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Abstract—The performance of spectrum sensing using the
recovered secondary frames is analyzed. Unlike the previous
work that assumes perfect decoding of the secondary signal,
the new analysis takes the decoding errors into account and
therefore provides a more realistic comparison between the new
model and the conventional model. Both the receiver operating
characteristics curves for spectrum sensing and the achievable
throughput for data transmission are derived. Effects of fad-
ing and error control codes are also investigated. Numerical
results show that the new model that considers the decoding
error outperforms the conventional model when the number of
transmitted secondary frames is below a certain threshold. An
upper bound performance can also be obtained by ignoring the
decoding error. The threshold is determined by the primary user
traffic, the spectrum sensing technique and the secondary signal
modulation scheme.

Index Terms—Achievable throughput, cognitive radio, spec-
trum sensing.

I. INTRODUCTION

COGNITIVE radio has been proposed as a promising
solution to the spectrum scarcity problem caused by the

conflict between spectrum congestion and spectrum under-
utilization [1]. It provides the secondary users (SU) with
opportunistic access to the licensed bands through identifying
the unoccupied spectrum holes. By allowing this opportunistic
access, a better spectrum utilization can be achieved [2].
However, this opportunistic access also leads to possible
degradation in the primary user (PU)’s service quality due
to the possible interference from the SUs. It is therefore a
crucial requirement for the SUs to correctly identify the PU’s
existence to minimize this interference [3]. This is achieved
through spectrum sensing. Commonly used spectrum sensing
methods include matched-filtering detection, energy detection,
cyclostationary detection and feature detection [4].

In the draft IEEE 802.22 standard [5], a frame structure
is adopted which allows the SU to perform spectrum sensing
periodically. In this structure, the entire secondary link time is
divided into multiple consecutive frames. Each frame consists
of a sensing period and a transmission period. During the
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sensing period or the “quiet” period, the SUs stop all their
transmissions and perform spectrum sensing in the licensed
channel. At the end of the “quiet” period, if the channel is
considered to be idle, the SUs carry out their transmission in
the following transmission period. Otherwise, they will wait
until the next frame arrives to sense the channel again in the
“quiet” period before any secondary usage. In the rest of this
paper, this structure is referred to as the conventional model. In
the conventional model, more sensing time means less trans-
mission time for a fixed frame length. Thus, there exists an
optimal sensing time that maximizes the achievable throughput
[6], [7]. Adaptive scheduling of this optimal sensing time has
been studied in [7].

To increase the achievable throughput further, in [8] a new
model was proposed. In this model, the entire secondary link
time is still divided into multiple consecutive frames. The
initial sensing is performed in the “quiet” periods of the first
several conventional secondary frames until the idle status of
the channel is identified or acquired. In the following frames,
the whole secondary frame is devoted for data transmission
without any dedicated sensing or “quiet” period. The following
sensing is only performed by using the recovered received
secondary frames after the SU signal is decoded and removed
from the received secondary frame at the SU receiver.

This model has several advantages over the conventional
model. First, by using the whole secondary frame for sensing
to track the status of the channel after it is initially detected
free, the sensing time increases and therefore, the sensing
accuracy improves. This is especially important for feature
detection where a long sensing time is normally required.
Second, by using the whole secondary frame for transmission,
the achievable throughput of the SU is maximized. Third, the
calculation of the optimal sensing time for each frame is no
longer required as the secondary frame does not have any
dedicated sensing period and only the recovered secondary
frame is used for sensing. The main disadvantage of this
new model is that in reality, the recovered received secondary
frames used in the following sensing may be corrupted by the
SU signals due to decoding errors. This reduces the sensing
accuracy. In [8], it was assumed that the SU signal can always
be correctly decoded and be completely removed from the
received secondary frame. Therefore, the new model always
benefits from a longer sensing time.

In reality, decoding errors may occur such that the SU signal
will not be completely removed. In this case, the sensing
accuracy based on the recovered received secondary frame

1536-1276/12$31.00 © 2012 IEEE



TANG et al.: PERFORMANCE EVALUATION OF SPECTRUM SENSING USING RECOVERED SECONDARY FRAMES WITH DECODING ERRORS 2935

will be reduced by the decoding error. The reduced sensing
accuracy will consequently degrade the SU data transmission
in the next frame due to possible interferences from the PU
that has been missed. This causes even larger decoding error.
Eventually, the afore-mentioned advantage of the new model
may be compromised by the accumulated errors. Hence, in
reality, the results in [8] only provided an ideal upper bound of
the system performance. Furthermore, the system performance
in [8] was analyzed for only one single frame by assuming
a constant occupancy status of the PU. However, even when
there is no decoding error, the data transmission suffers from
the sensing error based on the previous frame. This effect does
not occur when only a single frame is considered. As well, the
PU may change its occupancy status throughout the multiple
frames. A more comprehensive investigation that considers the
decoding error and multiple consecutive frames with PU traffic
is crucial in deploying the new model. It is therefore of great
interest to investigate whether this new model can outperform
the conventional model or when the advantages will outplay
the disadvantages in more realistic situations.

In this paper, the performance of the new model proposed in
[8] is further developed to contain multiple consecutive frames
and is analyzed by taking into account the decoding errors with
PU traffic to give a more comprehensive comparison between
the conventional model and the new model. The effects of dif-
ferent types of SU modulation schemes and different sensing
techniques are also studied. In order to fully examine the new
model, the effects of fading and error control codes (ECC) are
also investigated. Numerical results show that, while the new
model benefits from the longer sensing period and the longer
transmission period by using the whole secondary frame for
data transmission and the whole recovered secondary frame
for spectrum sensing in the tracking phase, respectively, as the
number of transmitted secondary frames increases, the new
model will lose its advantages and eventually underperform
the conventional model due to the accumulated errors from
spectrum sensing and decoding. Thus, there exists a threshold
for the number of the transmitted secondary frames in the new
model below which it outperforms the conventional model.
This threshold is affected by the spectrum sensing technique
as well as the SU signal modulation scheme.

