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Abstract

In this work, an uplink power and bandwidth allocation problem for multiple services with multi-

homing technology is formulated for cognitive heterogeneous networks. The joint power and bandwidth

allocation with multiple services is subject to constraints in system available bandwidth, proportional

fairness transmission rate for non-real-time secondary mobile terminals (MTs), minimum required

transmission rate for real-time secondary MTs, interference power for primary base station (BS), and

total power consumption for each secondary MT. The joint power and bandwidth allocation problem with

multiple services based on risk-return model is formulated as a bargaining game framework, firstly. Then,

an optimal power and bandwidth allocation algorithm utilizing a dual decomposition method is proposed

to obtain Nash bargaining solution. Finally, a heuristic algorithm is proposed to reduce computational

complexity. Simulation results demonstrate the optimal and heuristic algorithms not only improve the

spectrum efficiency, but also guarantee the fairness for secondary MTs with non-real-time service.

Index Terms

Cognitive heterogeneous networks, multiple services, multi-homing technology, bargaining game,

dual decomposition method.

I. INTRODUCTION

Wireless communication networks become a heterogeneous environment with various wireless

networks. Different wireless networks have different characteristics. For example, in cellular
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network, macro network supports low-to-medium rate service, but it has a large coverage area.

On the other hand, femto network supports high rate service, but it is only deployed in hotspot

areas. Consequently, integrating macro network and femto network can help to provide various

classes of services for MTs [1, 2]. Cognitive radio can further improve the spectrum efficiency by

accessing the licensed spectrum opportunistically, which is known as the key technology in 5G.

In cognitive radio network, secondary MT can transmit over the licensed band, as long as the

interference at primary network is controlled within a proper interference level [3–7]. In order to

improve spectrum utilization efficiency, many international standardization organizations, e.g.,

IEEE 802.11af, 802.19 TG, and IEEE 802.22, develop standards for further development of

cognitive networks [8]. Additionally, multiple cognitive wireless networks overlap with each

other to constitute cognitive heterogeneous networks.

Existing studies in resource allocation for cognitive radio network can be divided into two

categories [9–20]. The first category is resource allocation for cognitive homogeneous network

[9–15]. The objective optimization of resource allocation in cognitive homogeneous network can

be spectrum efficiency [9–11], energy efficiency [12, 13] or user fairness [14, 15]. The second

category is resource allocation in cognitive heterogeneous networks [16–20]. They can be further

divided into resource allocation with single access [16–18] and resource allocation with multi-

homing technology [19, 20].

In cognitive homogeneous network, a resource allocation problem for relay-aided cognitive

radio network is investigated to maximize spectrum efficiency [9]. Further, an adaptive resource

allocation problem for multiuser orthogonal frequency division multiplexing (OFDM)-based

cognitive radio network with cooperative relays is studied in [10]. In [11], imperfect spectral

sensing is considered, and optimal resource allocation strategy is investigated to maximize

the ergodic throughput under the rate loss constraint for primary users. Different from [9–

11], an energy-efficient power allocation algorithm for single-user cognitive OFDM network

is proposed in [12]. An energy-efficient resource allocation problem based on risk-return model

for multiuser cognitive OFDM network is investigated in [13]. Considering the worst energy

efficiency and average energy efficiency, the energy efficient opportunistic spectrum access

strategies for multiuser cognitive OFDM network are studied in [14]. For guaranteeing user’s

fairness, a game theory resource allocation framework is developed in [15].

In cognitive heterogeneous femtocell networks, a packet scheduling framework considering
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the user’s priority is proposed to support the real-time and non-real-time services [16]. In order

to maximize the capacity while avoiding cross-tier interferences, a joint power and bandwidth

allocation algorithm is proposed in [17]. Further, a distributed joint power and bandwidth

allocation algorithm for cognitive heterogeneous femtocell networks is proposed in [18]. Existing

resource allocation mechanisms for cognitive heterogeneous femtocell networks mainly limit to

secondary MT to communicate with one secondary BS. However, in order to improve user’s

experience in cognitive heterogeneous networks, multi-homing capability can be carried out,

where the data stream from a secondary MT is split into multiple sub-streams and transmitted over

multiple secondary base stations (BSs) by different radio interfaces simultaneously1. In [19], a

call admission control algorithm based on inter-network cooperation is proposed via a Stackelberg

game framework for cognitive heterogeneous networks with multi-homing technology. In [20],

a video packet scheduling framework with stochastic quality of service (QoS) is proposed for

cognitive heterogeneous networks based on inter-network cooperation is investigated.

