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Abstract—With the development of next-generation wireless
networks, the Internet of Things (IoT) is evolving towards the
intelligent IoT (iIoT), where intelligent applications usually have
stringent delay and jitter requirements. In order to provide low-
latency services to heterogeneous users in the emerging iIoT,
multi-tier computing was proposed by effectively combining
edge computing and fog computing. More specifically, multi-
tier computing systems compensate for cloud computing through
task offloading and dispersing computing tasks to multi-tier
nodes along the continuum from the cloud to things. In this
paper, we investigate key techniques and directions for wireless
communications and resource allocation approaches to enable
task offloading in multi-tier computing systems. A multi-tier
computing model, with its main functionality and optimization
methods, is presented in details. We hope that this paper will
serve as a valuable reference and guide to the theoretical,
algorithmic, and systematic opportunities of multi-tier computing
towards next-generation wireless networks.

Index Terms—intelligent IoT, task offloading, multi-tier com-
puting, resource allocation.

I. INTRODUCTION

As the fifth generation wireless networks (5G) being com-

mercially deployed, research efforts of the sixth generation

wireless networks (6G) have begun to define 6G requirements

and use cases. Four promising use cases have emerged. First,

holographic telepresence allows realistic, full motion, three-

dimensional (3D) images of people and objects to be projected

as holograms into a meeting room to interact with each

other in real time [1], [2]. Such remote holographic meeting,

surgery, or distant learning will reduce the need for travel.

The second key use case is digital twin, which creates a real-

time, comprehensive, and detailed digital (virtual) copy of a
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physical object, or system [3]. Digital twins help push the

boundaries of system reliability, used to support a wide range

of capabilities such as diagnostics and fault prediction. The

third one is connected industrial robots, such as Tactile Internet

and intelligent cars. In this use case, the components of a

control system (e.g., controllers, sensors, and actuators) are

distributed across a wide geographic region [3], and therefore

need to be connected via a wide area mobile infrastructure. In

addition, these intelligent applications usually require stringent

delay and jitter performance, with typical maximum tolerable

network latency below 1 milliseconds. The fourth use case

is automated network operation empowered by distributed

artificial intelligence (AI), intelligent Internet of Things (iIoT),

and big data technologies [4]–[6].

Many current and future applications require low latency,

high reliability, and high data security protection [7]. These

cannot be adequately met by the traditional cloud computing

model, which requires to upload massive data and comput-

ing tasks to the cloud through fronthaul links and hence is

difficult to meet the requirements of low latency and high

energy efficiency. To provide low-latency services, a new

computing paradigm called multi-tier computing was proposed

by effectively combining edge computing and fog computing

[8], [9]. With multi-tier computing, a large number of smart

devices with varying computational resources, located around

the end user, can communicate and cooperate with each other

to execute computational tasks. A comparison between multi-

tier computing and the current 5G-based edge computing is

illustrated in Fig. 1. Multi-tier computing complements cloud

computing and edge computing by offloading and dispersing

computational (and communication and caching) tasks and

resources along the continuum from the cloud to things.

Multi-tier computing makes the convergence of networking

and computing possible by integrating with 5G and beyond

systems [10], [11], supporting computational-intensive appli-

cations that require low latency but high energy efficiency, high

reliability and high security, including a wide range of new

novel applications such as augmented reality (AR), dynamic

network slicing [12], Tactile Internet [13], industrial robots and

intelligent robotic cars, smart grids, and smart cities, etc [14],

[15]. The effectiveness of multi-tier computing depends largely

on resource scheduling among edge and cloud nodes to reduce

service latency and ease network congestion [9], [16]–[18].

Along the development of next-generation wireless networks,

all kinds of user equipments (UEs) will be online all the time,

promoting the advancement of iIoT and bringing diversified

applications. These novel intelligent applications typically
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Fig. 1. Edge computing versus multi-tier computing

require low latency and demand prompt computations for real-

time task processing and high data rates. However, mobile

devices often have limited computation, storage, and energy

resources. To overcome these limitations, it is essential to

offload computational tasks from the end users to nodes in

the multi-tier computing systems. Such task offloading enables

distributed smart devices to share their idle computation and

storage resources, facilitating the efficient utilization of multi-

dimensional resources for low latency task processing. In

multi-tier computing, fog/edge conducts task computation for

delay sensitive applications at the network edge and cloud

supports time-tolerant tasks via local task offloading systems.

As a result, it realizes both real-time processing and local

computational system control, which is crucial for not only

robust control systems, but also for the low latency applica-

tions. Moreover, multi-tier computing systems will empower

new task offloading models with the advancement of B5G

and future 6G wireless communication system, as well as

the new generation of embedded AI. As computational power

moves from the cloud to edge and UEs, the computing and

networking will be deeply integrated along the development of

wireless communication systems. Therefore, cloud-to-things

computing capabilities should be better coordinated, leading

to a new stage of intelligent multi-tier computing systems.

A. Task Offloading in Multi-Tier Computing-based Next-
Generation Wireless Networks

Next-generation wireless communication systems present

various novel technologies, including massive multiple-input

multiple-output (MIMO), intelligent reflecting surface (IRS),

non-orthogonal multiple access (NOMA), millimeter-wave

(mmWave) communications, space-air-ground integrated net-

works (SAGIN) and edge AI, etc. A multi-tier computing

model integrates these radio technologies and AI to reduce

task execution latency, allows large-scale user access, and en-

ables efficient task offloading to realize efficient collaborative

computing and multi-dimensional communication, caching,

computation resource coordination. An example of multi-tier

computing-based next-generation networks is illustrated in

Fig. 2. Basically, it consists of two types of nodes, i.e., task

node (TN) and helper node (HN). In particular, multiple TNs

are able to offload their tasks to multiple HNs. It remains

a fundamental challenge to effectively map multiple tasks or

TNs into multiple HNs to minimize the total cost, such as

task offloading latency or energy consumption, in a distributed

manner, known as the multi-task multi-helper (MTMH) prob-

lem [19], [20].

Massive MIMO can provide array gains, diversity gains,

and multiplexing gains without increasing spectrum and power

resources. It has been shown in [21] that massive MIMO

schemes improve significantly the data rates at the cell edge

and also increase exponentially the spectrum efficiency, result-

ing in an order of magnitude increasing of system capacity.

The integration of multi-tier computing and massive MIMO

has been proven to enhance task offloading performance in

terms of ultra reliability and low latency [17], [22]–[24]. In

particular, Bursalioglu et al. [22] proposed an architecture of

fog massive MIMO, and the system performance is analyzed

by densely deploying a large number of multi-antenna base

stations (BSs), where the users are served by zero-forcing

beamforming (ZFBF). Wang et al. [17] proposed an energy-

efficient task offloading framework in a massive multiple-input

multiple-output (MIMO)-aided fog computing system, where
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Fig. 2. Illustration of multi-tier computing network.

multiple task nodes offload their computational tasks via a

massive MIMO-aided fog access node to multiple comput-

ing nodes for execution. In [23], Chen considered an edge

computing framework based on distributed massive MIMO

systems under fronthaul capacity constrain, aiming to mini-

mize energy consumption on user devices. In [24], Mungara

et al. proposed a new mechanism termed as dense fog massive

MIMO, where the users are served by a large number of

multiple antennas remote radio heads (RRHs), leading to high-

throughput and low-latency transmission links. Although the

above works demonstrate the advantages of massive MIMO-

based multi-tier computing, the influence of imperfect channel

condition on resource and task allocations is not studied,

which is of paramount importance for time-varying multi-

tier computing systems. On the other hand, to compensate

for cloud computing, multi-tier computing systems provide

computational capabilities both at the edge and center of the

network. However, one of the major issues is how to manage

task offloading and execution. More specifically, how to decide

which tasks to perform at the end-user, fog/edge, or in the

cloud. At a more granular level, the issue boils down to which

node a particular task should be assigned to.