II. SYSTEM MODEL

Consider a cognitive radio network with two types of users
operating in the same licensed channel: a PU that has the right
to access the channel at any time and a SU that accesses the
channel on an opportunistic basis. The secondary link operates
on a frame-by-frame basis, with N consecutive frames each
of which has a frame duration of T . Throughout the N
frames, the occupancy status of the PU may change depending
on the primary traffic, which is defined by the PU channel
holding time. Several channel holding time distributions have
been proposed for legacy systems in the literature, such as
exponential [9] [10], log-normal [11] [12], Gamma [13] [14]
and Erlang distributions [15]. The probability that the PU
changes its occupancy status during the nth frame is expressed
using the probability mass function (PMF) of the channel

holding time as [16]

pλ(n) = F (nT )− F
(
(n− 1)T

)
, (1)

where F (t) is the cumulative distribution function (CDF) of
the channel holding time and n = 1, 2, ......N is the frame
index. Assume that the PU has an exponential holding time
with mean parameter λ [10], as it is the most commonly used
channel holding time distribution model and cognitive radio
aims to reuse their bands. Then, F (t) can be expressed as
F (t) = 1 − e−λt. Other distributions can be examined in
a similar way. It is further assumed that the PU does not
change its occupancy status during each secondary frame. This
is assumed for both the conventional model and the new model
to provide a fair comparison between these two models. It is
also the case when the secondary frame is short or when the
primary user traffic is low (long holding time), similar to the
assumption in [7], [8], [10]. An extension to the case when
the PU arrives or leaves during each secondary frame is very
difficult and will be a topic for future research.

A. Conventional model

In the conventional model, each frame is divided into a
sensing period τ and a transmission period T−τ . The sensing
period acts as a “quiet” period from the SU’s point of view, as
during the sensing period the SU data transmission is stopped.
The received signal at the SU receiver during the sensing
period of the nth frame is sampled at a rate of fs. The samples
used for spectrum sensing can be expressed as

Ycon,i(n) = asp,i + wi (2)

where i = 1, 2, . . . . . . τfs, is the sample index, a = 0, 1
represents the status of the PU with 0 being absent and 1 being
present, sp,i denotes the received PU signal sample and wi is
the additive white Gaussian noise sample. If energy detection
is used for spectrum sensing, the sensing process becomes a
binary hypothesis test problem as

ycon(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τfs∑
i=1

w2
i , H0,

τfs∑
i=1

(sp,i + wi)
2
, H1

(3)

where H0 represents the hypothesis that the PU is absent hence
the channel is idle, and H1 represents the hypothesis that the
PU is present hence the channel is busy.

Two probabilities are useful in sensing: the probability of
false alarm, defined as the probability that the SU falsely
considers the PU to be present while it is actually absent, and
the probability of detection, defined as the probability that the
presence of the PU is correctly identified by the SU. In the
conventional model using energy detection, the probability of
detection and the probability of false alarm of the nth frame
can be obtained as [17]

PdconED(n) (τ) =
1

2
erfc

(
ηconED(n) − τfsγp − τfs

2
√
2τfsγp + τfs

)
(4)

and

PfconED(n) (τ) =
1

2
erfc

(
ηconED(n) − τfs

2
√
τfs

)
(5)
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respectively, where ηconED(n) is the decision threshold for
the conventional model using energy detection and γp is the
received PU SNR.

At the end of the “quiet” period, there are two sce-
narios where the SU transmission will start: the sensing
correctly identifies the absence of the PU, or the sensing
mis-detects the presence of the PU [6]. In the conven-
tional model, the occurring probabilities of these two scenar-
ios can be expressed as PH0con (n)

(
1− PfconED(n)(τ)

)
and

PH1con (n)

(
1− PdconED(n)(τ)

)
, respectively, where PH0con (n)

and PH1con (n) are the probabilities that the PU is absent or
present at the beginning of the nth frame, respectively. They
can be derived as

PH0con (n) = PH0con (n−1)

(
1−pλ(n)

)
+PH1con (n−1)pλ(n) (6)

and

PH1con (n) = PH0con (n−1)pλ(n)+PH1con (n−1)

(
1−pλ(n)

)
(7)

where pλ(n) is given in (1), and PH0con (0) and PH1con (0) are
the a priori probabilities of the two hypotheses for n = 0,
respectively .

Define γs as the SU SNR. The channel capacity can be
expressed as C0 = log2 (1 + γs) and C1 = log2

(
1 + γs

1+γp

)
for the cases when the PU is absent or present, respectively.
The total throughput of the N consecutive frames can be
obtained as

RconED(τ) =

N∑
n=1

(
PH0con (n)

(
1− PfconED(n)(τ)

)
C0

+PH1con (n)

(
1− PdconED(n)(τ)

)
C1

)T − τ

T
.

(8)

In the above equation, the term T−τ
T reflects the penalty on

the SU data transmission due to the “quiet” period used for
the spectrum sensing in each frame of the conventional model.

The above analysis applies to energy detection. One can also
derive it for feature detection [18]. Assume that the received
PU samples are Gaussian with mean zero and correlation
ρ|i−j|, where ρ is a constant and |i − j| is the sample time
difference. Define the sample auto-correlation of the received
signal in the conventional model as

θcon(l) =
1

τfs

τfs−1∑
i=1

Ycon,iYcon,i−l, l = 1, ......, L− 1

(9)
where Ycon,i is the ith received sample and L is the smoothing
factor.

The sample correlation matrix of the received signal is then
expressed as [19]

AYcon =⎛
⎜⎜⎜⎝

θcon(0) θcon(1) . . . θcon(L− 1)
θcon(1) θcon(0) . . . θcon(L− 2)

...
...