So far, existing power and bandwidth allocation algorithms in cognitive radio network focus on

the resource allocation in cognitive radio network with single access [9–18]. Due to the scarcity

of spectrum resource in cognitive radio network, the QoS requirement of secondary MTs can

not be guaranteed. Additionally, cognitive heterogeneous networks is an important scenario in

5G. Consequently, how to aggregate the spectrum resources in cognitive heterogeneous networks

to satisfy the QoS requirement of secondary MTs is an important problem. In order to solve

this problem, we introduce the multi-homing technology to cognitive heterogeneous networks,

and investigate the efficient resource allocation for cognitive heterogeneous networks with multi-

homing technology. Specially, we summarize our contributions as follows: (i) A novel network

architecture is proposed to aggregate the spectrum resources from different cognitive radio

networks, i.e., cognitive heterogeneous networks with multi-homing technology; (ii) An uplink

resource allocation problem with the multi-homing technology for the real-time service and non-

real-time service is formulated to jointly allocate power and bandwidth resources to different

radio interfaces at each secondary MT; (iii) The uplink joint power and bandwidth is modeled as

a bargaining game framework, and an optimal power and bandwidth allocation algorithm based

1In multi-homing scenario, each secondary MT can communicate with multiple secondary BSs. However, each secondary MT

can only communicate with one secondary BS in the classic cognitive wireless network. Consequently, multi-homing technology

increases the network diversity to improve the QoS of secondary MTs.
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on the dual decomposition method is proposed, and a heuristic algorithm is developed to reduce

the computational complexity. Simulation results demonstrate that the proposed algorithms not

only improve the spectrum efficiency, but also guarantee QoS for secondary MTs.

The rest of this work is organized as follows. The system model and cooperative game frame-

work are described in Section II and Section III, respectively. Section IV presents the optimal joint

power and bandwidth allocation solutions. The heuristic algorithm and computational complexity

analysis are given in Section V. Finally, performance evaluation and conclusions are given in

Sections VI and VII, respectively.

II. SYSTEM MODEL

In this section, the system model is described firstly. Then, the power consumption model is

presented.

A. System Description

There is a set, N = {1, 2, · · · , N}, of cognitive radio networks, which are operated by

different service providers2. In cognitive radio network n, there is a set, Sn = {1, 2, · · · , Sn},

of secondary BSs and a set, S∗n1
=
{

1, 2, · · · , S∗n1

}
, of primary BSs in the geographical region.

Since the coverage of secondary BSs for each cognitive radio network is different from those

of other networks and different cognitive radio networks have overlapped coverage in some

areas, the geographical region can be partitioned into multiple service areas, as shown in Fig.

1. There is a set, M = {1, 2, · · · ,M}, of secondary MTs in the geographical region and

Mn,s = {1, 2, · · · ,Mn,s} ∈ M is a subset of secondary MTs, which lie in the coverage area of

cognitive network n BS s. In the same cognitive network, interference mitigation is achieved by

interference management schemes [21, 22]. There are two types of secondary MTs, i.e., secondary

MTs with the real-time non-real-time services. The secondary MTs’ set with the real-time service

isMRT , and the number of real-time secondary MTs is MRT. On the other hand, the secondary

MTs’ set with the non-real-time service isMNRT, and the number of that is MNRT. In the setM,

secondary MTs from 1 to MNRT are secondary MTs with the non-real-time service. The others are

secondary MTs with the real-time service. Cooperative spectrum sensing algorithms can be used

2In this work, X is used for the set, X is used as the total count, and x is used as an index for the parameter.
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Figure 1: Cognitive heterogeneous networks.

for cognitive radio networks based on machine learning techniques, e.g., support vector machine

[23–25]. In this work, we adopt the underlay mode for cognitive heterogeneous networks [26].

Using this spectrum sensing mode, primary networks and secondary networks utilize the same

bandwidth. In order to protect the communication quality of primary networks, the interference

power at primary BS should be controlled according to the interference temperature model [27].

Using multi-homing mechanism and multiple radio interfaces, each secondary MT is able to

communicate with multiple secondary BSs simultaneously.

B. Power Consumption Model

The total consumed power at each interface for each secondary MT includes two components.

The first part, QF
n,s,m, is a consumed power of fixed circuit for each secondary MT’s interface.

The second part is a dynamic part referring to the consumed power of digital circuit, i.e.,

QD
n,s,m = Qref

D +σn,s,mBn,s,m/Bref . Qref
D is the power consumption of digital circuit for a reference

bandwidth, Bref , and σn,s,m is a proportional constant. For m /∈ Mn,s, Pn,s,m = QF
n,s,m =

QD
n,s,m = 0. Denote Qn,s,m = QF

n,s,m + Qref
D and ζn,s,m = σn,s,m/Bref . Consequently, the total

power consumption for each interface of secondary MT is [28, 29]

PT
n,s,m =

Pn,s,m
ρn,s,m

+Qn,s,m + ζn,s,mBn,s,m (1)
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where Bn,s,m is the bandwidth for cognitive network n BS s to communicate with secondary

MT m, ρn,s,m is the power amplifier efficiency for cognitive network n BS s MT m, and Pn,s,m

is the power for cognitive network n BS s MT m.

III. COOPERATIVE GAME FRAMEWORK

In cognitive heterogeneous networks, secondary MTs are able to cooperate in power and

bandwidth allocation to achieve the better performance. Additionally, secondary MTs aggregate

the offered bandwidth resources from different cognitive radio networks. In order to increase the

spectrum efficiency among secondary MTs, Nash bargaining game offers a cooperation incentive

power and bandwidth allocation3.

The allocated bandwidth resource by cognitive network n BS s is not larger than the total

bandwidth resource, i.e., ∑
m∈Mn,s

Bn,s,m ≤ Bn,s (2)

where Bn,s is the total available bandwidth at cognitive network n BS s.

The power consumption, Pm =
∑
n∈N

∑
s∈Sn

PT
n,s,m, for secondary MT m should satisfy the

maximum power constraint, i.e.,

Pm ≤ PT
m (3)

where P T
m is the total available power at secondary MT m.