In B5G, the radio frequency may exceed 6 Gigahertz. Since

higher-frequency signal is more sensitive to the blockage by

obstacles, the coverage of each base station will be signif-

icantly reduced [25], [26]. Furthermore, devices at the cell

edge or behind obstacles suffer from low task transmission

rates, increasing both delay and energy consumption of task

offloading in multi-tier computing systems [27]. IRS with

a large number of low-cost reflecting elements, regarded as

an effective auxiliary wireless communication technology for

achieving high spectrum and energy efficiency, has attracted

increasing attention to circumvent these restrictions and is

listed as one of the candidate key technologies in 6G by

academia and industry [28]–[34]. Thanks to the combination

of array aperture gain (achieved by combining a direct trans-

mission signal with an IRS reflection signal) and the reflection-

assisted beamforming gain (achieved by controlling the phase

shifts of IRS elements), IRS is able to improve the successful

task offloading rate and the efficiency of resource scheduling

in multi-tier computing systems. Therefore, IRS will be a

key technology for task offloading in next-generation wireless

networks. In [18], [35], the impact of IRS on computational

performance is studied in a multi-tier computing system,

demonstrating the benefits of the IRS to improve the task

offloading, in comparison to the benchmark schemes.

Unlike orthogonal multiple access (OMA) techniques, non-

orthogonal multiple access (NOMA) allows multiple nodes to

concurrently communicate with a centre node over the same

resource block, and hence enhancing the spectrum efficiency

[36], [37]. Owing to the multiuser detection techniques such as

successive interference cancellation (SIC) implemented at the

receiver side [38], [39], NOMA can mitigate the co-channel

interference, resulting in much better performance in terms

of the network coverage and throughput compared to OMA

techniques [40]. As expected, the integration of multi-tier com-

puting and NOMA are able to boost the performance of multi-

node task offloading [41]–[43]. Since higher-frequency signals

like mmWave communications are highly correlated, making

it conducive to the integration of NOMA, mmWave-NOMA

is capable of supporting ultra-high bandwidth applications and

massive access of users in multi-tier computing systems.

Meanwhile, by integrating satellite systems, aviation sys-

tems and ground communication systems, SAGIN is widely

treated as a cornerstone of future 6G network. This new

architecture supports seamless and near-instantaneous hyper-
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connectivity [44], aiming at global data acquisition with

high temporal and spatial resolution, high-precision real-

time navigation and positioning, and broadband wireless

communications. Being an essential component of SAGIN,

UAVs are deployed flexibly at the air-network layer, assist-

ing terrestrial network in task offloading and communica-

tions/computing/caching resources management due to their

flexibility and proximity [45]. However, even with efficient

task offloading, it is still not trivial to meet the quality of

experience (QoE) requirements of heterogeneous users in the

SAGIN.

Because of increasingly complex wireless networks, a typ-

ical 5G node is expected to have 2000 or more configurable

parameters. Therefore, a recent new trend is to optimize

task offloading and wireless resource allocation through AI

technologies [46], [47], i.e., applying AI at multiple protocol

layers (e.g., physical layer resource allocation, data link layer

resource allocation, and traffic control) [48]. Thanks to the

rapid development of mobile chipsets, the computational capa-

bilities of edge devices have been substantially improved. For

example, smart devices nowadays have as much computational

capability as computing servers a decade ago. In addition, edge

servers could provide end users with low latency AI services

that are not possible to achieve directly on the devices. Since

the computational resources of edge servers are not as much

as those of cloud centers, it is necessary to adopt joint design

principles across edge servers and edge devices to reduce task

execution latency and enforce privacy for task offloading [46].

As a result, advances in multi-tier computing systems offer an

opportunity to move the frontiers of AI from the cloud center

to the edge of the network, inspiring a new field of research

called edge AI, including both AI model training and inference

procedures.

In order to realize low-latency task processing and provision

computing, storage and networking services, distributed AI

and federated learning algorithms are performed on multi-

tier computing servers at the access network [49]. Wireless

networks with AI can support the on-demand intelligent

low-latency services, commencing to emerge in complicated

wireless network management and resource optimization [50],

[51]. Since the data are processed at the edge server in the

close proximity of smart device, there is no need to transfer

a large amount of raw data to the back-end server. Thus,

using edge AI on task offloading infrastructure not only saves

network bandwidth on backhaul links, but also reduces greatly

the task execution latency. Edge AI will be a significant

step towards reducing task execution latency by intelligently

enabling task offloading and local caching of popular file and

content migration. In addition, intelligent task offloading for

computational tasks will make it possible to further virtualize

users’ handsets and improve battery lifetime. In all, edge AI

provides a new paradigm of optimization algorithms design for

efficient task offloading and service-driven resource allocation

in multi-tier computing systems [11]. By seamlessly inte-

grating sensing, communications, computing and intelligence,

edge AI will empower multi-tier computing systems to support

multiple intelligent applications, including industrial robots,

intelligent robotic cars, and intelligent healthcare etc.

B. Main Contributions

Although the above discussions have demonstrated the

benefits of task offloading in wireless communication systems,

to the best of our knowledge, the task offloading with multi-

tier computing resources in next-generation wireless networks

has not been well studied. In this paper, a vision of multi-

tier computing with intelligent task offloading is presented,

focusing on its interactions with various wireless techniques

and resource allocations. Future research directions and open

problems are then discussed, embracing the era of multi-tier

computing based next-generation wireless networks.

Against the above backdrop, our contributions could be

further detailed as follows:

• The vision, challenges and solutions for task offloading

in multi-tier computing systems towards next-generation

wireless networks.

• The task offloading in multi-tier computing systems is

presented, including the massive MIMO-aided task of-

floading, the task offloading with IRS, the task offloading

with NOMA and mmWave, the task offloading in Space-

Air-Ground Integrated Networks (SAGIN), and edge AI-

empowered task offloading.

• The multi-tier computing resource allocation for task

offloading is elaborated. Specifically, we introduce the

main functionality and optimization methods as well as

the algorithms for task offloading in multi-tier computing

systems.

• We discuss the research directions and open problems

of task offloading for multi-tier computing-based next-

generation wireless networks.

C. Paper Organization

The rest of the paper is organized as follows. Section II

introduces the enablement of multi-tier computing for next-

generation wireless networks, while Section III presents the

resource allocation for multi-tier computing systems. Section

IV is focused on research directions and open problems for

multi-tier computing. In Section V, we provide our conclu-

sions.

II. ENABLEMENT OF TASK OFFLOADING FOR MULTI-TIER

COMPUTING-BASED NEXT-GENERATION NETWORKS

In this section, we present the vision, challenges and so-

lutions for task offloading in multi-tier computing system-

s, including the massive MIMO-aided task offloading, the

task offloading with IRS, the task offloading with NOMA

and mmWave, the task offloading in SAGIN, and edge AI-

empowered task offloading.

