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Energy-Efficient Chance-Constrained Resource
Allocation for Multicast Cognitive OFDM Network

Lei Xu and Arumugam Nallanathan, Senior Member, IEEE

Abstract—In this paper, an energy-efficient resource allocation
problem is modeled as a chance-constrained programming for
multicast cognitive orthogonal frequency division multiplexing
(OFDM) network. The resource allocation is subject to constraints
in service quality requirements, total power, and probabilistic
interference constraint. The statistic channel state information
(CSI) between cognitive-based station (CBS) and primary user
(PU) is adopted to compute the interference power at the receiver
of PU, and we develop an energy-efficient chance-constrained sub-
carrier and power allocation algorithm. Support vector machine
(SVM) is employed to compute the probabilistic interference con-
straint. Then, the chance-constrained resource allocation problem
is transformed into a deterministic resource allocation problem,
and Zoutendijk’s method of feasible direction is utilized to solve it.
Simulation results demonstrate that the proposed algorithm not
only achieves a tradeoff between energy efficiency and satisfaction
index, but also guarantees the probabilistic interference constraint
very well.

Index Terms—Multicast cognitive OFDM network, energy
efficiency, SVM, Zoutendijk’s method of feasible direction.

I. INTRODUCTION

C OGNITIVE radio (CR) network can solve the spectral
resource scarcity problem, where CR user is permitted to

access the PU’s spectrum by controlling the interference power
[1]–[5]. Since video traffic is becoming more and more popu-
lar in recent years, the future wireless communication system
requires high transmission rate. In addition, OFDM and mul-
ticast technologies can further enhance the spectral efficiency
[6], [7]. Hence, multicast cognitive OFDM network improve
quality of experience (QoE) for CR users greatly.

In multicast cognitive OFDM network, there are some chal-
lenges to design the resource allocation algorithms [8]–[11].
For example, the same data is transmitted from the CBS to mul-
tiple CR users at the same subcarriers in a multicast group, and
it leads to the mismatching data rates for different CR users
in the same multicast group, due to their asymmetric channel
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gains. With maximizing the expected sum rate, a risk-return
model is used to design a distributed joint subcarrier and power
allocation algorithm [8]. The multicast model in [8] is usually
based on the full buffer traffic and it does not consider the nature
of limited traffic. Taking this into account, a distributed resource
allocation algorithm, based on the Lagrangian dual decomposi-
tion, is proposed [9]. In [10], [11], multiple description coding
is combined with multicast cognitive OFDM network, and two
heuristic distributed resource allocation algorithms to maximize
the weighted sum rate are proposed.

One limitation with the existing radio resource allocation
algorithms in [8]–[11] is that they only maximize the spectral
efficiency. However, the energy efficiency is very important due
to steadily rising energy consumption in the communication
network and environmental concerns. On the other hand, the
perfect CSI is assumed in [8]–[11], and the interference power
at the receiver of PU can be calculated precisely. However,
the cooperation between cognitive network (CN) and primary
network (PN) is not perfect, which is assumed in unicast cog-
nitive OFDM network [12]. This leads it is difficult to estimate
the CSI between CR users and primary base station precisely,
and only the statistic CSI between CR users and primary base
station can be used. Additionally, PU does not belong to the
management of CBS, and channel estimate between CBS and
PU increases the control overhead and the management com-
plexity. Hence, we adopt the statistic CSI between CBS and PU
to perform the resource allocation algorithm like [12]. Chance-
constrained programming is developed by Charnes, and it offers
a powerful mean of modeling stochastic wireless network by
specifying a confidence level [13]. Since the statistic CSI
between CBS and PU is adopted, the subcarrier and power allo-
cation based on the statistic CSI for multicast cognitive OFDM
network is casted into a chance-constrained programming
problem. Different from the determined resource allocation
problem, the probabilistic constraint needs to be calculated.

In this paper, we propose an energy-efficient chance-
constrained resource allocation algorithm for multicast OFDM
network. Specially, we summarize the contributions of this
paper as follows:

(i) An energy-efficient subcarrier and power allocation prob-
lem is formulated as a chance-constrained programming
for multicast cognitive OFDM network, with minimum
required QoS and the probabilistic interference con-
straints.