The achieved transmission rate by secondary MT m to communicate with cognitive network

n BS s is

Rn,s,m = Bn,s,m log2

(
1 +

Pn,s,mh
CBS
n,s,m

n0Bn,s,m + IPrin1,s

)
(4)

where n0 is noise power spectral density, IPrin1,s
is the interference power caused by all primary

MTs at primary network n1 BS s, and hCBS
n,s,m is the channel gain for cognitive network n BS s

to communicate with secondary MT m.

In the geographical area, the distances between secondary MTs and secondary BSs are differ-

ent. Hence, the transmission path loss for different secondary MTs are different. For example,

3There exist many cooperative game models that can be used to solve this problem, e.g., coalition formation theory, and

bargaining game theory. Since the following cooperation incentive power and bandwidth allocation can be transformed into a

convex optimization problem, we adopt the bargaining game theory to obtain the global optimal power and bandwidth allocation

solution.
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the secondary MT close to secondary BS can obtain the higher transmission capacity, while the

secondary MT far away from secondary BS can only obtain the less transmission capacity. This

phenomenon leads to the hunger throughput for the secondary MT far away from secondary

BS. To guarantee the proportional fair transmission rate with the non-real time service in the

geographical area, we have

Rm+1

Rm

=
ϕm+1

ϕm
,m = 1, · · · ,MNRT (5)

where Rm =
∑
n∈N

∑
s∈Sn

Rn,s,m is the total achieved transmission rate for secondary MT m, and

ϕm is the fairness weight for secondary MT m.

Since there are MNRT secondary MTs with the non-real service, constraint (5) includes

MNRT − 1 independent equalities [30]. Additionally, they can be transformed into MNRT de-

pendent inequalities, i.e.,
Rbm+1cMNRT

Rm

≤
ϕbm+1cMNRT

ϕm
,m = 1, · · · ,MNRT (6)

where b•cMNRT
is the modulus based on MNRT with 1 ≤ b•cMNRT

≤ MNRT, e.g., b0cMNRT
=

MNRT and bMNRT + 1cMNRT
= 1.

Constraint (6) can be rewritten as

ϕbm+1cMNRT
Rm − ϕmRbm+1cMNRT

≥ 0,m = 1, · · · ,MNRT. (7)

The total achieved transmission rate with the real-time service should satisfy the required

minimum transmission rate using (8), e.g., video traffic4.

Rm ≥ Rmin
m ,m = MNRT + 1, · · · ,M. (8)

The interference at primary BS is∑
m∈Mn,s

Pn,s,mh
PBS
n1,s,m

≤ IThd
n1,s

. (9)

where IThd
n1,s

is the interference threshold for primary network n1 BS s, and hPBS
n1,s,m

is the channel

gain between primary network n1 BS s and secondary MT m.

The space of the radio power and bandwidth allocation, Υ , is

Υ = {(Pn,s,m, Bn,s,m) |(2), (3), (7)− (9), Pn,s,m ≥ 0, Bn,s,m ≥ 0} . (10)

4In order to improve the multiview video coding efficiency, variable block-size motion estimation, disparity estimation, and

multiple reference frames selection are adopted [31–33].
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Proposition 1. The space of the radio power and bandwidth allocation, Υ, is convex.

Proof. Since Appendix A proves that Rm is concave in Bn,s,m and Pn,s,m, the (2),(3),(7)-(9)

are concave. As Υ is described by linear and concave constraints, it is a concave set.

In this work, the general risk-return model is adopted [13]. The allocated power and bandwidth

for secondary MT is considered as an investment. In cognitive heterogeneous networks, loss of

useful power can be represented as a rate loss of primary MT. Additionally, define a real-valued

increasing, concave and normalized loss function, L (Pm), for a power Pm. Consequently, the

utility function for secondary MT m is

Um = Rm − L (Pm) (11)

where a linear rate loss function is L (Pm) = CmPm, and Cm is normalized average cost per unit

power for secondary MT to allocate resources. In this utility function about the bandwidth and

power, only the power consumption is considered as a part of costs. This is due to the fact that

the underlay model for cognitive wireless networks is adopted in this work. All the bandwidth

can be used by secondary MTs, and the power should be controlled to guarantee the interference

level at the primary BSs.

Since Nash Equilibrium (NE) in a non-cooperative game is not always efficient, we resort to

cooperative bargaining games. The space of the radio power and bandwidth allocation, Υ , is

closed and convex, and is the set of feasible power and bandwidth allocation when secondary

MTs cooperate. In this work, a M -players bargaining game is constructed, and a Pareto efficient

point is defined, where a secondary MT can not find another point that improves the utility of

all the secondary MTs simultaneously.

Definition 1. A point is Pareto optimal if and only if no other power and bandwidth allocation

solution, U∗m, exists to make U∗m ≥ Um without causing inferior performance for other secondary

MTs, i.e., there is no other power and bandwidth allocation to achieve superior performance

for some secondary MTs [34].