...
...

θcon(L − 1) θcon(L− 2) . . . θcon(0)

⎞
⎟⎟⎟⎠ .

(10)
If the maximum-eigenvalue detector is used in this case, the

probability of detection and the probability of false alarm can

be derived as [20]

PdconME(n)(τ) =

1− TW1

(
ηconME(n)τfs − τfsϑmax

σ2
w

− μcon

υcon

)
(11)

and

PfconME(n)(τ) = 1− TW1

(
ηconME(n)τfs − μcon

υcon

)
(12)

respectively, where TW1(·) is the Tracy-Widom distri-
bution of order 1, ηconME(n) is the decision threshold
for the maximum-eigenvalue detector in the conventional
model, ϑmax is the maximum eigenvalue of the sta-
tistical correlation matrix of the PU signal, σ2

w is the

noise variance, μcon =
(√

τfs − 1 +
√
L
)2

and υcon =(√
τfs − 1 +

√
L
)(

1√
τfs−1

+ 1√
L

)
.

Hence, for a pair of target probabilities PdconME(n)(τ) = P
′
d

and PfconME(n)(τ) = P
′
f , the minimum number of samples

required at spectrum sensing can be derived from (11) and
(12) as

MconME(n) =
υconσ

2
w

ϑmax

(
TW−1(1− P

′
f )− TW−1(1 − P

′
d)
)
.

(13)
If covariance-based detector is applied in the conventional

model during the spectrum sensing, the probability of detec-
tion and the probability of false alarm can be derived as

PdconCOV (n)(τ) =

1−Q

( 1
ηconCOV

(n) +
αLγp

ηconCOV (n)(γp+1) − 1√
2

τfs

)

(14)
and

PfconCOV (n)(τ) =

1−Q

( 1
ηconCOV

(n)

(
1 + (L− 1)

√
2

τfsπ

)
− 1√

2
τfs

)

(15)
respectively, where Q(t) = 1√

2π

∫∞
t

e−u2/2du, ηconCOV (n) is
the decision threshold for the covariance-based detector and
αL = 2

L

∑L−1
l=1 (L − l)|E [sp,isp,i−l] /E

[
s2p
] | with E

[
s2p
]

being the PU signal power. Hence, for a pair of target
probabilities PdconCOV (n)(τ) = P

′
d and PfconCOV (n)(τ) = P

′
f

using the covariance-based detector, the minimum number of
samples required to achieve these targets in this case can be
derived from (14) and (15) as

MconCOV (n) = 2

(
γp + 1

αLγp

(
Q−1(1− P

′
d)(1 +

L− 1√
π

)

−Q−1(1− P
′
f )(1 +

αLγp
γp + 1

) +
L− 1√

π

))2

.

(16)

The achievable throughput of the conventional model using
feature detection can also be derived by using same method
as (6) - (8), but replacing the probability of detection and the
probability of false alarm with (11) and (12) for the maximum-
eigenvalue detection and with (14) and (15) for the covariance-
based detection.
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B. Ideal upper bound of the new model

In the new model, after an initial spectrum sensing that
acquires the idle status of the licensed channel, the SU carries
out data transmission for the entire duration of T in the
following secondary frames. At the SU receiver, the SU signal
is decoded and deducted from the received secondary frame.
The recovered received secondary frame is then used for
spectrum sensing. At the end of spectrum sensing, the SU
stops data transmission in the next frame if spectrum sensing
considers the PU to be present. Otherwise, the SU transmission
continues in the next frame [8]. In this model, both spectrum
sensing and data transmission are performed using the entire
frame duration of T after the licensed channel is acquired.
Then, the received secondary frame at the secondary receiver
in the nth frame can be expressed as

Yide,j(n) = asp,j + ss,j + wj (17)

where j = 1, 2, . . . . . . T fs, is the sample index, ss,j is the
sample of the secondary signal and all the other symbols are
defined as before.

Ideally, as was assumed in [8], the decoding process for
the received secondary frame is error-free. The SU signal can
then be completely removed from the received signal in (17).
The recovered received secondary frame used for the spectrum
sensing becomes exactly the same as (2) in the conventional
model, only with an increased number of samples due to
the whole frame being used for sensing. Therefore, when
energy detection is applied, the probability of detection and
the probability of false alarm in the nth frame for the ideal
case of the new model can be obtained by replacing τ in (4)
and (5) with T to give

PdideED(n) (T ) =
1

2
erfc

(
ηideED(n) − Tfsγp − Tfs

2
√
2Tfsγp + Tfs

)
(18)

and

PfideED(n) (T ) =
1

2
erfc

(
ηideED(n) − Tfs

2
√
Tfs

)
(19)

respectively, where ηideED(n) is the decision threshold in this
case. One sees that sensing in the ideal case of the new model
has larger probability of detection or smaller probability of
false alarm than those in the conventional model, as T > τ
[8].

Also, in this case, the nth frame can only be used for data
transmission if spectrum sensing in the (n− 1)

th frame mis-
detects the PU’s existence or correctly identifies the PU’s ab-
sence. Therefore, the probability that the PU is actually absent
at the end of the (n−1)th frame and is correctly identified so
that the nth frame can be used for data transmission is derived
as
PH0ide

(n) = PH0ide
(n−1)

(
1− PfideED(n)(T )

) (
1− pλ(n)

)
+PH1ide

(n−1)

(
1− PdideED(n)(T )

)
pλ(n)

(20)
and the probability that the PU is present at the end of the
(n− 1)th frame and is mis-detected so that the nth frame is
used for data transmission is derived as
PH1ide

(n) = PH0ide
(n−1)

(
1− PfideED(n)(T )

)
pλ(n)+

PH1ide
(n−1)

(
1− PdideED(n)(T )

) (
1− pλ(n)

)
.