(ii) Using the SVM method, the energy-efficient chance-
constrained resource allocation problem is transformed
into a deterministic optimization problem, which can be
solved by Zoutendijk’s method of feasible direction.
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Fig. 1. Multicast cognitive OFDM network.

(iii) The performance of the proposed algorithm is evaluated
in comparison with upper bounder ε → 0, lower bounder
ε → 1, max-min algorithm and unicast case. Simulation
results demonstrate the proposed algorithm not only
improves the energy efficiency, the total throughput and
QoS satisfaction index, but also satisfy the probabilistic
interference constraint.

The rest of the paper is organized as follows. The sys-
tem model and energy-efficient resource allocation problem
are presented in section II and III, respectively. The chance-
constrained resource allocation algorithm is in section IV.
Section V gives the computational complexity and signal-
ing overhead. Simulation results and conclusions are given in
section VI and VII, respectively.

II. SYSTEM MODEL

Consider a primary base station to communicate with N pri-
mary users at M OFDM subcarriers, and a CBS is allowed to
transmit G downlink traffic flows. The interference tempera-
ture model is adopted to guarantee PU communication as long
as the total interference power at the receiver of PU is below
the interference threshold [14]. Each CR user receives one traf-
fic flow at most, and belongs to one multicast group. Let Kg

and
∣∣Kg
∣∣ (g = 1, 2, . . . , G) denote the CR user set of multicast

group g and its cardinality, respectively. Especially, if
∣∣Kg
∣∣ = 1,

it is simplified to an unicast network. All CR users belong to
the set KC R = ∪G

g=1Kg and |KC R | is the total number of CR
users in multicast cognitive OFDM network. Let W denote the
total available bandwidth, and Wm = W

/
M denote the band-

width of each subcarrier. Multicast cognitive OFDM network is
depicted in Fig. 1. The resource allocation mechanism adopts
the perfect CSI between CBS and CR users and the statistic
CSI between CBS and primary users. In addition, we adopt a
slow-fading channel model in CN, and the channel conditions
remain unchanged during the resource allocation period. With
the perfect CSI in CN, it is possible to determine the maximum
transmission rate, at which an individual CR user can reliably
receive data. The signal to interference noise rate (SINR), αg

k,m ,
for the kth CR user over the mth subcarrier in the gth multicast
group is defined by

α
g
k,m = hg

k,m

/[
�

g
k,m (Im + η)

]
(1)

hg
k,m = D−α

k,g

∣∣∣ f g
k,m

∣∣∣2 (2)

where the channel power gain, hg
k,m , between CBS and the kth

CR user over the mth subcarrier in the gth multicast group is
defined by (2), Dk,g is the distance from the kth CR user in the
gth multicast group to the CBS, α is the path loss exponent,
and the small-scale fading, f g

k,m , of the kth CR user over the
mth subcarrier in the gth multicast group follows the complex
Gaussian distribution. Moreover, Im is the interference power at
the receiver of CBS over the mth subcarrier, η is the background
noise power, and the capacity gap, �g

k,m , of the kth CR user over
the mth subcarrier in the gth multicast group is defined by

�
g
k,m = −

ln
(

5BER
g
k,m

)
1.5

(3)

where BERg
k,m is the target bit error rate of the kth CR user over

the mth subcarrier in the gth multicast group [15], [16].
Compared with the unicast cognitive OFDM network, a sub-

carrier is allowed to serve many CR users in multicast group for
multicast cognitive OFDM network, and the same data can be
transmitted from the CBS to multiple CR users in a multicast
group at the same subcarriers. This leads to the mismatching
data rates attainable by individual CR users of the multicast
group. In order to guarantee the multicast service, the smallest
rate of all the CR users in a multicast group is enforced to adopt
by CBS, and the minimum SINR βmin

g,m over the mth subcarrier
in the gth multicast group is defined by

βmin
g,m = min

k∈Kg
α

g
k,m . (4)

Consequently, the minimum transmission rate, bmin
g,m , over the

mth subcarrier in the gth multicast group is defined by

bmin
g,m =

W

M
log2

(
1+ pg,mβmin

g,m

)
(5)

where pg,m is the transmission power of CBS over the m th
subcarrier in the g th multicast group [17].