According to definition 1, an infinite number of Pareto optimal points may exist in a game for

secondary MTs. Therefore, how to select a Pareto point for a cooperative bargaining game is an

important question, and a possible criterion is the fairness of power and bandwidth allocation,

i.e., Nash bargaining solution. As asymmetric Nash bargaining game enables different secondary

lenovo
高亮
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MTs to have different bargaining power and bandwidth allocation in the game. For example, if

one secondary MT has higher capacity and less interference to primary network, the secondary

MT can have more influence on the cooperative bargaining game outcome [35].

Proposition 2. For the cooperative power and bandwidth allocation problem (12), there exists

a bargaining point5.
max

B∗
n,s,m,P

∗
n,s,m

∏
m∈M∗

Um

S.t. : P ∗n,s,m, B
∗
n,s,m ∈ Υ, ∀n ∈ N , s ∈ Sn.

(12)

where M∗ is a nonempty subset of secondary MTs achieving strictly superior performance via

cooperation.

Proof. Since Υ is bounded and closed, and it is compact, there exists a bargaining point for

the cooperative power and bandwidth allocation problem (12).

The equivalent form of (12) is given by

max
B∗

n,s,m,P
∗
n,s,m

∑
m∈M∗

log2 (Um)

S.t. : P ∗n,s,m, B
∗
n,s,m ∈ Υ, ∀n ∈ N , s ∈ Sn.

(13)

Proposition 3. Problem (13) is a convex optimization problem.

Proof: Similar to proposition 1, we can prove the concavity of the objective function. Since

Υ is a concave set in B∗n,s,m and P ∗n,s,m, (13) is a convex programming problem.

IV. BARGAINING POWER AND BANDWIDTH ALLOCATION SOLUTIONS

In this section, we solve the convex power and bandwidth allocation problem (13) based on the

multi-homing technology for cognitive heterogeneous networks. Since problem (13) is a convex

optimization problem, we adopt the dual decomposition method to obtain the bargaining resource

allocation solution and an optimal power and bandwidth allocation algorithm for multiple classes

of services is proposed.

5The objection function for the cooperative bargaining game is the product of all the Um instead of the classical sum function.

This is because the product objection function can make secondary MTs to influence with each other and the fairness can be

guaranteed among different secondary MTs. Hence, the cooperative bargaining game can be applied to this case. Additionally,

we choose the disagreement point to be all zeros which correspond to maximizing the proportional fair sum of utilities.
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A. Solution of the Cooperative Resource Allocation Game

As problem (13) is a convex optimization problem, it is appropriate to solve (13) via the dual

decomposition method. The Lagrangian function for problem (13) is

f
(
αn,s, γm, um, vm, δn,s, B

∗
n,s,m, P

∗
n,s,m

)
=

∑
m∈M∗

log2 (Um)

+
∑

m∈MRT

γm
(
Rm −Rmin

m

)
+
∑
n∈N

∑
s∈Sn

δn,s

(
IThd
n,s −

∑
m∈Mn,s

P ∗n,s,mh
PBS
n1,s,m

)
+

∑
m∈MNRT

um

(
ϕbm+1cMNRT

Rm − ϕmRbm+1cMNRT

)
+

∑
m∈Mn,s

vm
(
PT
m − Pm

)
+
∑
n∈N

∑
s∈Sn

αn,s

(
Bn,s −

∑
m∈M∗

B∗n,s,m

)
(14)

where αn,s, γm, um, vm and δn,s are Lagrangian multipliers.

Based on (14), the dual function, h (αn,s, γm, um, vm, δn,s), is

h (αn,s, γm, um, vm, δn,s) =

 max
B∗

n,s,m,P
∗
n,s,m

f
(
αn,s, γm, um, vm, δn,s, B

∗
n,s,m, P

∗
n,s,m

)
S.t. : B∗n,s,m ≥ 0, P ∗n,s,m ≥ 0.

(15)

Additionally, the dual problem is

min
um,vn,s

αm,γm,δn,s

h (αn,s, γm, um, vm, δn,s)

S.t. : um ≥ 0, vm ≥ 0, γm ≥ 0, αn,s ≥ 0, δn,s ≥ 0.

(16)

Problem (16) can be simplified to

fm = log2 (Rm − L (Pm))−
∑
n∈N

∑
s∈Sn

αn,sB
∗
n,s,m + γmRm

−Pmvm +RmLm −
∑
n∈N

∑
s∈Sn

δn,sP
∗
n,s,mh

PBS
n1,s,m

(17)

and

Lm = umϕbm+1cMNRT
− u[m−1]MNRT

ϕ[m−1]MNRT
. (18)

Consequently, each MT can solve its own utility maximization problem, i.e.,

max
B∗

n,s,m,P
∗
n,s,m

fm

S.t. : B∗n,s,m ≥ 0, P ∗n,s,m ≥ 0.
(19)

The optimal bandwidth allocation B∗n,s,m for the fixed values P ∗n,s,m, αn,s, γm, um, vm and

δn,s can be calculated with (21) by applying Karush-Kuhn-Tucker (KKT) condition on (19) .