A. Massive MIMO-Aided Task Offloading

With the advent of next-generation of wireless standards,

new high-performance technologies are introduced. One of

these key technologies is massive MIMO [52] that has been

increasingly adopted in different networking and computing

frameworks. However, the works of [9], [53]–[55] mainly

considered single-antenna computation offloading systems,
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Fig. 3. Illustration of a massive MIMO and IRS-enabled multi-tier computing
network.

by taking joint resources allocation and task offloading into

account, but failed to exploit the MIMO advantages for task

offloading efficiency. As we know that MIMO techniques have

the potential of achieving high spectral efficiency (SE) [56]–

[58], they have been introduced to boost the performance

of edge users by increasing the task offloading data rate.

In particular, equipping the base stations (BSs) with a large

number of antennas, widely known as massive MIMO, has

emerged as one of the most promising solutions [59], [60] to

significantly improve system SE and energy efficiency trade-

off. More specifically, as the number of antennas increases,

channels become more deterministic, known as channel hard-

ening. Data rates and communication resource allocations are

hence largely determined by large-scale fading. This implies

that resource allocation does not need to be updated frequently,

leading to significant savings in signal transmission overhead.

In summary, massive MIMO schemes improve spectrum and

energy efficiency and support an increased number of users,

both of which are critical for multi-tier computing systems.

As the core technology of wireless communication, relay

technique has been integrated into various wireless communi-

cation standards to improve network coverage and throughput

[61]. In particular, massive MIMO-enabled relay networks

can enhance spectral efficiency and achieve more reliable

data transmission for spatially distributed user nodes through

intermediate massive antenna relay nodes [62], [63]. Thus,

a massive MIMO-aided fog access node (FAN) serving as

a relay is capable of significantly improving the data rate

of offloaded tasks and the task execution efficiency. The

new computing model that combines massive MIMO with

multi-tier computing will facilitate efficient task offloading of

computation-intensive tasks to achieve efficient collaborative

computing and multi-dimensional communication, caching,

computation resource scheduling.

B. Task Offloading with IRS

Next, we will introduce a concrete example of implementing

IRS in multi-tier computing systems to reduce task offloading

latency and energy consumption, as shown in Fig. 3. Each

user could either offload its task to the multi-tier nodes such as

edge/fog server for computation via the IRS or to the cloud via

the IRS and massive MIMO node. In order to further improve

uplink task offloading performance for resource-limited end

users, IRS technology has attracted extensive attention due to

its advantages of low cost, easy deploymentation, fine-grained

passive beamforming, and directional signal enhancement or

interference nulling. By controlling surface reflective elements,

IRS can be reconfigured to provide a more favorable wireless

propagation environment for communications. Obviously, us-

ing IRS in multi-tier computing systems is an economical and

environmentally friendly method to facilitate task offloading

[18].

In [35], Chu et al. studied the impact of an IRS on com-

putational performance in a mobile edge computing (MEC)

system, targeting to optimize the sum computational bits and

taking into account the CPU frequency, the offloading time

allocation, transmit power of each device as well as the phase

shifts of the IRS. In [18], Wang et al. investigated the task

offloading problem in a hybrid IRS and massive MIMO relay

assisted fog computing system, and formulated a joint task

offloading, IRS phase shift optimization, and power allocation

problem to minimize the total energy consumption. In [64],

Zhou et al. studied an IRS-assisted MEC systems, in which

IRS is deployed to assist task offloading from two users to the

fog/edge access point connected to the edge cloud. Under the

constraint of IRS discrete phase, the passive reflection phase

of IRS and the user’s computational task scheduling strategy

is designed to minimize the total task processing latency. In

[65], Bai et al. studied an innovative framework to employ IRS

in wireless powered MEC systems, and the task offloading is

based on orthogonal frequency-division multiplexing (OFDM)

systems. The objective is to minimize the total task offloading

energy consumption. On the basis of the above studies, it

is evident that IRS can provide an additional link both for

data transmission and for task offloading, so as to enhance

computational capability.

C. Task Offloading with NOMA and mmWave

As we all know, NOMA performs significantly better in

terms of the network coverage and spectrum efficiency than

OMA [40]. Under this circumstance, the integration of multi-

tier computing and NOMA is able to achieve far better perfor-

mance for task offloading compared to multi-tier computing

with OMA [41]–[43]. In particular, Wang et al. in [43] pro-

posed a NOMA-based fog computing framework for industrial

Internet of Things systems, where multiple task nodes offload

their tasks via the NOMA strategy to multiple computing

nodes for task computation. Accordingly, they formulated

a joint task offloading and subcarrier allocation problem to

minimize the total cost in terms of energy consumption and

latency subject to the given communication and task com-

putation constraints. In addition, Zhang et al. [41] proposed

a network architecture of NOMA-based Fog Radio Access

Networks (F-RANs), where the resource allocation with power

and sub-channel allocation is studied to improve the network

performance. Moreover, Wen et al. [42] and Wang et al. [66]
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formulated an energy efficiency maximization and a task

completion time minimization problem in NOMA-enabled

fog/edge computing networks, respectively. All the above

works have manifested that the NOMA-based task offloading

scheme can significantly reduce the energy consumption and

latency cost compared to its OMA counterpart.

Regrading task offloading with mmWave, Zhao et al. have

proposed single-user and multi-user mmWave task offloading

framework respectively in [67] and [68], both of which aim to

minimize the task offloading latency exploiting the benefits of

the mmWave communications. As mentioned before, mmWave

is conducive to the integration of NOMA. Yu et al. [69] ana-

lyzed the impact of NOMA and mmWave on task offloading,

where the hybrid beamforming at the BS and the resource

allocation at the end user are jointly optimized, and NOMA-

mmWave is shown to improve the computation efficiency by

the theoretical and simulation results.

D. Task Offloading in SAGIN

IoT seeks to connect billions of resource-constrained de-

vices around us through heterogeneous networks. The SAGIN

is viewed as a major candidate to support such IoT require-

ments, provisioning seamless and massive connectivity for

smart services [44], [70]. In the past two years, 5G wireless

networks have been commercialized and deployed around the

world. Although 5G is still in its development, academia and

industry have now shifted their attention to beyond 5G and

6G wireless networks, in order to meet the demands of ultra-

low latency and high energy efficiency for iIoT [44]. Among

the discussions about 6G, from the perspective of computing,

communication, and caching, it is the trend to combine SAGIN

with multi-tier computing technologies in the 6G networks.

Specifically, it is widely recognized that SAGIN will be

the potential core architecture of the future 6G network to

support seamless and near-instantaneous hyper-connectivity

[44]. Thus, multi-tier computing with SAGIN promotes the

task offloading performance. As a key part of this, in the in-

tegrated air-ground branch, unmanned aerial vehicles (UAVs)

are flexibly deployed at the aerial network layer, assisting in

communication, computing and caching of ground networks

due to their flexibility and proximity [45]. However, in 6G

networks, SAGIN still faces challenges such as the demands of

temporal-spatial dynamic communication/computing/caching

services, large-scale complex connection decisions and re-

source scheduling, and ubiquitous intelligence demands within

the network. To sum up, it remains extremely challenging to

realize these visions of 6G in SAGIN.