Since all CR users receive the same data rate in a multicast
group, the total rate of the gth multicast group over the mth
subcarrier is defined by

Rg,m =
∑

k∈Kg

bmin
g,m =

∣∣Kg
∣∣ bmin

g,m . (6)

Considers the downlink cognitive multicast OFDM network,
and CBS access the spectrum in the underlay mode. That means
cognitive network share the same spectrum with PN and CBS
controls the transmission power to guarantee PU’s communica-
tion. This interference power control model is adopted in many
literature, e.g., [12]. Although the other interference power
control model for cognitive OFDM network is investigated to
utilize the spectrum hole, and consider the cross channel inter-
ference, e.g., [14]. But the energy-efficient chance-constrained
resource allocation problem for cognitive multicast OFDM net-
work is complicated, and we adopt the simple interference
power control model in [12].

III. PROBLEM FORMULATION

Consider the downlink energy-efficient resource alloca-
tion problem based on chance-constrained programming for
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multicast cognitive OFDM network. The resource allocation is
operated in a centralized manner. To prevent the unacceptable
performance degradation of PUs, the interference temperature
model based on the underlay mode is adopted, and the interfer-
ence power at the receiver of PU is carefully controlled under a
given threshold.

Let ρg,m denote the subcarrier allocation indicator for the gth
multicast group over the mth subcarrier. For example, ρg,m = 1
represents the mth subcarrier is allocated to the gth multi-
cast group, and each subcarrier can be only allocated to one
multicast group at most, i.e.,

G∑
g=1

ρg,m ≤ 1, ρg,m ≥ 0,∀m, g. (7)

Let Pf ix denote the a fixed power capturing the power con-
sumption at the power supply, Ptotal denote the total power for
multicast cognitive OFDM network, and ς denote the power
amplifier efficiency [18]. In order to guarantee the feasible of
power allocation, we add the constraint

Pf ix +

G∑
g=1

M∑
m=1

ρg,m pg,m

ς
≤ Ptotal , pg,m ≥ 0,∀m, g. (8)

The total achieved data rate, Rg =∑M
m=1 ρg,m Rg,m , by the gth

multicast group should satisfy the minimum rate requirement,
Rmin

g , i.e.,

Rg ≥ Rmin
g ,∀g. (9)

The instantaneous channel coefficient, hn
m , between CBS

and the nth PU over the mth subcarrier follows the complex
Gaussian distribution, and the channel power gain, gn

m =
∣∣hn

m

∣∣2,
follows the exponential distribution, i.e.,

fgn
m

(η) = 1

σn
exp

(
− η

σn

)
(10)

where σn =
(
dn
/

d0
)−α

sn is the long-term average channel
gain between CBS and the nth PU, dn is the distance between
CBS and the nth PU, d0 is the reference distance, α is the ampli-
tude path-loss exponent and the shadow fading, sn , between
CBS and the nth PU follows the log-normal distribution.

Let I n
max denote the interference threshold for the nth PU,

ε denote the desired lower-bound on the probability that the
interference threshold is not exceeded. Since the interference
power constraint is modeled as the probabilistic interference
constraint, i.e.,

N∑
n=1

Pr

⎧⎨
⎩

G∑
g=1

M∑
m=1

ρg,m pg,m gn
m

ς
< I n

max

⎫⎬
⎭ ≥ ε (11)

where Pr {•} is the possibility.
Define the energy efficiency of CBS for multicast cogni-

tive OFDM network as a ratio of the achieved data rate to the
power consumption, and the optimization objective maximizes

the energy efficiency. Hence, the chance-constrained resource
allocation problem is formulated as (12).

max
ρg,m ,pg,m

G∑
g=1

M∑
m=1

ρg,m Rg,m

Pf ix +
G∑

g=1

M∑
m=1

ρg,m pg,m

ς

s.t.: C1.Rg ≥ Rmin
g ,∀g

C2.