∂fm
∂B∗n,s,m

= 0. (20)
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From (20), we can obtain

∂Rn,s,m

∂B∗n,s,m
=


[Cmω(L(Pm))+λm]ζn,s,m+αn,s

ω(L(Pm))+γm
,m ∈MRT

[Cmω(L(Pm))+λm]ζn,s,m+αn,s

ω(L(Pm))+Lm
,m ∈MNRT

(21)

ω (x) =
1

ln 2 (Rm − x)
(22)

and

λm = vm + δn,sh
PBS
n1,s,m

. (23)

Using the Newton’s method on (21)-(23), the optimal bandwidth solution is

B∗n,s,m =
[
g∗B
(
P ∗n,s,m, αn,s, γm, um, vm, δn,s

)]+ (24)

where [•]+ is a projection on the positive orthant to account for B∗n,s,m, and g∗B(•) is a mapping

function which satisfies (20).

The optimal power allocation P ∗n,s,m for the fixed values B∗n,s,m, αn,s , γm, um, vm and δn,s

can be calculated with (25) by applying KKT condition on (19) .

∂fm
∂P ∗n,s,m

= 0. (25)

From (25), we can obtain

P ∗n,s,m =

 κn,s,m [ω (L (Pm)) + γm]− yn,s,m,m ∈MRT

κn,s,m [ω (L (Pm)) + Lm]− yn,s,m,m ∈MNRT

(26)

yn,s,m =
n0B

∗
n,s,m + In,s,m

hCBS
n,s,m

(27)

and

κn,s,m =
ρn,s,mB

∗
n,s,m

[Cmω (L (Pm)) + λm] ln 2
. (28)
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B. Update the Dual Variables

The optimum values αn,s , γm, um, vm and δn,s can be calculated by solving the dual problem

(16). For a fixed B∗n,s,m and P ∗n,s,m, the dual problem (16) can be simplified to

min

{∑
n∈N

∑
s∈Sn

αn,s

(
Bn,s −

∑
m∈Mn,s

B∗n,s,m

)}

+ min

{∑
n∈N

∑
s∈Sn

δn,s

(
IThd
n,s −

∑
m∈Mn,s

P ∗n,s,mh
PBS
n1,s,m

)}

+ min

{ ∑
m∈MNRT

um

(
ϕbm+1cMNRT

Rm − ϕmRbm+1cMNRT

)}

+ min

{ ∑
m∈MRT

γm
(
Rm −Rmin

m

)}
+ min

{ ∑
m∈Mn,s

vm
(
PT
m − Pm

)}
.

(29)

For a differentiable dual function (29), a gradient descent method can be applied to calculate

the optimal values for αn,s , γm, um, vm and δn,s , and we can obtain

αn,s (i+ 1) =

αn,s (i)−∆ε1

Bn,s −
∑

m∈Mn,s

B∗n,s,m

+

(30)

δn,s (i+ 1) =

δn,s (i)−∆ε2

IThd
n,s −

∑
m∈Mn,s

P ∗n,s,mh
PBS
n1,s,m

+

(31)

um (i+ 1) =
[
um (i)−∆ε3

(
ϕbm+1cMNRT

Rm − ϕmRbm+1cMNRT

)]+
,∀m ∈MNRT (32)

γm (i+ 1) =
[
γm (i)−∆ε4

(
Rm −Rmin

m

)]+
,∀m ∈MRT (33)

and

vm (i+ 1) =
[
vm (i)−∆ε5

(
PT
m − Pm

)]+
(34)

where i is the iteration index and ∆εj , j = 1, · · · , 5, is a small step size. Since the gradient of

problem (29) satisfies the Lipchitz continuity condition, the convergence towards the optimum

solution is guaranteed by (30)-(34) with an appropriate step size [36]. Consequently, the power

and bandwidth allocation solutions in (24) and (26) converges to the optimum solution.
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C. Cooperative Bargaining Resource Allocation Algorithm

Although (24) and (26) give solutions to the power and bandwidth allocation, it still needs to

design the optimal power and bandwidth allocation algorithm to provide the execution structure.

Consequently, we propose the cooperative bargaining power and bandwidth allocation algorithm,

which guarantees convergence by using the subgradient method. In the cooperative bargaining

power and bandwidth allocation algorithm, εp is an arbitrarily small positive number. ϑ (i− 1),

and ϑ (i) are the variable values at the (i−1) iteration and the i iteration. αn,s (i), γm (i), um (i),

vm (i), and δn,s (i) are the Lagrangian multipliers at the i iteration. αn,s (i+ 1), γm (i+ 1),

um (i+ 1), vm (i+ 1), and δn,s (i+ 1) are the Lagrangian multipliers at the (i+ 1) iteration. In

algorithm 1, Rn,s,m, B∗n,s,m, P ∗n,s,m, um (i+ 1), γm (i+ 1), and vm (i+ 1) are calculated in each

secondary MT. P ∗n,s,mh
PBS
n1,s,m

, B∗n,s,m, and δn,s (i+ 1) are interacted between secondary MTs and

secondary BSs. Additionally, Rn,s,m and ϑ (i) are exchanged between the secondary BS via the

wireline backbone.

V. HEURISTIC ALGORITHM AND COMPLEXITY ANALYSIS

Although the cooperative bargaining power and bandwidth allocation algorithm can obtain

the optimal power and bandwidth, it has enormous computational complexity. This motives us

to develop the heuristic algorithm. In this section, we first propose the heuristic power and

bandwidth allocation algorithm. Then, the computational complexities for optimal and heuristic

algorithms are analyzed, respectively.