There have been heavy research efforts on the architecture

of SAGIN and multi-tier computing in the existing literature.

Cheng et al. [45] proposed a novel air-ground integrated

mobile edge network, by investigating the potential benefits

and applications of drone cells, and UAV-assisted edge com-

puting and caching. To support diverse vehicular services,

Zhang et al. [71] presented a software defined networking

(SDN)-based space-air-ground integrated network architec-

ture. Focusing on provisioning computing services by UAVs,

Zhou et al. [72] proposed an air-ground integrated MEC

framework to cater for the urgent computing service demand

from the IoTs. Furthermore, Kato et al. [73] conducted a

comprehensive study about how to deal with the challenges

related to the space-air-ground integrated networks by AI

techniques, including network control, spectrum management,

energy management, routing and handover management, and

security guarantee. In [74], Cheng et al. demonstrated a

SAGIN edge/cloud computing architecture for offloading the

computation-intensive applications, considering remote energy

and computation constraints, and developed a joint resource

allocation and task scheduling approach to efficiently allocate

the computing resources. In [75], Shang et al. studied MEC

in air-ground integrated wireless networks to minimize the

total energy consumption by jointly optimizing users asso-

ciation for computation offloading, uplink transmit power,

allocated bandwidth, computation capacity, and UAV 3-D

placement. However, how the air network layer allocate the

communication/computing/caching resources intelligently for

task offloading of the ground network layer in SAGIN has not

been adequately addressed.

E. Edge Intelligence-Empowered Task Offloading

With the continuing increase in the quantity and quality of

rich multimedia services, the traffic and computational tasks of

mobile users and smart devices have significantly increased in

recent years, bringing huge workload to the already congested

backbone and access networks. Even with the help of multi-tier

computing systems, it is challenging to satisfy the quality of

experience (QoE) requirements of users. The main difficulty

lies in the need of large amount of wireless data and task

transmissions for task offloading, causing wireless channel

congestion. Therefore, the optimization problem or decision

making of the combined wireless communication resource

allocation and multi-tier task offloading is the key. That is,

how to share the communication resources and computing

resources between edge nodes and the cloud. In response to the

increasing complexity of wireless communication networks,

AI technologies have been proposed as a new research trend

to optimize resource allocations [46], [47], including but not

limited to applying AI algorithms to physical layer resource

allocation, data link layer resource allocation, medium access

control, and traffic and congestion control [48]. Especially,

reinforcement learning is often applied to jointly manage com-

munication, computing, and caching resources. With learning

based multi-tier computing systems, we can optimize task

offloading, communication resource allocation, and content

caching at edge nodes. Further, federated learning [76], as a

distributed learning framework, always brings the following

benefits for task offloading: 1) great reduction of the amount

of data that must be uploaded through wireless uplink chan-

nel, 2) cognitive response to the changing wireless network

environments and conditions, and 3) strong adaptability to

the heterogeneous nodes in the wireless networks, 4) better

protection of personal data privacy.

In learning-based multi-tier computing systems, task of-

floading decision and communication resource allocation vec-

tors generally are binary variables, turning out challenging to
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Fig. 4. Requirements and objective for designing multi-tier computing
systems.

find the optimal solution of resource allocations. Moreover,

the feasible set and the objective function of the optimization

problem are generally nonconvex, making the problem NP

hard. In addition, in time-variant systems, channel conditions

and computational cost are dynamic. Instead of solving the

NP hard optimization problem by utilizing conventional op-

timization methods, the task offloading and communication

resource allocation problem in multi-tier computing systems

could be possibly solved using online learning algorithms.

During the online learning process, the deep reinforcement

learning methods might be applied to jointly optimize the

subcarrier allocation and task offloading in each time episode.

Online federated learning framework is recently utilized to

learn in a distributed way, in order to solve the task offloading

and communication resource allocation problem. Based on the

communication, computational resource allocation, the multi-

tier task offloading decisions can then be optimized.

Furthermore, edge learning methods have been investigated

in some edge/fog computing systems to simplify the optimiza-

tion algorithm or fulfill online implementations [16], [43],

[77]–[82]. In [78], Huang et al. designed a deep learning-

based task offloading strategy to minimize weighted energy

consumption and latency. In [81], Wang et al. leveraged deep

reinforcement learning method for smart resource allocation

in a software defined network (SDN)-enabled edge computing

architecture. In [80], Huang et al. proposed a deep learning-

based task offloading strategy for offloading decisions and

resource allocation of a wireless powered edge computing

system. In [83], Yang et al. also used deep reinforcement

learning method in IRS-aided edge computing systems to

enhance system security and maximize the sum rate of the

down-link task offloading. In [84], a convolutional neural

network was constructed for channel estimation of a large

IRS-aided massive MIMO communication system to estimate

the direct and the cascaded channels, used for multi-tier task

offloading.

III. MULTI-TIER COMPUTING RESOURCES ALLOCATION

FOR TASK OFFLOADING

In this section, we first characterize the multi-tier computing

resource allocation in next generation wireless networks, and

then effective optimization methods are presented to achieve

efficient task offloading with multi-tier resources.

A. Main Functionality

In this subsection, the computational and communication

resources allocation, service placement, and security require-

ment are characterized for designing multi-tier computing

systems, which is illustrated in Fig. 4.

1) Computation: Multi-tier computing architectures were

envisioned to achieve rapid and affordable scalability by devel-

oping computation capabilities flexibly along the entire cloud-

to-things continuum [85]. In essence, multi-tier computing

systems distribute computing capability anywhere between the

cloud and the things to take full advantage of the computa-

tional resource available along this continuum, thus extending

the traditional cloud computing architecture to the edge of

the network. Thanks to multi-tier computing, some application

components can be performed at the network’s edge, like

delay-sensitive components. While other components, such as

time-tolerant and computation-intensive ones, are performed in

the cloud. Satisfying diverse delay requirements will require

both cloud computing with enormous resources to support

time-tolerant tasks, and distributed fog/edge computing with

limited resources and simple algorithms closer to the users to

support time-sensitive tasks. With heterogeneous computing

resources and collaborative service architecture, the proposed

multi-tier computing systems are able to effectively support

a full range of services in different environments. On this

basis, multi-tier computing provides the advantage of low-

latency task offloading since it allows task to be processed

at the network edge, close to the end devices. Obviously,

cloud computing alone is not adequate for supporting all

IoT applications, while a multi-tier computing system can be

complementary.

For smart devices with abundant computing resources,

multi-tier computing seeks to achieve seamless integration of

edge and cloud systems. This vision goes beyond treating

the network edge and smart devices as separate computing

platforms. Seamlessly integrating fleets and swarms of mobile

IoT entities into a dense multi-tier enclave is a new distributed

computing paradigm that improves the scalability, extensi-

bility and assemblability of cloud services through edge of

computing systems. Smart devices (cars, drones and robots)

have spare computational resource, allowing the multi-tier

computing platform to reduce energy consumption and task

processing latency compared to the traditional edge computing

scenarios relying on static and low-power edge servers.