N∑
n=1

Pr

⎧⎨
⎩

G∑
g=1

M∑
m=1

ρg,m pg,m gn
m

ς
< I n

max

⎫⎬
⎭ ≥ ε

C3.Pf ix +

G∑
g=1

M∑
m=1

ρg,m pg,m

ς
≤ Ptotal

C4.

G∑
g=1

ρg,m ≤ 1,∀m

C5.ρg,m ≥ 0, pg,m ≥ 0,∀m, g. (12)

IV. CHANCE-CONSTRAINED ENERGY-EFFICIENT

RESOURCE ALLOCATION ALGORITHM

In this section, we firstly adopt SVM to calculate the prob-
abilistic interference constraint. Then, the chance-constrained
resource allocation problem is transformed into the determinis-
tic resource allocation problem. Finally, Zoutendijk’s method
of feasible direction are adopted to solve the deterministic
resource allocation problem.

A. Calculate the Probabilistic Interference Constraint by SVM

In order to compute the probabilistic interference constraint
(11), we define a probabilistic function, Upro (xi ), as

Upro (xi ) =
N∑

n=1

Pr

⎧⎨
⎩

G∑
g=1

M∑
m=1

ρg,m pg,m gn
m

ς
< I n

max

⎫⎬
⎭ (13)

where xi = [ρi , pi ] is the input sample matrix of the function
Upro (xi ), ρi =

[
ρg,m

]
is the i th subcarrier allocation matrix,

and pi =
[

pg,m
]

is the i th power allocation matrix.
Since Upro (xi ) is difficult to compute, we adopt least squares

support vector machine (LS-SVM) to estimate Upro (xi ). LS-
SVM works with a least square cost function, and the solution
follows from a linear Karush-Kuhn-Tucker system [19]. Let Pri

denote the i th output sample of Upro (xi ), which is computed
by the stochastic simulation method [20], [21], NT denote the
number of training samples, and {xi , Pri }NT

i=1 denote the training
data set.

In order to minimize the bias between the output sample Pri

and the estimated value, we define a function, Uest
pro (xi ), by

(14). In addition, the empirical risk Cemp (ω, B), which depicts
the bias between the output sample Pri and the estimated value,
Uest

pro (xi ), is defined by (15).
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Uest
pro (xi ) = ωφ (xi )+ B (14)

Cemp (ω, B) = 1

NT

NT∑
i=1

∣∣∣Pri − Uest
pro (xi )

∣∣∣ (15)

where ω is the weight vector, B is the bias term, and φ (•) is
a mapping function, which is defined by the kernel function,
K
(
xi , x j

)
, in (16). Here, we adopt the radial basis function (17)

as K
(
xi , x j

)
[22].

K
(
xi , x j

) = φ (xi )
T φ
(
x j
)

(16)

K
(
xi , x j

) = exp

(
−
∣∣xi − x j

∣∣2
2σ 2

)
(17)

where σ is the scale parameter.
To minimize the empirical risk Cemp (ω, B), we formulate

the optimization problem (18) as

min
ω,B,ξi

J (ω, B, ξi ) = 1

2
ωT ω + 1

2
β

{ NT∑
i=1

ξ2
i

}

s.t. : C1.Pri = ωφ (xi )+ B + ξi , i = 1, . . . , NT (18)

where ξi is the slack variable of the i th constraint of C1 in (18)
and β is a positive real constant.

In J (ω, B, ξi ), the first item is defined according to the least
square criterion, and the second item is defined to minimize the
error between the estimated value and the accurate value. In
addition, the constraint C1 in (18) establishes the relationship
between the estimated value and accurate value via the slack
variable ξi .

Obviously, (18) is a convex problem, and we adopt the
Lagrange multiplier method to solve it. Hence, the Lagrange

function f J

(
ω, B, ξi , γ

ξ
i

)
for (18) is defined by (19).

f J

(
ω, B, ξi , γ

ξ
i

)
= J (ω, B, ξi )+ γ

ξ
i (Pri − ωφ (xi )−B−ξi ) .