(21)

Since data transmission in the new model is carried out for
the entire frame duration of T , the transmission process does
not suffer from the penalty caused by the “quiet” period, as in
the conventional model. Thus, the total achievable throughput
of the N frames for the ideal case is

RideED =

N∑
n=1

(
PH0ide

(n)C0 + PH1ide
(n)C1

)
. (22)

When feature detection is applied for spectrum sensing, the
probability of detection and the probability of false alarm can
be obtained by replacing τfs with Tfs in (11) and (12) for
the maximum-eigenvalue detector, and in (14) and (15) for the
covariance-based detector. The achievable throughput can then
be derived by using (20) - (22) with the new probabilities of
detection and false alarm. Note that [8] only gives the results
of the nth frame in (18) and (19), which ignores the fact that
the sensing performance from the (n− 1)th frame will affect
that of the nth frame while our analysis considers this fact in
(20) and (21) .

III. REALISTIC ANALYSIS OF THE NEW MODEL

In reality, the decoding process for the received secondary
frame in the new model is not ideal. Consequently, the SU
signal may not always be correctly decoded and be completely
removed from the received secondary frame. The sensing ac-
curacy will therefore be adversely affected when the recovered
received secondary frame is used for spectrum sensing. This
further degrades the performance of the new model. Moreover,
neighboring frames will affect each other and all the frames
will be affected by the PU traffic. In the following, we start
with the decoding process. Based on the imperfect decoding,
we will derive the probabilities of detection and false alarm for
spectrum sensing while considering multiple frames with PU
traffic. Since spectrum sensing is performed after detection and
accurate channel estimates are needed for detection, perfect
channel state information (CSI) is assumed for spectrum
sensing. Moreover, channel estimation with active PU traffic is
a new topic that needs to be considered by secondary detection
not spectrum sensing, and channel estimation coupled with
spectrum sensing is beyond the scope of this paper.

A. Decoding

Consider binary phase shift keying (BPSK) for the SU
signal. The received secondary frame at the SU receiver in
the nth frame can be expressed as

Ynew,j(n) = asp,j + ss,j + wj (23)

where ss,j is the SU signal with ss,j = −√
εb or ss,j = +

√
εb,

and εb is the bit energy of the SU signal. Note that the SU
is assumed to be corrupted by additive white Gaussian noise
(AWGN) only and there is only one bit per symbol in BPSK.

The received secondary frame at the SU receiver is decoded.
Denote the total number of transmitted SU symbols as x.
The symbol duration of each SU signal symbol is ts = T

x .
Denote the a priori probabilities of a −√

εb and a +
√
εb being

transmitted as P(−√
εb) and P(+

√
εb), respectively. When the

PU is absent from the licensed channel, the received secondary
frame contains only the SU signal and noise. Thus, (23) can
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be simplified as Ynew,j(n) = ss,j+wj . In this case, the symbol
error rate of each SU symbol given that a −√

εb or a +
√
εb

is transmitted can be expressed as

BH0 = B
H0(−

√
εb)

= B
H0(+

√
εb)

= P (−√
εb|H0) = P (+

√
εb|H0) = Q

(√
2γs

)
.

(24)

Assume that out of the x transmitted symbols, q
0

symbols are
−√

εb and g0 of the q0 symbols are incorrectly decoded as
+
√
εb. Similarly, assume that k0 symbols out of the x − q0

transmitted +
√
εb are incorrectly decoded as −√

εb. Thus, for
a duration of (g0 + k0)ts, the SU signal is not removed from
the received secondary frame, whilst for a duration of (x −
g0−k0)ts, the SU signal is correctly decoded and completely
removed. Thus, when PU is absent, the conditional probability
of occurring for this case can be derived as

p(x, q
0
, g

0
, k

0
|H0) =

(
P(−√

εb)BH0

)g
0

(
P(−√

εb)

(
1−BH0

))q0−g
0
(
P(+

√
εb)BH0

)k
0

(
P(+

√
εb)

(
1−BH0

))x−q
0
−k

0

(25)

where independent symbols are assumed.
On the other hand, when the PU is present in the licensed

channel but is missed by the SU in the (n − 1)th frame, the
data transmission is still carried out in the nth frame. During
the decoding process, the PU acts as an interference to the SU
signal, and the symbol error rate of each SU symbol given that
a −√

εb or a +
√
εb is transmitted can be derived as

BH1 = B
H1(−

√
εb)

= B
H1(+

√
εb)

= P (−√
εb|H1) = P (+

√
εb|H1) = Q

(√
2γs

1+γp

)
.

(26)
Similarly, assume that out of the x transmitted symbols, q1

symbols are −√
εb and g1 of the q1 symbols are incorrectly

decoded as +
√
εb, and that k1 symbols out of the x − q1

transmitted +
√
εb are incorrectly decoded as −√

εb. Thus, for
a duration of (g1+k1)ts, the secondary signal is not removed
from the received secondary frame, whilst for a duration of
(x−g1−k1)ts, the secondary signal is correctly decoded and
completely removed. Thus, when PU is present, one has the
conditional probability of occurring for this case as

p(x, q
1
, g

1
, k

1
|H1) =

(
P(−√

εb)BH1

)g
1

(
P(−√

εb)

(
1−BH1

))q1−g
1
(
P(+

√
εb)BH1

)k
1

(
P(+

√
εb) (1−BH1)

)x−q
1
−k

1

.