A. Heuristic Power and Bandwidth Allocation Algorithm

In this subsection, we propose the heuristic power and bandwidth allocation algorithm via the

greedy algorithm [37], which has two stages. In the first stage, the power and bandwidth are

allocated to secondary MT m∗ ∈MRT with the minimum utility function. Additionally, the radio

interface of secondary MT m∗ ∈ MRT with the highest transmission rate obtains the resource.

The resource allocation procedure is repeated until all secondary MTs with the real-time service

meet the required minimum transmission rate. In the second stage, the power and bandwidth

are allocated to secondary MT m∗ ∈ MNRT with minimum normalized utility function and

the radio interface of secondary MT m∗ ∈MNRT with the highest transmission rate obtains the

resource. The resource allocation procedure is repeated until the remaining power and bandwidth
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Algorithm 1 Cooperative Bargaining Power and Bandwidth Allocation.

Require: Bn,s, Pmax
n,s , PT

m, ϕm, Bn,s, Rmin
m and IThd

n,s .

Ensure: B∗n,s,m and P ∗n,s,m.

1: Initialize αn,s (i), γm (i), um (i), vm (i), δn,s (i), P ∗n,s,m, B∗n,s,m, ϑ (i) =
∑

m∈M∗ log2 (Um (i))

and i = 1.

2: repeat

3: Each secondary MT calculates Rn,s,m, B∗n,s,m, and P ∗n,s,m. Update um (i+ 1), γm (i+ 1),

and vm (i+ 1). Additionally, broadcast its Rn,s,m, P ∗n,s,mh
PBS
n1,s,m

and B∗n,s,m to all its serving

secondary BSs.

4: Each secondary BS updates δn,s (i+ 1), and broadcasts it to all its serving secondary MTs.

5: if Rm ≥ Rmin
m , m ∈ MRT and ϕmRbm+1cMNRT

≥ ϕbm+1cMNRT
Rm, m ∈ MNRT and∑

m∈Mn,s

P ∗n,s,mh
PBS
n1,s,m

≤ IThd
n,s and |ϑ (i)− ϑ (i− 1)| ≤ εp then

6: Go to step 10.

7: else

8: Set i = i+ 1, and go to step 3.

9: end if

10: until

11: Output B∗n,s,m and P ∗n,s,m.

are not enough to be allocated. In heuristic power and bandwidth allocation algorithm, Bt
n,s,m

is the temporary bandwidth allocation variable for cognitive network n BS s MT m, Rt
n,s,m

is the temporary transmission rate variable for cognitive network n BS s MT m, ∆B is the

bandwidth allocation increment, Br
n,s is the remaining bandwidth for cognitive network n BS s,

βm is the allocated power at unit bandwidth, ηm is the normalized utility function for secondary

MT m, and ηtm is the temporary normalized utility function for secondary MT m. Since the

heuristic power and bandwidth allocation is designed via greedy algorithm, the convergence can

be guaranteed [38].
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Algorithm 2 Heuristic Power and Bandwidth Allocation.

Require: Bn,s, PT
m, ϕm, Rmin

m and IThd
n,s .

Ensure: Bn,s,m and Pn,s,m.

1: Initialize Bn,s,m = ∆B, Bt
n,s,m, Rt

n,s,m and βm = PT
m

/∑
n∈N

∑
s∈Sn

Bn,s.

2: repeat

3: Find m∗ = min
m∈MRT

log2 (Um), and update Bt
n,s,m∗ = Bn,s,m∗ + ∆B and Rt

n,s,m∗ .

4: Select (n∗, s∗) = max
(n,s)∈N ,Sn

Rt
n,s,m∗ , Bn∗,s∗,m∗ , and update Pn∗,s∗,m∗ = βm∗Bn∗,s∗,m∗ .

5: if
∑

m∈Mn,s

Pn∗,s∗,mh
PBS
n1,s,m

< In∗,s∗ and Rm ≥ Rmin
m then

6: Find ηm = log2 (Um)/ϕm m ∈MNRT, and m∗ = min
m∈MNRT

ηm.

7: Calculate Bt
n,s,m∗ , Rt

n,s,m∗ , (n∗, s∗) = max
(n,s)∈N ,Sn

Rt
n,s,m∗ , ηtm∗ , and Br

n∗,s∗ = Bn∗,s∗ −∑
m∈Mn∗,s∗

Bn∗,s∗,m.

8: if Br
n∗,s∗ > ∆B and

∑
m∈Mn,s

Pn∗,s∗,mh
PBS
n1,s,m

< In∗,s∗ then

9: Update Bn∗,s∗,m∗ and Pn∗,s∗,m∗ = βm∗Bn∗,s∗,m∗ , and go to step 3.

10: else

11: Go to step 15.

12: end if

13: end if

14: until

15: Output Bn,s,m and Pn,s,m.

B. Computational Complexity

Like reference [39], we have analyzed the computational complexity for the proposed algo-

rithms. In the cooperative bargaining power and bandwidth allocation algorithm, the compu-

tational complexity of the gradient method is polynomial with the number of dual variables

[36]. Therefore, the computational complexity is O
(
OIM

2
∑

n∈N Sn
)
, and OI is the number

of iterations required for the optimal algorithm. Since optimal algorithm needs to update four

Lagrangian multipliers in an iterative manner, OI is a large number and the online computational

complexity is high. Therefore, it is infeasible for optimal algorithm to run in each time slot. In

heuristic algorithm, the computational complexity is O
(
BPI

∑
n∈N

∑
s∈Sn Mn,s

)
, and BPI is
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the number of iterations for power and bandwidth allocation.