(19)

According to the Karush-Kuhn-Tucker condition, we can

yield (20) by differentiating f J

(
ω, B, ξi , γ

ξ
i

)
with respect to

ω, B, ξi and γ
ξ
i , respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ f J

(
ω,B,ξi ,γ

ξ
i

)
∂ω

= 0
∂ f J

(
ω,B,ξi ,γ

ξ
i

)
∂ B = 0

∂ f J

(
ω,B,ξi ,γ

ξ
i

)
∂ξi

= 0
∂ f J

(
ω,B,ξi ,γ

ξ
i

)
∂γ

ξ
i

= 0.

(20)

By solving (20), we can obtain⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω =
NT∑
i=1

γ
ξ
i φ (xi )

γ ξ = R−1
(

Pr− B
−→
1
)

B =
(−→

1 T R−1Pr
)/(−→

1 T R−1−→1
)

R = �+ I
/
β

(21)

where I denotes the unit matrix, R−1 denotes the inverse
matrix of R, γ

ξ
i is the i th Lagrange multiplier,

−→
1 =

[1, . . . , 1]T , Pr = [Pr1, . . . , PrNT

]T , γ ξ =
[
γ

ξ
1 , . . . , γ

ξ
NT

]T
,

and � = [K (xi , x j
)]∣∣1≤ j≤NT

1≤i≤NT
.

Hence, (14) can be rewritten by

Uest
pro (xi ) =

NT∑
j=1

γ
ξ
j K
(
xi , x j

)+ B. (22)

B. Chance-Constrained Resource Allocation Algorithm

In order to convert the chance-constrained resource alloca-
tion problem into the deterministic resource allocation problem,
the constraint (11) can be rewritten by

NT∑
j=1

γ
ξ
j K
(
xi , x j

)+ B ≥ ε (23)

According to (12) and (23), the deterministic resource allo-
cation problem can be expressed by

min
ρg,m ,pg,m

−

G∑
g=1

M∑
m=1

ρg,m Rg,m

Pf ix +
G∑

g=1

M∑
m=1

ρg,m pg,m

ς

s.t.: C1.Rg − Rmin
g ≥ 0,∀g

C2.

NT∑
j=1

γ
ξ
j K
(
xi , x j

)+ B − ε ≥ 0,∀n

C3.Ptotal −

⎛
⎜⎜⎜⎜⎝Pf ix +

G∑
g=1

M∑
m=1

ρg,m pg,m

ς

⎞
⎟⎟⎟⎟⎠ ≥ 0

C4.1−
G∑

g=1

ρg,m ≥ 0,∀m

C5.ρg,m ≥ 0,∀m, g

C6.pg,m ≥ 0,∀m, g. (24)

Since the optimization problem (24) is an NP-hard problem,
we can solve it by the Zoutendijk’s method as long as we can
find a feasible descent direction in each iteration. The advantage
of Zoutendijk’s method is the dimension of the problem can be
reduced due to the variable elimination, and it can also utilize
the special structure of the problem [23], [24].

In Zoutendijk’s method of feasible direction, a feasible start-
ing solution is selected, and an iterative solution is obtained by

xi+1 = xi + λi di (25)

where di is the moving direction, λi is the moving distance and
xi+1 is the final solution obtained at the end of the i th iteration.
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In order to guarantee the feasible direction, di needs to satisfy

∇ f (xi )
T di < 0 (26)

∇gk (x)T di > 0, k ∈ I (xi ) (27)

where I (xi ) = {k |gk (xi ) = 0 , k = 1, . . . , 6} is the index set,
f (xi ) and gk (xi ) are defined by

f (xi ) = −
∑G

g=1

∑M

m=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G∑
g=1

M∑
m=1

ρg,m Rg,m

Pf ix +
G∑

g=1

M∑
m=1

ρg,m pg,m

ς

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (28)

gk (xi ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rg − Rmin
g , k = 1

NT∑
j=1

γ
ξ
j K
(
xi , x j

)+ B − ε , k = 2

Ptotal −
⎛
⎜⎝Pf ix +

G∑
g=1

M∑
m=1

ρg,m pg,m

ς

⎞
⎟⎠ , k = 3

1−
G∑

g=1
ρg,m , k = 4

ρg,m , k = 5
pg,m , k = 6.