2) Communication: Multi-tier computing systems dis-

tribute communication functions anywhere between the cloud

and things to take full advantage of the communication re-

source available along this continuum. In massive MIMO-

aided multi-tier computing systems, the achievable data rates

are mostly determined by large-scale fading, and so is the

communication resource allocation. This means that there is

no need to frequently update communication resource alloca-

tions, hence reducing signaling overhead. IRS is capable of

improving the success rate of the task offloading. Given the
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potential gains, if the line-of-sight (LoS) link between the task

offloading nodes and computing nodes is blocked by obstacles,

the task could be offloaded via the IRS reflected links. In this

manner, we attempt to optimize the link selection and wireless

communication resource allocation.

It is important to maintain the required data rates for task

offloading. Take the task offloading from a car as an example.

Given that a connected car produces tens of megabytes of

data per second, an autonomous vehicle may generate up

to a gigabyte per second [8]. Here, dense moving edge

nodes can support accelerated data communication by largely

utilizing directional high-rate communication in the massive

MIMO, IRS or the SAGIN. Edge nodes at the same time

provide novel strategies for smart devices to combine the

benefits of centralized and ad-hoc topologies into a unified

solution by using multi-hop, multi-connection mechanisms to

communicate with adjacent network infrastructure when facing

the intermittent connectivity.

3) Storage: Because the edge nodes often have limited

storage resources, distributing the data among edge and cloud

nodes is vital for optimizing task offloading latency or energy

consumption at a given QoS level. On top of it, multi-tier

computing also brings a large amount of cloud-like services

closer to the end users. Caching computational data or services

at edge nodes is hence crucial, which relieves the burden of

backhaul transmission with transporting all the data to the

clouds.

Accordingly, elastic storage capacity of edge nodes might be

used to support applications running on resource constrained

IoT devices. Due to the inherent flexibility of multi-tier

computing systems, it is possible to integrate a large number of

densely distributed devices. Caching capacity of edge servers

is usually accessed by both smart devices and edge access

points. For example, user nodes are possibly consolidated into

special capacity areas. Then, multiple interconnected edge in-

frastructures that coexist in space and time could pool storage

resources of adjacent edge networks together for sharing by

smart devices and end users.

4) Security: In cloud computing systems, massive data

need to be uploaded to the cloud data center through a front-

haul link, where data security cannot be guaranteed. However,

multi-tier computing systems present unique security chal-

lenges and opportunities. Dense edge nodes with established

dynamic trust chains are acting as a trusted authority for other

smart devices and systems. In particular, multi-tier computing

systems with edge and cloud can handle responsibilities such

as trusted computing platforms, and secure storage of short-

term sensitive information. Multi-tier computing systems also

utilize edge systems to facilitate local threat monitoring, detec-

tion, and protection for users and provide powerful proximity-

based authentication services for better authentication through

proxy smart devices.

However, the multi-tier computing systems meanwhile incur

new security vulnerabilities, mainly from multiple hetero-

geneous nodes. For example, in a multi-node environment,

when multiple potentially competing service providers and

consumers share resources distributed across a set of hardware

platforms, advanced authorization and authentication mecha-

nisms should be created to effectively leverage this heteroge-

neous medium and devices between edge and cloud entities.

Fortunately, a trusted execution environment supported by

a public key infrastructure may be a suitable solution to

the above problems. Nevertheless, the intelligent integration

of hardware assistance and software security mechanisms

in multi-tier computing systems remains an open research

question.

Additionally, multi-tier computing systems have to cope

with changing environments compared to existing edge com-

puting systems that mainly operate under known conditions.

In this case, the security mechanism for multi-tier computing

systems is supposed to constantly adapt to the changing operat-

ing conditions. To address this challenge, multi-tier computing

systems must dynamically adjust their overall security posture.

It requires the design of new security protocols, which is

able to respond to any security threat without causing service

disruptions and to fulfill secured and uninterrupted operation

of the task offloading.

B. Optimization Algorithms

With the exponential growth of real-time services, delay

has emerged as a key figure of merits and become the design

metric of multi-tier computing systems [86], and the total task

offloading latency consists of the task computation latency at

multi-tier computing nodes plus the round-trip task transmis-

sion latency. For local computing, the latency only includes

the processing latency of local CPUs. For task offloading,

if a task is to be processed by the edge/fog or cloud, the

node needs to transmit the task through the shared wireless

channel. Hence, the latency includes the task transmission

latency and task computation latency in the edge/fog or

cloud. In the meantime, IoT services urge for more and

more computation and communication resources due to the

rapid increasing number of connected devices. However, as

these intelligent devices usually have limited computation and

energy resources, it is a big challenge for the service providers

to promote these novel applications. In this subsection, the

effective optimization methods are presented to achieve low

latency and energy efficient task offloading with multi-tier

resources, and to decide which tasks to perform at the end-user,

fog/edge, or in the cloud with dynamic resources. Therefore,

the differences and difficulties in multi-tier computing systems

need to solve a series of non-convex optimization problems

with binary variables, as well as the stochastic variables.

1) Nonconvex Optimization: During task offloading pro-

cess, most of the resource allocation problems in multi-

tier computing systems need to solve a series of nonconvex

optimization problems. For example, for IRS-aided multi-

tier computing systems, there are four blocks of optimization

variables, namely, task offloading ratio, power allocation at

the relay node, and IRS phase shifts of two hops’ task trans-

mission. The optimization of task offloading ratio is related

to the computing setting, while the optimization of power

allocation and phase-shift matrices affects the communication

design. However, the resource allocation problem in IRS-

enabled multi-tier computing systems is difficult to solve due
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to two aspects. The first one is the coupling effect between the

power allocation vector and the IRS phase-shift vector. The

second one is that the objective function is non-convex with

respect to the phase shifts. Obviously, it is an open challenge to

obtain a globally optimal solution directly. In fact, alternating

optimization technique is a widely applicable and efficient

approach for solving optimization problems involving coupled

optimization variables, which has been successfully applied to

several communication resource allocation problems such as

hybrid precoding [87], power allocation [88], and IRS phase

shift optimization [28], [89]. In this case, a locally optimal

solution is usually provided. To be specific, the resource allo-

cation optimization problem can be transformed into a phase

shift optimization problem, a power allocation problem, and

a task allocation problem, respectively, by using the popular

alternate optimization technique to decouple communication

and computational design.

Remarkably, in contrast to the alternate optimization tech-

nique, distributed optimization algorithms for non-convex op-

timization have appeared in the literature [90]. In [91], [92],

Tatarenko et al. and Zeng et al. studied distributed gradient

descent methods for unconstrained non-convex optimization

problems, respectively. Distributed optimization algorithms are

generally divided into two categories: discrete time algorithms

and continuous time algorithms. The existing work mainly

focuses on discrete time algorithms, while continuous time

problem has attracted extensive attention in recent years,

mainly because of the wide application of continuous time

setting in practical systems and the development of contin-

uous time control technology. In addition, discrete time and

continuous time algorithms are closely related to each other

due to the time scale transformation. Specifically, when the

time step size approaches zero, the optimization algorithm for

discrete time system is similar to the continuous one. Note that

coupled non-linear constraints are also an important constraint

in distributed optimization problems. However, distributed

algorithms dealing with coupled non-linear constraints are

basically convex problems, i.e., both the objective function

and the constraint are convex. In [86], Wang et al. developed

distributed augmented Lagrangian based algorithms for non-

convex optimization problems of multi-tier computing net-

works subject to local constraints and coupled non-linear e-

quality constraints, and investigated the joint design of the task

offloading, service caching and power allocation to minimize

the total task scheduling delay.