(27)

B. Spectrum sensing

After the SU signal is decoded and deducted from the
received secondary frame, the recovered signal is used for
spectrum sensing. When the decoding error occurs such that
the SU signal is not removed from the received secondary
frame, the signal used for spectrum sensing is different from
those of the conventional model and the ideal case of the new
model. In this case, the decision variable or the received signal

energy for binary hypothesis test becomes

ynew(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0∑
j=1

(−2
√
εb + wj)

2
+

k0+g0∑
j=g0+1

(+2
√
εb

+wj)
2 +

Tfs∑
j=g

0
+k

0
+1

w2
j , H0,

g1∑
j=1

(sp,j − 2
√
εb + wj)

2
+

k1+g1∑
j=g

1
+1

(sp,j+

2
√
εb + wj)

2 +

Tfs∑
j=g

1
+k

1
+1

(sp,j + wj)
2 , H1.

(28)
Using the Gaussian approximation based on the central limit
theorem, the mean and variance of the decision variable in
(28) under hypothesis H0 and H1 can be derived as⎧⎪⎨

⎪⎩
mH0

= Tfs +
4γs
x

(g0 + k0)Tfs

σ2
H0

= 2x+
16γs
x

(g0 + k0)Tfs
(29)

and ⎧⎪⎨
⎪⎩

m
H1

= Tfs(1 + γp) +
4γs
x

(g1 + k1)Tfs

σ2
H1

= 2x+ 4γpTfs +
16γs
x

(g1 + k1)Tfs
(30)

respectively. The conditional probability of detection for (28)
can be derived as

PdnewED(n)(T, q1
, g

1
, k

1
) =

1

2
erfc

⎛
⎝ηnewED(n) −m

H1√
2σ2

H1

⎞
⎠
(31)

where ηnewED(n) is the decision threshold for the new model
with realistic decoding errors. The conditional probability of
false alarm for (28) can be derived as

PfnewED(n)(T, q0 , g0 , k0) =
1

2
erfc

⎛
⎝ηnewED(n) −m

H0√
2σ2

H0

⎞
⎠ .

(32)
The unconditional results are given by

PdnewED(n)(T ) =

x∑
q1=0

q1∑
g1=0

x−q1∑
k1=0

(
x

q1

)(
q1
g1

)(
x− q1
k1

)

·
(
p(x, q1, g1, k1|H1)PdnewED(n)(T, q1, g1, k1)

)
∑x

q1=0

∑q1
g1=0

∑x−q1
k1=0

(
x
q1

)(
q1
g1

)(
x−q1
k1

)
p(x, q1, g1, k1|H1)

(33)
and

PfnewED(n)(T ) =

x∑
q
0
=0

q
0∑

g
0
=0

x−q
0∑

k
0
=0

(
x

q
0

)(
q
0

g
0

)(
x− q

0

k

)

·
(
p(x, q

0
, g

0
, k

0
|H0)PfnewED(n)(T, q0

, g
0
, k

0
)
)

x∑
q
0
=0

q
0∑

g
0
=0

x−q
0∑

k
0
=0

(
x

q
0

)(
q
0

g
0

)(
x− q

0

k

)
p(x, q

0
, g

0
, k

0
|H0)

.

(34)
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In our paper, (33) is used in the Neyman-Pearson rule to
determine the detection threshold without q

1
, g

1
and k

1
so

that the PU is protected by guaranteeing the average detection
probability, because in practice the values of q

1
, g

1
and k

1

are usually unknown and thus, the conditional probability of
detection in (31) is averaged over (27) to remove them and
the PU can’t be protected against the instantaneous detection
probability that requires q

1
, g

1
and k

1
. The unconditional

results obtained after averaging are independent of q
1
, g

1

and k
1
. Moreover, obtaining threshold by using average and

instantaneous probabilities give almost identical performances,
as can be seen from the second paragraph in the right column
of Page 1067 in [6].

C. Achievable throughput for data transmission

After spectrum sensing, the whole following frame can be
used for data transmission if the sensing result favors the
absence of the PU. The probability that the nth frame is idle
and is used for SU data transmission due to correct spectrum
sensing at the (n− 1)th frame can be derived as

PH0newED
(n) = PH0new (n−1)

(
1− pλ(n)

)
x∑

q
0
=0

q0∑
g
0
=0

x−q
0∑

k
0
=0

(
x

q
0

)(
q
0

g
0

)(
x− q

0

k
0

)

·
(
p(x, q

0
, g

0
, k

0
|H0)

(
1− PfnewED(n)(T, q0

, g
0
, k

0
)
))

+PH1new (n−1)pλ(n)

x∑
q
1
=0

q
1∑

g
1
=0

x−q
1∑

k
1
=0

(
x

q
1

)(
q
1

g
1

)(
x− q

1

k
1

)

·
(
p(x, q

1
, g

1
, k

1
|H1)

(
1− PdnewED(n)(T, q1

, g
1
, k

1
)
))

(35)
and the probability that the nth frame is busy but is still used
for data transmission due to mis-detection at the (n − 1)th

frame can be derived as

PH1newED
(n) = PH0new (n−1)pλ(n)

x∑
q
0
=0

q
0∑

g
0
=0

x−q
0∑

k
0
=0

(
x

q
0

)(
q
0

g
0

)(
x− q

0

k
0

)

·
(
p(x, q

0
, g

0
, k

0
|H0)

(
1− PfnewED(n)(T, q0

, g
0
, k

0
)
))

+PH1newED
(n−1)

(
1− pλ(n)

)
x∑

q1=0

q
1∑

g1=0

x−q
1∑

k1=0

(
x

q1

)(
q
1

g1

)(
x− q

1

k1

)

·
(
p(x, q

1
, g

1
, k

1
|H1)

(
1− PdnewED(n)(T, q1

, g
1
, k

1
)
))

.