(29)

The Zoutendijk’s method of feasible direction is described in
Algorithm 1.

V. COMPUTATIONAL COMPLEXITY AND SIGNALING

OVERHEAD

A. Computational Complexity

In the proposed algorithm, the computational complexity is
O (3G M) in step 1. In step 2, the computational complex-
ity is O (2G M). In step 3, the computational complexity is
O (AI G M), where AI is the number of iterations to solve (31).
In step 4, the computational complexity is O (G M). In step
5, the computational complexity is O (CI G M), where CI is
the number of iterations to solve (32). In step 6, the computa-
tional complexity is O (2G M) . Hence, the total computational
complexity is O ((8+ AI + CI ) G M).

In order to compare with proposed algorithm, we adopt the
resource allocation algorithm based on max-min criterion in
[25]. In max-min algorithm, the total computational complex-

ity is O

(
(JI + K I ) M

G∑
g=1

∣∣Kg
∣∣). JI and K I are the number

of iterations for the bandwidth allocation and power allocation,
respectively.

B. Signaling Overhead

In the proposed algorithm, the CSI between CBS and
CR users need to be feeded back from CR users each
time slot. Additionally, the subcarrier allocation solution
ρg,m and rate allocation solution Rg,m are allocated to CR

Algorithm 1. Zoutendijk’s method of feasible direction.
Require: The total power Ptotal , the minimum rate require-

ment Rmin
g , the desired lower-bound on the probability ε,

the interference threshold I n
max and other parameters.

Ensure: For each resource allocation, return the subcarrier
allocation result ρg,m and the power allocation result pg,m .

1: Initialize a feasible point x1 and i = 1; Set ε1, ε2 and ε3
with arbitrary small positive numbers. Calculate f (x1) and
gk (x1), k = 1, 2, . . . , 6.

2: If gk (xi ) > 0,∀k, set the search direction di with (30) and
go to 5; otherwise, go to 3.

di = −∇ f (xi ) . (30)

3: Find the feasible direction di by solving the optimization
problem (31).

min
di

: −z

s.t. :C1.∇gk (xi )
T di ≥ −z, j ∈ I (xi )

C2.∇ f (xi )
T di ≤ z

C3.− 1 ≤ dn ≤ 1. (31)

where dn is the nth component of di .
4: If z∗ ≤ ε1, terminate the iteration by taking xopt = xi . If

z∗ > ε1, go to 5.
5: Find a step length λi along the direction di and obtain a

new point xi+1 according to (25). λi is obtained by solving
the one dimensional search problem, i.e.,

min
λi

: f (xi + λi xi )

s.t. : C1.0 ≤ λi ≤ λ. (32)

where λ is defined by

λ = sup {λ |gk (xi + λdi ) ≥ 0, k = 1, . . . , 6 } . (33)

6: Calculate . If f (xi ), f (xi+1), xi and xi+1 satisfy (34) and
(35), terminate the iteration by xopt = xi+1; Otherwise, set
i ← i + 1 and repeat 2-6.∣∣∣∣ f (xi )− f (xi+1)

f (xi )

∣∣∣∣ ≤ ε2 (34)

‖xi − xi+1‖ ≤ ε3 (35)

users from CBS. Hence, the total signaling overhead is

O

(
M

G∑
g=1

∣∣Kg
∣∣+ 2MG

)
.