2) Mixed-Combinatorial Optimization: Combinatorial op-

timization problems have been analyzed in many works (e.g.,

[93]–[96]). Under the framework of combinatorial optimiza-

tion, an important trend is analyzing combinatorial optimiza-

tion problem within the framework of Euclidean combinatorial

optimization, whose optimization is carried out in a Euclidean

space. In [95], [96], Barbolina et al. and Yemets et al.
studied the Euclidean combinatorial optimization problems,

and investigated the properties of its convex hull and methods

of solving separate classes of Euclidean problems of combina-

torial optimization. Additionally, the general permutation set

problem is an important Euclidean combinatorial optimization

problem.

As previously mentioned, the resource allocation problems

in multi-tier computing systems involve optimizing computa-

tion, communication and caching. In general, task offloading,

task data caching and communication resource allocations are

binary variables. Specifically, in multi-tier computing for next-

generation wireless networks, we need to jointly optimize the

subcarrier and bandwidth allocation [97]–[99], transmit power

and receive beamforming [17], [43], passive beamforming at

IRS [18], device selection [9], [18], location updates task of-

floading [16], and computational frequency control [9], so as to

reduce the latency and energy consumption in the task offload-

ing procedure. Therefore, these resource allocation schemes

can be formulated as a mixed combinatorial optimization

problem that requires joint optimization of continuous value

variables (e.g., beamforming, power control) and discrete value

variables (e.g., task allocation, service placement, subcarrier

allocation).

It should be noted that the existing optimization methods

for mixed combinatorial optimization problems are mainly

based on traditional iterative optimization approaches [18],

[100]–[103], or adopt a direct end-to-end online learning

approaches [16], [81]. However, they may not achieve good

trade-off between algorithm complexity and resource alloca-

tion performance. Additionally, reinforcement learning (RL)-

based approaches are often involved to solve combinatorial

optimization problems that are unconstrained or have few con-

straints due to feasibility issues [43], [104]. Deep RL requires

a Markov process to achieve satisfactory resource allocation

performance [105]. However, Markov process may not exist

in practical combinatorial optimization problems, as they have

many non-convex constraints with memory. This results in

difficult design of reward features for Markov optimization

process, unfeasible solutions, and potential degradation of

overall performance.

3) Stochastic Optimization: In multi-tier computing sys-

tems, stochastic optimization approach only relies on the

probabilistic description about the uncertainty of computation

capacity and radio channel condition, and is able to provide

a trade-off between conservatism and probabilistic assurance

for the achievable task offloading performance. Stochastic

programming has been widely studied in the past decade

due to its wide application in machine learning and resource

allocation. In a stochastic optimization problem, the objective

function or constraints are the expectation of some function

of random variables (such as estimated computation capac-

ity and channel condition in learning approach) [106]. The

challenge of stochastic optimization is that the distribution

of the random variables is often unknown. Most existing

literature on stochastic programming assumes that the basic

distribution of random variables is fixed and that independent

samples are sequentially drawn from this common distribution.

However, the basic distribution of random variables involved

in stochastic optimization may change slowly over time in

many practical applications.

Stochastic optimization in state-based systems with discrete

or continuous time are often modeled as Markov chains. Their

effective optimization method is an important research topic.

The Markov model has a wide range of applications, especially
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in the area of task offloading in multi-tier computing systems.

Specifically, some work modeled the task offloading problem

as a stochastic programming problem, and jointly optimized

the task allocation and the communication resources allocation

[107]. However, in all these works, system parameters need to

be acquired offline, which is impossible for a time-varying

system [108]. It should be noted that there are multiple

dynamic parameters in multi-tier computing systems. Therein,

user mobility and channel condition are intrinsic features of

wireless networks when nodes are usually in a mobility state.

Then, due to changes in network topology, these parameters

are time-varying, and the stochastic task offloading framework

is considered as a method of online learning where users can

learn time-varying system parameters.

In many multi-tier computing applications, optimization

criteria are trade-offs between several competing goals, such

as computational cost minimization and profit maximization.

In this tradeoff model, it is important to establish an optimal

strategy that may often not be intuitive. However, there are

also optimization problems with no tradeoff characteristics,

leading to counterintuitive optimal strategies. Therefore, the

use of Markov decision process (MDP) to optimize stochastic

systems should not be ignored. A reinforcement learning task

that satisfies the Markov property is called an MDP, which is

a tool for modeling sequential decision-making problems. If

the state and action spaces are finite, then it is called an finite

MDP, which is crucial to the basis of reinforcement learning

(RL). In MDP, future decisions are based on recent state. Thus,

an optimal policy consists of actions based on the observed

history to maximize the expected reward. RL has been widely

adopted in the unknown environment, by continuously inter-

acting with the environment to achieve the optimal results

out of imperfect information. RL can further take advantage

of high-dimensional characteristics of deep neural network

(DNN), evolving into deep reinforcement learning (DRL). It

is worthwhile noticing that DRL is capable of characterizing

the infinite states caused by measurement error and envi-

ronmental noise. There exists extensive literature in online

learning task offloading for stochastic optimization, such as

DRL [109]–[112], which generally target at a broader set of

learning problems in MDPs. As far as we are aware, high-

dimensional action spaces are still an urgent and challenging

problem in DRL. To make the problem tractable, the general

optimization problem is reduced into an MDP that only con-

siders a meaningful parameter. Furthermore, the Multi-Armed

Bandit (MAB) problem is a special case of MDP problems for

which regret learning frameworks are generally considered to

be more efficient of computational complexity. Additionally,

the use of the MAB model is appropriate and recognizable,

taking advantage of the fact that the resources of edge node

are limited. Based on the above analysis, MDP promises an

online learning framework for learning computing resources

and available communication, storage resources information

for stochastic optimization, aiming to minimize task offloading

cost.

IV. RESEARCH DIRECTIONS AND OPEN PROBLEMS

In this section, we present the research directions and

open problems for task offloading in next-generation wireless

networks, supported by the wireless network infrastructures in

Section II.

A. Multi-Dimensional Resource Management

Compared to cloud computing, the edge nodes and end

users in multi-tier computing systems may have limited re-

sources. Therefore, communication, computing and caching

resource allocation is a very important research issue in multi-

tier computing systems. Specifically, next-generation wireless

communication networks present various technologies, includ-

ing massive MIMO, IRS, NOMA, SAGIN, and AI etc. These

new communication technologies integrated with multi-tier

computing will reduce task offloading delay, grant large-scale

user access and promote rapid development of the intelligent

services, as well as realize efficient collaborative computing

and multi-dimensional communication, caching, computation

resource sharing through efficient task offloading.

However, the computation power of multi-tier servers is

typically limited. The wireless physical layer resource al-

location and user access techniques are the key challenges

that hinder the success of multi-tier computing for 5G and

beyond in executing compute-intensive and latency-critical

applications. The optimization of resource allocation may be

multi-objective in different situations, e.g., diverse nature of

applications, heterogeneous server capabilities, user demands

and characteristics, and channel connection qualities.

