability and downlink rate of each user and the reductions of
the queue backlogs. The backhaul link capacity and computing
capability allocated to each user will increase continuously
with the denser deployment of the TBSs (from 0.0225 to
0.0300 TBSs/m2), while the downlink rate of each user
will decrease because of the enhancement of the interference.
Therefore, the backlogs of the backhaul link queues and
computing queues will continue to reduce and the backlogs
of the wireless access link queues will increase. Accordingly,
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Fig. 9: Average delay versus the density of TBSs

the average delay will decrease slowly and tend to be stable
when the density of TBSs exceeds 0.0225 TBSs/m2. Fig. 9
also shows that we can obtain better delay performance by
the DDPG-based algorithm as compared with the A3C-based
algorithm and the fixed resource allocation algorithm. Besides,
the average delay of the proposed CUPS-E2E network slicing
scheme is lower than that of the SD-HCN-based E2E network
slicing and conventional E2E network slicing schemes because
the improvement of the downlink rate of each user in the
proposed scheme makes the queue backlogs lower than the
SD-HCN-based E2E network slicing and conventional E2E
network slicing schemes.

Fig. 10(a) depicts the utility versus the density of CBSs.
When the density of CBSs is below 6 × 10−5 CBSs/m2, the
interference from other CBSs is limited and the number of
users covered by the CP increases with the density of CBSs.
Therefore, the utility of slice C is also incremental upon
increasing density of CBSs. When the CBSs are deployed
densely (from 6× 10−5 to 10−4 CBSs/m2), the CP coverage
percentage saturates and the utility of slice C keeps steady.
Moreover, the impact of the density of CBSs on the utilities
of the data service slices is also reflected in Fig. 10(a): when
the CBSs are deployed sparsely (below 5× 10−6 CBSs/m2),
there are only a few number of users covered by the CP,
and the communication and computing resources allocated to
each user will not change almost with the number of covered
users. Hence, the total throughput and the total computing
capability increase with the number of covered users, and
the utilities of slice 1 and slice 2 increase near-linearly upon
increasing density of CBSs. The number of the covered users
is further increasing with the denser deployment of CBSs,
and the communication and computing resources allocated to
each user decrease relatively because of the inherent resource
limitation. Consequently, the total throughput and the total
computing capability keep almost stable with the increasing
number of covered users and therefore the utilities of slice
1 and slice 2 keep steady nearly with the increment of the
density of CBSs (over 5× 10−6 CBSs/m2) as well. However,

the tendency of the utility of slice 3 with the density of CBSs
is different from that of the two eMBB slices. The utility of
slice 3 decreases first with the increasing density of CBSs. This
is because the total queue length grows with the incremental
number of the covered users when the density of CBSs is
below 6× 10−5 CBSs/m2, and especially the reduction of the
computing capability and downlink rate of the individual user
further increases the total queue length when the density of
CBSs is between 5× 10−6 CBSs/m2 and 6× 10−5 CBSs/m2.
And with the further increment of the density of CBSs (over
6 × 10−5 CBSs/m2), the utility of 3 tends to be stable due
to the saturation of the number of covered users. Finally, the
sum-utility of the entire network increases rapidly when the
density of CBSs is below 5× 10−6 CBSs/m2. And the sum-
utility keeps almost steady when the density of CBSs exceeds
5× 10−6 CBSs/m2 because of the mutual cancellation of the
utilities of slice C and slice 3.

Fig. 10(b) illustrates the utility versus the density of TB-
Ss. Upon increasing density of TBSs, the utility of slice 1
increases gradually first and then decreases when the TBSs
are deployed densely, which is in accord with the throughput
performance of slice 1 as depicted in Fig. 7. While the utility
of slice 2 increases linearly with the increasing density of
TBSs, which conforms to the computing capability perfor-
mance of slice 2 as illustrated in Fig. 8. And the utility
of slice 3 increases evidently first because of the reduction
of the slice 3’s delay and then increases slowly due to the
delay of tends to be stable with the increasing density of
TBSs, which conforms to the delay performance of slice 3 as
illustrated in Fig. 9. Additionally, the utility of slice C keeps
steady with the increasing density of TBSs. Fig. 10(a) and Fig.
10(b) together show that the sum-utilities of the SD-HCN-
based E2E network slicing and conventional E2E network
slicing schemes are worse than that of the proposed CUPS-
E2E network slicing scheme. Therefore, the proposed scheme
guarantees that the network operator obtains better sum-utility.
Conventional E2E network slicing scheme is not compared in
Fig. 10(a) because the control signals are not transmitted by
the dedicated CBSs in this scheme. We can also note that
the network operator could get a higher sum-utility by the
DDPG-based algorithm obviously as compared with the fixed
resource allocation algorithm, and the sum-utility obtained by
the DDPG-based algorithm is slightly better than that obtained
by the A3C-based algorithm. The results demonstrate that the
DDPG-based algorithm performs better than others in solving
the sum-utility maximization problem.

VI. CONCLUSION

In this paper, we have studied the sum-utility maximization
for CUPS-E2E network slicing, where the CP coverage and
UP services are decoupled for four E2E network slices: one
for CP coverage, one for UP high-throughput services, one
for UP computation-intensive services, and the other for UP
delay-sensitive services. The utilities of the four E2E network
slices are defined considering their heterogeneous performance
metrics. To maximize the sum-utility of the entire network,
we have employed a DDPG-based sum-utility maximization



14

0.2 0.4 0.6 0.8 1.0
Density of CBSs (CBSs/m2) 1e−4

0

1

2

3

4

5

6

7

8

Ut
ili

ty

1e8
Entire (CUPS-E2E)-DDPG
Slice C (CUPS-E2E)
Slice 1 (CUPS-E2E)
Slice 2 (CUPS-E2E)
Slice 3 (CUPS-E2E)
Entire (CUPS-E2E)-A3C
Entire (SD-HCN)
Entire (CUPS-E2E)-Constant

(a)

0.010 0.015 0.020 0.025 0.030
Density of TBSs (TBSs/m2)

0

1

2

3

4

5

6

7

8

Ut
ilit

y

1e8
Entire (CUPS-E2E)-DDPG
Entire (CUPS-E2E)-A3C
Entire (CUPS-E2E)-Fixed
Slice C (CUPS-E2E)
Slice 1 (CUPS-E2E)
Slice 2 (CUPS-E2E)
Slice 3 (CUPS-E2E)
Entire (Conventional)
Entire (SD-HCN)

(b)

Fig. 10: Utility versus the density of CBSs and TBSs

algorithm that jointly optimizes the vTBS activation and the
allocation of CP subcarrier, vCBS transmit power, backhaul
link capacity, UP subcarrier, vTBS transmit power and vTBS
computing capability. Simulation results have shown that the
proposed CUPS-E2E network slicing scheme in conjunction
with a DDPG-based sum-utility maximization algorithm can
support the wide-coverage and massive access requirements,
as well as the high-throughput, computation-intensive and
delay-sensitive services simultaneously, and outperforms the
SD-HCN-based E2E network slicing and conventional E2E
network slicing schemes in terms of the sum-utility, coverage
percentage, throughput and delay.
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