VI. SIMULATION RESULTS AND DISCUSSIONS

This section presents the simulation results for the proposed
algorithm in multicast cognitive OFDM network. Consider a
geographical region, which is covered by a PN and a CN.
The CBS has a coverage area with the radius 200 m, and CR
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Fig. 2. The energy efficiency vs. the desired lower-bound on the probability ε.

users are randomly located in the cell. In addition, there are 20
CR users in multicast cognitive OFDM network. In PN, there
are two PUs and one primary base station. Moreover, the dis-
tances between CBS and two PUs are [110, 150] m. In CN
and PN, the modulation technology at the physical layer adopts
the OFDM technology and the number of subcarriers is 128.
The path loss exponent is α = 3. The other simulation param-
eters are W = 2 MHz, G = 5, Ptotal = 45 watts, Pf ix = 15
watts, ς = 0.1 , BER

g
k,m = 1× 10−4, Ik = N

(
0, 1× 10−9

)
watts and η = N

(
0, 1× 10−12

)
watts. In order to compare

with the proposed algorithm, we adopt upper bounder ε→ 0,
lower bounder ε→ 1, max-min algorithm, and unicast case.
In the upper bounder ε→ 0, the exhaust search method is
utilized to maximize the energy efficiency and guarantee the
actual probability of not exceeding I n

max towards 0 to obtain
the upper bounder. In the lower bounder ε→ 1, the exhaust
search method is adopted to maximize the energy efficiency and
guarantee the actual probability of not exceeding I n

max towards
1 to obtain the lower bounder. In the max-min algorithm, the
resource allocation algorithm is based on max-min criterion
[26], [27], the subcarrier is allocated to user with the minimum
throughput, and the total power is defined by Ptotal

/
G to guar-

antee PU communication. In the unicast case, it is the special
case with

∣∣Kg
∣∣ = 1 for multicast cognitive OFDM network, and

the Zoutendijk’s method of feasible direction is adopted to solve
the chance-constrained resource allocation problem.

Figs. 2–3 depict the energy efficiency and the spectral effi-
ciency vs. the desired lower-bound on the probability ε for
different algorithms, respectively. The simulation conditions
are I n

max = 1× 10−5 watts and Rmin
g = 1 Mbps. As can be seen

in Fig. 2, the proposed algorithm and upper bounder ε→ 0
can achieve the better energy efficiency than the other three
algorithms. Moreover, the unicast case has the smallest energy
efficiency. This is because it does not efficiently utilize the
radio resource compared with the proposed algorithm. From
Fig. 3, we can see that the spectral efficiency of proposed
algorithm is between the upper bounder ε→ 0 and the lower
bounder ε→ 1, and the spectral efficiency of proposed algo-
rithm decreases along with the growth of ε. It can be explained
that increasing the desired lower-bound on the probability ε

Fig. 3. The spectral efficiency vs. the desired lower-bound on the probability ε.

Fig. 4. The energy efficiency vs. the interference threshold I n
max.

Fig. 5. The spectral efficiency vs. the interference threshold I n
max.

strengthens the interference power constraint and reduces the
available radio resource.

Figs. 4–5 depict the energy efficiency and spectral efficiency
vs. the interference threshold I n

max for the different algorithms,
respectively. The simulation conditions are ε = 0.9 and Rmin

g =
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Fig. 6. The actual probability of not exceeding I n
max vs. the interference

threshold I n
max.

1 Mbps. It can be seen in Fig. 4 and Fig. 5 that the energy effi-
ciencies and spectral efficiencies of the five algorithms except
for max-min algorithm increase when the interference thresh-
old I n

max grows, which can be explained that increasing the
interference threshold I n

max can provide more available trans-
mission power in CBS. However, the max-min algorithm does
not allocate the power and subcarrier according to the interfer-
ence power constraint. Consequently, the energy efficiency and
spectral efficiency for max-min algorithm remain unchanged
when increasing the interference threshold I n

max. In addition,
there is a special phenomenon in the upper bounder ε→ 0.
When I n

max ≥ 1× 10−5 watts, the energy efficiency and spec-
tral efficiency of upper bounder ε→ 0 remain unchanged. This
is because CBS in the upper bounder ε→ 0 utilizes all trans-
mission power and increasing the interference threshold I n

max
can not provide more available transmission power.