B. Multi-Tier Task Allocation

Since multi-tier computing systems provide extra computing

capability at the network edge, one of the core problems

is how to manage task allocation. More specifically, how to

decide which tasks should be performed on end-user devices,

at fog/edge systems, or in the cloud. At a more granular level,

the challenge is to which computing nodes should a task be

assigned. To achieve low latency and high energy efficiency

of task offloading, computing tasks need to be scheduled

to computing nodes with different capabilities according to

different task computing models, communication bandwidths

and channel qualities. Therefore, heterogeneity becomes an

important factor in multi-tier computing architectural design.

Dealing with different task computation and various commu-

nication protocols to manage task offloading becomes a major

problem.

C. Heterogeneous QoS Management

With the development of various novel technologies, in-

telligent services are increasingly applied in many fields of

human life, including business, manufacturing, health-care,

entertainment, etc. On one hand, the number of smart services

deployed around edge and cloud servers is growing rapidly. On

the other hand, different service providers provision services

with similar functions, and different edge servers may possess

different service performance. Then, the smart devices will
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require services with different QoS requirements. In light of

these descriptions, intelligent services are migrating to the

network, i.e., to edge servers residing near end users.

Note that QoS requirements in multi-tier computing systems

include task response time, throughput, reliability and avail-

ability, typically different for different users. However, user

mobility and different server capabilities turn the applicability

of traditional QoS management inapplicable. Therefore, how

to monitor and manage QoS attributes, and schedule multi-

dimensional resources timely and effectively to fulfill specific

QoS requirement for each user becomes the main issue in

multi-tier computing systems.

D. Data Privacy

In multi-tier computing systems, data and computation

task need to be collected close to the physically distributed

edge devices, and there exists a large number of devices

in the systems. When analyzing sensitive information from

distributed nodes, data privacy cannot be compromised. We

should select computing nodes in a way that best protect the

data privacy, considering the computing nodes in different

parts of the network may have different privacy protection

capabilities. The tasks collected, transmitted, and processed at

the edge or in the cloud should be anonymized [113]. Then,

multi-tier data analysis and processing is achieved securely

in multi-tier computing systems. Note that distributed systems

are in general more vulnerable to be attacked than centralized

systems, and both the end devices and edge computing nodes

in multi-tier computing systems are typically less powerful

than the cloud. Therefore, these nodes may not have as

adequate resources as the cloud to protect themselves. In

addition, the devices and edge computing nodes may not have

enough intelligence and capability equipped to detect threats

due to limited resources. In all, data privacy of multi-tier

computing from things to the cloud will be the focus of future

research in multi-tier computing systems.

V. CONCLUSIONS

In this paper, we investigated the key wireless communica-

tion techniques, effective resource allocation approaches and

research directions to embrace the era of task offloading for

multi-tier computing-based next-generation wireless networks.

In particular, the multi-tier computing system model, multi-

tier computing resources and optimization methods were p-

resented for better facilitating the task offloading. We hope

that this paper will serve as a valuable reference and guide

to further promote the theoretical, algorithmic, and systematic

development and advancement of task offloading with multi-

tier computing resources in next-generation wireless networks.

REFERENCES

[1] K. David and H. Berndt, “6G vision and requirements,” IEEE Veh.
Technol. Mag., vol. 13, no.9, pp. 72–80, Sep. 2018.

[2] A. H. Khan, N. U. Hassan, C. Yuen, J. Zhao, D. Niyato, Y. Zhang, and
H. V. Poor, “Blockchain and 6G: The future of secure and ubiquitous
communication,” IEEE Wireless Commun., pp. 1–8, Jan. 2022.

[3] B. Zong, C. Fan, X. Wang, X. Duan, B. Wang, and J. Wang, “6G
technologies: Key drivers, core requirements, system architectures, and
enabling technologies,” IEEE Veh. Technol. Mag., vol. 14, no.3, pp. 18–
27, Sep. 2019.

[4] K. Yang, Y. Shi, Y. Zhou, Z. Yang, L. Fu, and W. Chen, “Federated
machine learning for intelligent IoT via reconfigurable intelligent
surface,” IEEE Network, vol. 34, no.5, pp. 16–22, Sep. 2020.

[5] N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and X. S.
Shen, “Software defined space-air-ground integrated vehicular net-
works: Challenges and solutions,” IEEE Commun. Mag., vol. 55, no.7,
pp. 101–109, July 2017.

[6] L. Lyu, J. C. Bezdek, J. Jin, and Y. Yang, “FORESEEN: Towards
differentially private deep inference for intelligent internet of things,”
IEEE J. Select. Areas Commun, vol. 38, no.10, pp. 2418–2429, Oct.
2020.

[7] S. Andreev, V. Petrov, K. Huang, M. A. Lema, and M. Dohler, “Dense
moving fog for intelligent IoT: Key challenges and opportunities,”
IEEE Commun. Mag., vol. 57, no.5, pp. 34–41, May 2019.

[8] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no.6, pp. 854–864, Dec.
2016.

[9] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M.-T. Zhou,
“MEETS: Maximal energy efficient task scheduling in homogeneous
fog networks,” IEEE Internet Things J., vol. 5, pp. 4076–4087, Oct.
2018.

[10] Y. Yang, “Multi-tier computing networks for intelligent IoT,” Nature
Electronics, vol. 2, pp. 4–5, Jan. 2019.

[11] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence
for 6G: Vision, enabling technologies, and applications,” IEEE J. Sel.
Areas Commun., vol. 40, no.1, pp. 5–36, Jan. 2022.

[12] Y. Xiao and M. Krunz, “Dynamic network slicing for scalable fog com-
puting systems with energy harvesting,” IEEE J. Sel. Areas Commun.,
vol. 36, pp. 2640–2654, Dec. 2018.

[13] Y. Xiao and M. Krunz, “Distributed optimization for energy-efficient
fog computing in the tactile internet,” IEEE J. Sel. Areas Commun.,
vol. 36, pp. 2390–2400, Nov. 2018.

[14] B. V. Philip, T. Alpcan, J. Jin, and M. Palaniswami, “Distributed real-
time iot for autonomous vehicles,” IEEE Transactions on Industrial
Informatics, vol. 15, no.2, pp. 1131–1140, Feb. 2020.

[15] M. Afrin, J. Jin, A. Rahman, A. Rahman, J. Wan, and E. Hossain,
“Resource allocation and service provisioning in multi-agent cloud
robotics: A comprehensive survey,” IEEE Commun. Surveys Tuts.,
vol. 23, no.2, pp. 842–870, Second Quarter 2021.

[16] K. Wang, Y. Tan, Z. Shao, S. Ci, and Y. Yang, “Learning-based task
offloading for delay-sensitive applications in dynamic fog networks,”
IEEE Trans. Veh. Tech., vol. 68, no.11, pp. 11399–11403, Nov. 2019.

[17] K. Wang, Y. Zhou, J. Li, S. L, W. Chen, and L. Hanzo, “Energy-efficient
task offloading in massive MIMO-aided multi-pair fog-computing
networks,” IEEE Trans. Commun., vol. 69, no.4, pp. 2123–2137, Apr.
2021.

[18] K. Wang, Y. Zhou, Q. Wu, W. Chen, and Y. Yang, “Task offloading
in hybrid intelligent reflecting surface and massive MIMO relay net-
works,” IEEE Trans. Wireless Commun., vol. 21, no.6, pp. 3648–3663,
Jun. 2022.