VI. PERFORMANCE EVALUATION

This section presents the simulation results for optimal and heuristic algorithms for cognitive

heterogeneous networks. A geographical region covered by one cognitive macrocell and one

cognitive microcell is considered. The radius of a coverage area at cognitive macrocell is 400

m, while the radius of a coverage area at cognitive microcell 200 m. Due to the overlapped

coverage between cognitive macrocell and cognitive microcell, secondary MTs can get service

from both secondary macrocell BS and secondary microcell BS. The path loss exponent is 4,

and the amplitude of multipath fading is Rayleigh. The noise power is 10−19 watts/Hz, and

In,s,m follows Gaussian distribution with zero mean and variance 1× 10−20 watts. The number

of secondary MTs with the non-real-time service in the secondary macrocell and secondary

microcell is 3. The proportional fairness weights, ϕm, for secondary MTs with the non-real-time

service in the secondary macrocell and secondary microcell are [2, 3, 1]. The other simulation

parameters are ρn,s,m = 0.35, Qn,s,m = 100 mW and ζn,s,m = 20 × 10−9 watts/Hz [28, 40]. In

order to compare with proposed optimal and heuristic algorithms, Tang’s algorithm is adopted,

which is the fairness resource allocation for cognitive radio network [41].

We evaluate the impact of the interference power threshold on the throughput of non-real

time service for different algorithms in Fig. 2, and the throughput for each secondary MT at

macrocell vs. the secondary MT index at macrocell for different algorithms in Fig. 3. In Fig.

2, the number of secondary MTs with the real-time service in the secondary macrocell and

secondary microcell is 2. The required minimum transmission rate for each secondary MT with

the real-time service is 1 Mbps. The bandwidths of macrocell and microcell have two cases,

i.e., Bn,s = 5 MHz and Bn,s = 10 MHz. In Fig. 3, Bn,s = 5 MHz and IThd
n,s = 1× 10−9 watts.

The other simulation parameters in Fig. 3 are the same as Fig. 2. From Fig. 2, we observe that

the throughput of non-real time service increases with the interference power threshold for three

algorithms. This is because increasing the interference power threshold results in the fact that

the available power at each secondary MT grows. Additionally, we can see that increasing the

available bandwidth enhances the throughput of non-real time service significantly, which benefits

from the relationship of the bandwidth and the power based on the Shannon capacity formulation.

The throughput of optimal and heuristic algorithms outperforms that of Tang algorithm. This
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Figure 2: The throughput of non-real time service vs. the interference threshold.

is due to the fact optimal and heuristic algorithms utilize the multi-homing technology. Multi-

homing technology can integrate the vacant bandwidth resource from different cognitive wireless

networks. The increasing bandwidth resource can improve the throughput for secondary MTs with

non-real-time traffic. However, Tang algorithm only utilizes the resource from single wireless

network. In Fig. 3, it can be seen that the throughput of heuristic algorithm for each secondary MT

is very close to that of optimal algorithm. Moreover, the throughput of optimal and heuristic

algorithms for different secondary MTs satisfy the proportional fairness constraint very well.

However, Tang algorithm can not satisfy the proportional fairness constraint for secondary MTs

with the non-real-time service. This is because Tang algorithm is designed for max-min fairness,

which is the special case of proportional fairness constraint.

We evaluate the impact of the required minimum rate on the throughput of non-real-time

service in Fig. 4, and the throughput for each secondary MT at microcell vs. the secondary MT

index at microcell in Fig. 5. Additionally, we evaluate the impact of the required minimum rate

on Jain fairness index in Fig. 6. The number of secondary MTs with the real-time service in the

secondary macrocell and secondary microcell is 3. The bandwidth of macrocell and microcell is
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Figure 3: The throughput for each secondary MT at macrocell vs. the secondary MT index at

macrocell.

15 MHz. In Fig. 5, the required minimum transmission rate is 0.2 Mbps. The other simulation

parameters are the same as Fig. 4. In Fig. 6, the other simulation parameters are the same as

Fig. 4. The interference power thresholds of primary macrocell and microcell have two cases,

i.e., IThd
n,s = 1 × 10−11 watts and IThd

n,s = 1 × 10−10 watts. As can be seen in Fig. 4, the

throughputs of non-real time service for optimal and heuristic algorithms decrease along with

the required minimum transmission rate. The higher the required minimum rate is, the more

power and bandwidth resource secondary MT with the real-time service obtains. Consequently,

the sum throughput for secondary MTs with the non-real-time service decreases. It can be also

observed that the higher the interference power threshold is, the more the sum throughput for

secondary MTs with the non-real-time service improves. This can be explained that relaxing the

interference power constraint at primary network BS means the available power consumption

at secondary MT increases. It is shown in Fig. 5 that the throughput of non-real-time service

for heuristic algorithm has a slight loss compared with optimal algorithm, and they can both

guarantee the secondary MT’s fairness very well. Although heuristic algorithm has a slight
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Figure 4: The throughput of non-real time service vs. the required minimum transmission rate.

loss on the throughput, it reduces the computational complexity. From Fig. 6, we can observe

that Jain fairness index for the optimal and heuristic algorithms are almost close to 1, which

means the optimal and heuristic algorithms can guarantee the fairness among secondary MTs

with non-real-time traffic very well. Compared with optimal algorithm, Jain fairness index for

heuristic algorithm is decreased slightly. However, the loss is very small. This can prove the

proposed heuristic algorithm reduce the computational complexity at the cost of a little system

performance.