Fig. 6 depicts the actual probability of not exceeding I n
max vs.

the interference threshold I n
max for the different algorithms. In

order to scale the precise of calculating the probabilistic inter-
ference, we introduce Benchmark, which is the probabilistic
lower bounder of not exceeding the interference. The simula-
tion conditions are the same as Figs. 4–5. It can be seen in Fig. 6
that the proposed algorithm, max-min algorithm, lower bounder
ε→ 1 and unicast case can satisfy the probabilistic interference
constraint. Although the upper bounder ε→ 0 has the better
energy efficiency and spectral efficiency, the actual probability
of not exceeding I n

max for the upper bounder ε→ 0 is worse.
Conversely, the max-min algorithm can satisfy the chance-
constrained condition, but its energy efficiency and spectral
efficiency are worse. In Fig. 6, it can also be seen that the actual
probabilities of not exceeding I n

max for the proposed algorithm
and the unicast case are very close to Benchmark.

Fig. 7 depicts the energy efficiency vs. the minimum rate
requirement for different algorithms. The simulation condi-
tions are ε = 0.9, I n

max = 1× 10−5 watts and Rmin
g = 1 Mbps.

In Fig. 7, we can see that the multicast technology can sig-
nificantly enhance the energy efficiency for cognitive OFDM
network compared with the unicast case. In addition, the energy
efficiency for the proposed algorithm, the upper bounder ε→

Fig. 7. The energy efficiency vs. the minimum rate requirement.

Fig. 8. The actual probability of not exceeding I n
max vs. the minimum rate

requirement.

0, and lower bounder ε→ 1 decrease when the minimum rate
requirement increases. This is due to the fact that the radio
resource is not allocated to the multicast group with the high-
est energy efficiency, when the QoS for each group can not
be satisfied. This leads to the loss of the resource utilizing
efficiency.

Fig. 8 depicts the actual probability of not exceeding I n
max

and the satisfaction index vs. the minimum rate requirement
for the different algorithms, respectively. The simulation condi-
tions are the same as Fig. 7. The satisfaction index captures the
resource allocation algorithm to satisfy the QoS requirements of
multicast group. Specifically, the satisfaction index is defined as

SI = E

{
1Rg≥Rmin

g
+ 1Rg<Rmin

g

Rg

Rmin
g

}
(36)

where 1a = 1 if a is satisfied, and 0 otherwise [28]. Fig. 8 shows
that the proposed algorithm, lower bounder ε→ 1, and unicast
case can satisfy the chance-constrained condition. Additionally,
the actual probability of not exceeding I n

max for the proposed
algorithm are very close to the target lower bounder ε . This
can make the proposed algorithm to improve the energy effi-
ciency and spectral efficiency. Although the unicast case can
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Fig. 9. The satisfaction index vs. the minimum rate requirement.

also satisfy the chance-constrained condition, the energy effi-
ciency and spectral efficiency for the unicast case is lower than
that of the proposed algorithm. The actual probability of not
exceeding I n

max for upper bounder ε→ 0 is not equal to 0,
which can be explained that the total power in CBS is not
enough large to make the actual probability of not exceeding
I n
max equal to 0. Fig. 9 shows that the satisfaction indexes of

the lower bounder ε→ 1, proposed algorithm, max-min algo-
rithm, and unicast case decrease along with the increase of the
minimum rate requirement. This is because that the resource is
not enough to satisfy the QoS requirement of multicast group.
Compared with the max-min algorithm, the proposed algorithm
increases the computational complexity, and the extra compu-
tational overhead is used to compute the chance-constrained
condition. From Figs. 7–9, we can conclude the proposed algo-
rithm achieves a tradeoff between the energy efficiency and
probabilistic interference constraint.

VII. CONCLUSIONS

In this paper, we study the chance-constrained energy-
efficient resource allocation problem for multicast cognitive
OFDM network. The objective function maximizes the energy
efficiency, and the constraint conditions include the probabilis-
tic interference constraint and the total available power. In order
to solve the above subcarrier and power allocation problem,
we first define the uncertain function according to the prob-
abilistic interference constraint. Then, the SVM is adopted
to calculate it. Finally, the Zoutendijk’s method of feasible
direction is utilized. Simulation results demonstrate that the
proposed algorithm not only improves the energy efficiency,
spectral efficiency and satisfaction index, but also satisfies the
chance-constrained condition.
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