(36)
Using (35) and (36), the total achievable throughput of the N
frames when energy detection is used in the new model can
be derived as

RnewED =

N∑
n=1

(
PH0newED

(n)C0 + PH1newED
(n)C1

)
. (37)

Next, we derive results for feature detection. When the
SU symbols are independent, the covariance matrix of the
SU signal is diagonal. When maximum-eigenvalue detection

is applied, the conditional probability of detection and the
conditional probability of false alarm can be derived as

PdnewME(n)(T ) =

1− TW1

⎛
⎝ηnewME(n)Tfs − Tfsϑmax

σ2
w+σ2

ss

− μnew

υnew

⎞
⎠

(38)
and

PfnewME(n)(T ) = 1−TW1

(
ηnewME(n)Tfs − μnew

υnew

)
(39)

respectively, where ηnewME(n) is the decision threshold for
the new model when maximum-eigenvalue detection is ap-
plied, μnew = (

√
Tfs − 1 +

√
L)2, υnew = (

√
Tfs − 1 +√

L)( 1√
Tfs−1

+ 1√
L
), σ2

ss = εb, and εb is the secondary bit
energy defined as before.

When the covariance-based detection is applied, the prob-
ability of detection and the probability of false alarm can be
derived as

PdnewCOV (n)(T ) =

1−Q

⎛
⎝ 1

ηnewCOV (n)
+

αLγp

ηnewCOV (n)(γp+
k1+g1
Tfs

4γs+1)
− 1√

2
Tfs

⎞
⎠

(40)
and

PfnewCOV (n)(T ) =

1−Q

⎛
⎝ 1

ηnewCOV (n)

(
1 + (L− 1)

√
2

Tfsπ

)
− 1√

2
Tfs

⎞
⎠

(41)
where ηnewCOV (n) is the decision threshold for the new model
when covariance-based detection is applied and other symbols
are defined as before.

The achievable throughput of the new model when feature
detection is used for spectrum sensing can then be derived by
using the same method as that of (33) - (37) but replacing
the probability of detection and the probability of false alarm
with (38) and (39) for maximum-eigenvalue detection or (40)
and (41) for covariance-based detection. When other types
of modulation schemes are used for the SU signal, such as
quadrature phase shift keying (QPSK), the probability of error
will be different. However, the performance of the new model
with decoding errors can be analyzed in a similar way to that
in (28) - (41).

D. Effect of fading

In the above analysis, it is assumed that the SU is only cor-
rupted by AWGN. In practice, wireless signals may experience
fading and consequently it affects the system performance. In
this section, the effect of fading is analyzed.

Assume that the channel from the PU transmitter to the
SU receiver suffers from Rayleigh fading such that the fading
coefficient hp is Rayleigh distributed and the received PU
SNR is chi-square distributed with parameter γpu. This is a
reasonable assumption as the PU is normally far away from
the SU receiver without line-of-sight. Further, assume that the
secondary signal also suffers from Rayleigh fading with fading
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coefficient hs and parameter γsu. The received signal at the
secondary receiver becomes

YnewF,j(n) = ahpsp,j + hsss,j + wj (42)

where the notations are defined as before.
When the PU is absent, the received signal in (42) contains

only the corrupted SU signal and noise. As hs is random, the
symbol error rate in (24) is averaged to give [22]

BH0F =

∫ ∞

0

BH0

1

γsu
e

−γsu
γsu dγsu (43)

where γsu = h2
sγs, γsu = E(h2

s)γs, and E(h2
s) is the average

fading power of SU.
When the PU is present, taking into consideration the effect

of fading experienced by both the PU signal and the SU signal,
the symbol error rate in (26) is averaged to give

BH1F =

∫ ∞

0

∫ ∞

0

BH1

1

γsu
e

−γsu
γsu

1

γpu
e

−γpu
γpu dγsuγpu

(44)
where γpu = h2

pγp, γpu = E(h2
p)γp, and E(h2

p) is the average
fading power of PU. The probability of occurring in (25) and
(27) can then be re-derived by using the new symbol error
rates in (43) and (44).

The conditional probability of detection in (31) can be
derived as

PdnewF (n) (T, q1
, g

1
, k

1
) =

∫ ∞

0

∫ ∞

0

1

γsu
e

−γsu
γsu

· 1

γpu
e

−γpu
γpu PdnewED(n) (T, q1

, g
1
, k

1
) dγsudγpu.

(45)

The unconditional probability of detection can then be ob-
tained by averaging (45) over the probability of occurring to
remove the dependency on the values of q

1
, g1 and k1.

The conditional probability of false alarm in (32) can also
be derived as

PfnewF (n) (T, q0 , g0 , k0) =

∫ ∞

0

PfnewED(n) (T, q0 , g0 , k0)

· 1

γsu
e

−γsu
γsu dγsu.

(46)
The unconditional probability of false alarm is then be ob-
tained by averaging (46) over the probability of occurring to
remove the dependency on the values of q

0
, g0 and k0.

When the effect of fading channel is considered, the achiev-
able throughput of the SU transmission is also affected. When
the PU is absent, the average channel capacity C0 becomes

C0F =

∫ ∞

0

C0
1

γsu
e

−γsu
γsu γsu (47)

and when the PU is present, the average channel capacity C1

becomes

C1F =

∫ ∞

0

∫ ∞

0

C1
1

γsu
e

−γsu
γsu

1

γpu
e

−γpu
γpu dγsudγpu.

(48)
The total achievable throughput can then be derived by using
(47) and (48). In the above, perfect CSI is assumed in detection
and then used in sensing.

E. Coded Signals

In the above, the SU signal is assumed to be uncoded. In
practice, error control codes (ECC) can be applied to reduce
errors at the receiver [22].