We evaluate the impact of the number of secondary MTs with the real-time service on

satisfaction index in Fig. 7. The satisfaction index captures the ability of the power and bandwidth

allocation framework to satisfy the required minimum transmission rate of the secondary MTs

with the real-time service, the satisfaction index is

SI = E

{
IRm≥Rmin

m
+ IRm<Rmin

m

Rm

Rmin
m

}
(35)

where Ia = 1 if a is satisfied, and 0 otherwise [29].

The bandwidth of macrocell and microcell is 5 MHz. The interference power threshold of

primary macrocell and microcell is IThd
n,s = 5×10−11 watts. The required minimum transmission
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Figure 5: The throughput for each secondary MT at microcell vs. the secondary MT index at

microcell.
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Figure 7: Satisfaction index vs. the number of secondary MTs with the real-time service.

rates for each secondary MT with the real-time service have two cases, i.e., Rmin
m = 1 Mbps and

Rmin
m = 1.2 Mbps. Fig. 7 depicts the satisfaction index vs. the number of secondary MTs with

the real-time service. In Fig. 7, we observe that the satisfaction index for optimal and heuristic

algorithms decrease with the number of secondary MTs for the real-time service. The reason is

that the more the number of secondary MTs with the real-time service is, the more frequently

secondary MTs exhaust the power and bandwidth resources, and aggregating bandwidth resources

can not afford the burden of heavy service load. Compared with the curves of two cases, we

observe that the satisfaction index is smaller with the required minimum transmission rate. This

phenomenon can be explained that increasing the required minimum transmission rate consumes

more power and bandwidth resources. Consequently, increasing the secondary MTs with the

real-time service leads to higher outage probability.

From Fig. 2 to Fig. 7, it can be concluded that optimal and heuristic algorithms not only

improve the throughput of non-real time service, but also guarantee the required minimum

transmission rate for secondary MTs with the real-time service, and the proportional fairness

for secondary MTs with the non-real-time service. Although heuristic algorithm has a little
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performance loss compared with optimal algorithm, it achieves the tradeoff between system

performance and computational complexity.

VII. CONCLUSIONS

In this work, we study the uplink power and bandwidth allocation problem for multiple classes

of services based on the multi-homing technology for cognitive heterogeneous networks. The

objective function maximizes the total utility function to satisfy the real-time service and non-

real-time service for secondary MTs. In order to solve the above joint power and bandwidth

allocation problem, we adopt the risk-return model to design the utility function and model it as

a cooperative game firstly. Then, the dual decomposition method is utilized to obtain the Nash

bargaining solution. Finally, the heuristic algorithm is proposed to reduce the computational

complexity. Simulation results demonstrate proposed algorithms not only improve the spectrum

efficiency for cognitive heterogeneous networks, but also guarantee the fairness for secondary

MTs with the non-real-time service.

APPENDIX A

PROOF OF PROPOSITION 1

Proof. First, we prove Υ is concave and compact. From (12), Υ is bounded and closed.

Consequently, it is compact. It is obviously that the first, second and third constraints in (12)

are concave. Then, we prove the concavity of Rm for the resource allocation variables B∗n,s,m
and P ∗n,s,m. The Hessian matrix, HR, of Rm is

HR =

 ∂2Rm

∂B∗
n,s,m

2
∂2Rm

∂B∗
n,s,m∂P

∗
n,s,m

∂2Rm

∂P ∗
n,s,m∂B

∗
n,s,m

∂2Rm

∂P ∗
n,s,m

2

 (36)

∂2Rm

∂B∗n,s,m
2 = −

(
P ∗n,s,mh

CBS
n,s,m

)2
B∗n,s,m

(
B∗n,s,mn0 + In,s,m + P ∗n,s,mh

CBS
n,s,m

)2
ln 2
≤ 0 (37)

∂2Rm

∂P ∗n,s,m
2 = −

(
hCBS
n,s,m

)2
B∗n,s,m(

B∗n,s,mn0 + In,s,m + P ∗n,s,mh
CBS
n,s,m

)2
ln 2
≤ 0 (38)

∂2Rm

∂B∗n,s,m∂P
∗
n,s,m

=
hCBS
n,s,m

2
P ∗n,s,m(

B∗n,s,mn0 + In,s,m + P ∗n,s,mh
CBS
n,s,m

)2
ln 2

(39)
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and
∂2Rm

∂P ∗n,s,m∂B
∗
n,s,m

=
hCBS
n,s,m

2
P ∗n,s,m(

B∗n,s,mn0 + In,s,m + P ∗n,s,mh
CBS
n,s,m

)2
ln 2

. (40)

Since the secondary principal minor of HR is 0, HR is negative semidefinite [36]. Additionally,

Rm is concave in B∗n,s,m and P ∗n,s,m according to (36)-(40). Therefore, the third and fourth

constraints in (12) are concave. Consequently, Υ constitutes a concave set.
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