Consider Golay (23, 12) coded BPSK signal for the SU
signal. Golay (23, 12) is a binary linear code with minimum
distance of dmin = 7 and can correct up to three errors in a
block of 23 elements [22]. When hard decision decoding is
applied at the secondary receiver, the probabilities of decoding
error in (24) and (26) become

BH0Golay =
23∑
z=4

(
23

z

)
Bz

H0
(1−BH0)

23−z (49)

and

BH1Golay =
23∑
z=4

(
23

z

)
Bz

H1
(1−BH1)

23−z (50)

respectively.
Alternatively, consider Hamming (7, 4) coded BPSK signal

for the SU signal. Hamming (7, 4) is a linear block code with
minimum distance of dmin = 3 and can correct only one error
in a block of 7 elements [22]. The probabilities of decoding
error in (24) and (26) become

BH0Ham =

7∑
z=2

(
7

z

)
Bz

H0
(1−BH0)

7−z (51)

and

BH1Ham =

7∑
z=2

(
7

z

)
Bz

H1
(1−BH1)

7−z (52)

respectively.
Substituting (49) and (50) or (51) and (52) for (24) and

(26) for the Golay (23, 12) coded secondary signal and the
Hamming (7, 4) coded secondary signal, respectively, the
performances of spectrum sensing and data transmission can
be analyzed in a similar way to before.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, the performance of the new model with de-
coding error is examined and compared with the performances
of the conventional model and the ideal case of the new
model by providing numerical examples. In the examination,
ts = 5 μs, T = 80 μs and fs = 1 MHz. The receiver
operating characteristics (ROC) for spectrum sensing and
the achievable throughput for data transmission in different
models are studied. Neyman-Pearson rule is applied to obtain
the decision threshold for spectrum sensing by setting the
target probability of detection to 0.9. Note that in the new
model with decoding errors, the unconditional probability of
detection in (33) is used when applying the Neyman-Pearson
rule, rather than the conditional probability in (31), as the
former does not require knowledge of g1, q1 and k1. Even
when g1, q1 and k1 were known, their difference is negligible
[6].

Fig. 1 shows the ROC curves of different models of the nth

frame when energy detection is applied for spectrum sensing
and different coding schemes are applied for the SU signal. In
this figure, γp =-5 dB and γs = 3 dB. Several observations
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Fig. 1. Comparison of the ROC curves for different models when energy
detection is applied with γp = -5 dB and γs = 3 dB for the nth frame.

10
−3

10
−2

10
−1

10
0

10
0

Pf

P
d

 

 
Conventional model with fading

Ideal case of the new model with fading

Realistic case of the new model with fading − BPSK

Realistic case of the new model with fading − QPSK

Fig. 2. Comparison of the ROC curves for different models when fading is
taken into consderation with γp = -5 dB and γs = 3 dB for the nth frame.

can be made from Fig. 1. First, the new model takes advantage
of the longer sensing period and thus, has a better sensing
performance. For the same target probability of false alarm,
it has higher probability of detection. Second, the ideal case
analyzed in [8] provides an upper bound of the sensing
performance by ignoring the decoding errors. As well, the
sensing accuracy is lower for uncoded QPSK than for uncoded
BPSK, because QPSK has a larger probability of error and
hence, more residual SU signal in the sample. Finally, when
ECC is applied, the sensing performance is improved as the
decreased BER results in less residual secondary signal in
the samples. Fig. 2 examines the effect of fading on the ROC
curves for different models of the nth frame. Energy detection
is applied for spectrum sensing and the SU signal is uncoded.
One sees that, when the effect of fading is considered, similar
observations to those from Fig. 1 can be made.

Fig. 3 examines the individual achievable throughputs for
different frames in different models. Energy detection is
applied for spectrum sensing. First, as the frame index n
increases, the individual achievable throughput of the con-
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Fig. 3. The individual achievable throughputs for different frames in different
models when energy detection is applied with γp = -5 dB and γs = 0 dB.
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Fig. 4. The total achievable throughputs for different models when energy
detection is applied with γp = -5 dB and γs = 0 dB.

ventional model remains the same, while in the new model,
the individual achievable throughput decreases and approaches
zero. This is because after the initial idle status of the licensed
channel is acquired, the probability that the nth frame can be
used for data transmission depends on the sensing results of
the previous n−1 frames in the new model. Since the probabil-
ity that all the previous n−1 frames have mis-detection or false
alarm decreases when n increases, the secondary transmis-
sion opportunity also decreases leading to smaller achievable
throughput. Second, the sensing performance degrades when
the decoding error occurs. Thus, in the realistic case of the new
model, the decrease of the individual achievable throughput is
faster than that in the ideal case. The speed of decreasing
can be reduced by using ECC. Moreover, for uncoded QPSK,
the decrease in the achievable throughput is more significant
than that for uncoded BPSK. When fading is considered, the
achievable throughput is significantly reduced compared with
the no-fading cases.

Fig. 4 examines the total achievable throughput of the N
consecutive frames in different models. In this figure, the
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Fig. 5. The effect of the primary user SNR on the threshold of the new
model when energy detection is applied with γs = 0 dB.
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Fig. 6. The effect of the frame duration on the threshold of the new model
when energy detection is applied with γp = -3 dB and γs = 0 dB.

energy detection is used and the PU’s mean channel holding
time is 10T . Although the total achievable throughputs for all
the models increase with the number of frames N, the total
achievable throughput in the conventional model increases
linearly, while it approaches a limit in the new model. Define
the number of frames for which the new and conventional
models have the same throughput as a threshold. When the
total number of frames is beyond this threshold, the new model
loses its throughput advantage even when the whole frame is
used for data transmission. The existence of this threshold
is caused by the dependence of the secondary transmission
opportunity on the sensing results of the previous frames, as
well as the accumulation of the decoding errors over frames.
When ECC is applied, the system performance becomes
almost the same as that of the ideal case due to the decrease in
BER. When fading is considered, there is no advantage for the
new model in this case. Thus, fading degrades the performance
of the new model while coding improves it, as expected.

Fig. 5 investigates the effect of the received PU SNR on
the threshold value of the number of transmitted secondary

10
−3

10
−2

10
−1

10
0

10
0

P
f

p d

 

 

Conventional model
Ideal case of the new model
Realistic case of the new model − BPSK
Realistic case of the new model − QPSK

Fig. 7. Comparison of the ROC curves for different models when maximum-
eigenvalue detection is applied with γp = -10 dB and γs = 0 dB.

frames in the new model. When γp increases at small values,
the new model takes advantage of a longer sensing duration to
capture more secondary transmission opportunities and hence,
the threshold of the new model increases. After γp reaches
certain values, about -1 dB in this case, the sensing result
is accurate enough such that the new model suffers more
from the PU interference and therefore the threshold decreases.
Moreover, when decoding error occurs, the threshold of the
new model decreases further.

Fig. 6 investigate the effect of the frame duration T on
the threshold of the new model. As can be seen from Fig.
6, there exists an optimal value of T where the threshold
of the new model or the advantage of the new model are
maximized. This can be explained as follows. At small values
of T , the advantage of the new model in spectrum sensing
increases as T increases. The threshold of the new model
therefore increases due to the increased secondary transmis-
sion opportunity. When the value of T increases further, as
shown in [6], the fraction of the frame used for transmission
becomes larger for the conventional model, and the sensing
period in the conventional model is significantly smaller than
the transmission period. In this case, the conventional model
will be similar to the new model. As well, since the channel
holding time parameter λ is fixed, the increase of the frame
duration leads to more status changes of the PU. This increases
the probability of decoding error and hence, degrades the
performance.

Fig. 7 compares the ROC curves in different models when
maximum-eigenvalue detection is applied for spectrum sens-
ing. In this figure, the smoothing factor is set at 5 and ρ is
set at 0.5. As can be seen, maximum-eigenvalue detection
has much better performance than energy detection in Fig.
1. Also, the sensing performance difference between the new
model and the conventional model is larger. Fig. 8 investigates
the individual achievable throughput versus the frame index
for different models when maximum-eigenvalue detection is
applied for spectrum sensing. As can be seen, due to the
improvement in the sensing performance as demonstrated in
Fig. 7, the individual achievable throughputs for both the
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Fig. 8. The individual achievable throughputs for different models when
maximum-eigenvalue detection is applied with γp = -10 dB and γs = 0 dB.
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Fig. 9. The total achievable throughputs for different models when
maximum-eigenvalue detection is applied, where γp = -10 dB and γs = 0
dB.

conventional model and the new model become larger com-
pared with Fig. 3. Again, the individual achievable throughput
decreases as the frame index increases. However, the speed
of decrease is smaller than energy detection in Fig. 3. Fig. 9
examines the total achievable throughput of the N consecutive
frames for different models when maximum-eigenvalue detec-
tion is applied for spectrum sensing. Again, in the conventional
model, the total achievable throughput increases linearly as
the total number of frames increases. The total achievable
throughput of the new model also increases with N . This
agrees with the previous finding in Fig. 4. However, it can
be noted that the rate of increase for the new model in this
case is much higher than that in Fig. 4. In other words, the
threshold value using maximum-eigenvalue detection is much
larger than that using energy detection. This is due to the
improvement in the sensing performance by using maximum-
eigenvalue detection.

Fig. 10 compares the ROC curves for different models when
covariance-based detection is applied for spectrum sensing.
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Fig. 10. Comparison of ROC curves for different models when covariance-
based detection is applied with γp = -5 dB and γs = 0 dB.
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  = 0.1 / T

 = 0.5 / T  

Fig. 11. The individual achievable throughputs for different models when
covariance-based detection is applied with γp = -5 dB and γs = 0 dB. Solid
lines are results with mean channel holding time 1

λ
= 10T and dotted lines

are results with 1
λ

= 2T.

As can be seen, when covariance-based detection is applied,
the performance of spectrum sensing is better than energy
detection presented in Fig. 1, while it is worse than that
of maximum-eigenvalue detection presented in Fig. 7. This
agrees with the findings in [20]. Again, the new model takes
advantage of the longer sensing period and has a better
performance than the conventional model. Fig. 11 compares
the individual achievable throughputs for different models
when covariance-based detection is used for spectrum sensing.
Compared with Fig. 3 and Fig. 8, it can be noticed that,
the local achievable throughput performance using covariance-
based detection falls between those for energy detection and
maximum-eigenvalue detection. This also agrees with the
findings from Fig. 10. Also, Fig. 11 examines the effect of
different mean channel holding time. When the mean channel
holding time 1

λ decreases from 10T to 2T , the performance
of the new model degrades, as a result of the increased PU
traffic. Similar findings can also be made for energy detection
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Fig. 12. The total achievable throughputs for different models when
covariance-based detection is used with γp = -5 dB and γs = 0 dB. Solid
lines are results with mean channel holding time 1

λ
= 10T and dotted lines

are results with 1
λ

= 2T .

and maximum-eigenvalue detection. Fig. 12 provides the total
achievable throughput for different models when covariance-
based detection is applied for spectrum sensing. In this case,
the threshold value of the new model is 8 frames for the ideal
case of the new model, 7 frames for the new model with
BPSK and 6 frames for the new model with QPSK. These
figures are larger than those of energy detection but smaller
than those of maximum-eigenvalue detection. When the mean
channel holding time is decreased, the system performance
degrades and the threshold value of the new model is reduced
to 3 frames. The effects of fading and coding can be examined
similarly for feature detection but they are not presented here
due to the length restriction.

V. CONCLUSION

The realistic performance of the new model proposed in [8]
has been analyzed and compared with that of the conventional
model and the ideal performance. It has been shown that,
when the decoding error is taken into account, the system
performance is degraded. Moreover, the new model has a
threshold below which it outperforms the conventional model
with multiple consecutive frames. This threshold depends
on the spectrum sensing technique and the secondary signal
modulation scheme. The new model is more suitable for
feature detection than for energy detection. Our results have
given detailed guidlines to the choices of these parameters for
best performance in practice.
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