[19] Y. Yang, Z. Liu, X. Yang, K. Wang, X. Hong, and X. Ge, “POMT:
Paired offloading of multiple tasks in heterogeneous fog networks,”
IEEE Internet Things J., vol. 6, pp. 8658–8669, Oct. 2019.

[20] Z. Liu, Y. Yang, K. Wang, Z. Shao, and J. Zhang, “POST: Parallel
offloading of splittable tasks in heterogeneous fog networks,” IEEE
Internet Things J., vol. 7, pp. 3170–3182, Apr. 2020.

[21] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang,
“An overview of massive MIMO: Benefits and challenges,” IEEE J.
Sel. Topics Signal Process., vol. 8, pp. 742–758, Oct. 2014.

[22] O. Y. Bursalioglu, G. Caire, R. K. Mungara, H. C. Papadopoulos,
and C. Wang, “Fog massive MIMO: A user-centric seamless hot-spot
architecture,” IEEE Trans. Wireless Commun., vol. 18, pp. 559–574,
Jan. 2019.

[23] D. Chen, “Low complexity power control with decentralized fog
computing for distributed massive MIMO,” in Proc. IEEE WCNC,
(Barcelona, Spain), pp. 1–6, Apr. 2018.

[24] R. K. Mungara, G. Caire, O. Y. Bursalioglu, C. Wang, and H. C. Pa-
padopoulos, “Fog massive MIMO with on-the-fly pilot contamination
control,” in Proc. IEEE ISIT, (Vail, CO, USA), pp. 1–5, Jun. 2018.

[25] S. Lien, S. Shieh, Y. Huang, B. Su, Y. Hsu, and H. Wei, “5G new
radio: Waveform, frame structure, multiple access, and initial access,”
IEEE Commun. Mag., vol. 55, 6, pp. 64–71, Jun. 2017.



12

[26] T. Bai and R. W. Heath, “Coverage and rate analysis for millimeter-
wave cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no.2,
pp. 1100–1114, Feb. 2015.

[27] T. Bai, C. Pan, H. Ren, Y. Deng, M. Elkashlan, and A. Nallanathan,
“Resource allocation for intelligent reflecting surface aided wireless
powered mobile edge computing in OFDM systems,” IEEE Trans.
Wireless Commun., vol. 20, pp. 5389–5407, Aug. 2021.

[28] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless
network via joint active and passive beamforming,” IEEE Trans.
Wireless Commun., vol. 18, pp. 5394–5409, Nov. 2019.

[29] B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H. V. Poor, “Hybrid
beamforming for reconfigurable intelligent surface based multi-user
communications: Achievable rates with limited discrete phase shifts,”
IEEE J. Sel. Areas Commun., vol. 38, pp. 1809–1822, Aug. 2020.

[30] M. D. Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen,
J. de Rosny, and S. Tretyakov, “Smart radio environments empowered
by reconfigurable intelligent surfaces: How it works, state of research,
and the road ahead,” IEEE J. Sel. Areas Commun., vol. 38, pp. 2450–
2525, Nov. 2020.

[31] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,” IEEE Commun.
Mag., vol. 58, pp. 106–112, Jan. 2020.

[32] T. Bai, C. Pan, C. Han, and L. Hanzo, “Reconfigurable intelligent sur-
face aided mobile edge computing,” IEEE Wireless Communications,
2021.

[33] X. Hu, C. Masouros, and K. K. Wong, “Removing channel estimation
by location-only based deep learning for RIS aided mobile edge
computing,” in Proc. of the IEEE ICC 2021, (Montreal, Canada), pp. 1–
6, Jun. 2021.

[34] Q. Wu, X. Zhou, and R. Schober, “IRS-assisted wireless powered
NOMA: Do we really need different phase shifts in DL and UL?,”
IEEE Wireless Commun. Lett., vol. 10, pp. 1493–1497, Jul. 2021.

[35] Z. Chu, P. Xiao, M. Shojafar, D. Mi, J. Mao, and W. Hao, “Intelligent
reflecting surface assisted mobile edge computing for internet of
things,” IEEE Wireless Commun. Lett., vol. 10, pp. 619–623, Mar. 2021.

[36] Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G
nonorthogonal multiple access downlink transmissions,” IEEE Trans.
Veh. Tech., vol. 65, pp. 6010–6023, Aug. 2016.

[37] L. Dai, B. Wang, Y. Yuan, S. Han, C.-L. I, and Z. Wang, “Nonorthog-
onal multiple access for 5G: Solutions, challenges, opportunities, and
future research trends,” IEEE Commun. Mag., vol. 53, pp. 74–81, Sept.
2016.

[38] D. Tse and P. Viswanath, Fundamentals of Wireless Communications.
Cambridge University Press, 2005.

[39] M. Mohseni, R. Zhang, and J. M. Cioffi, “Optimized transmission for
fading multiple-access and broadcast channels with multiple antennas,”
IEEE J. Sel. Areas Commun., vol. 24, no.8, pp. 1627–1639, Aug. 2006.

[40] Z. Chen, Z. Ding, X. Dai, and R. Zhang, “An optimization perspective
of the superiority of NOMA compared to conventional OMA,” IEEE
Trans. Sig. Proc., vol. 65, pp. 5191–5202, Oct. 2017.

[41] H. Zhang, Y. Qiu, K. Long, G. K. Karagiannidis, X. Wang, and
A. Nallanathan, “Resource allocation in NOMA based fog radio access
networks,” IEEE Wireless Commun., vol. 25, pp. 110–115, Jun. 2018.

[42] X. Wen, H. Zhang, H. Zhang, and F. Fang, “Interference pricing
resource allocation and user-subchannel matching for NOMA hierarchy
fog networks,” IEEE J. Sel. Topics Signal Process., vol. 13, pp. 467–
479, Jun. 2019.

[43] K. Wang, Y. Zhou, Z. Liu, Z. Shao, X. Luo, and Y. Yang, “Online
task scheduling and resource allocation for intelligent NOMA-based
industrial internet of things,” IEEE J. Select. Areas Commun, vol. 38,
no.5, pp. 803–815, May 2020.

[44] C. Dong, Y. Shen, Y. Qu, K. Wang, J. Zheng, Q. Wu, and F. Wu,
“UAVs as an intelligent service: Boosting edge intelligence for air-
ground integrated networks,” IEEE Network, vol. 35, pp. 167–175, Jul.
2021.

[45] N. Cheng, W. Xu, W. Shi, Y. Zhou, N. Lu, H. Zhou, and X. Shen, “Air-
ground integrated mobile edge networks: Architecture, challenges, and
opportunities,” IEEE Commun. Mag., vol. 56, pp. 26–32, Aug. 2018.

[46] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no.4, pp. 2322–2358, Aug. 2017.

[47] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless
networks: A comprehensive survey,” IEEE Commun. Surveys Tuts.,
vol. 20, no.4, pp. 2595–2621, Jun. 2018.

[48] F. Tang, B. Mao, Z. M. Fadlullah, N. Kato, O. Akashi, T. Inoue,
and K. Mizutani, “On removing routing protocol from future wireless
networks: A real-time deep learning approach for intelligent traffic

control,” IEEE Wireless Communications, vol. 25, pp. 154–160, Feb.
2018.

[49] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The
roadmap to 6G: AI empowered wireless networks,” IEEE Commun.
Mag., vol. 57, no.8, pp. 84–90, Aug. 2019.

[50] C. Jiang, N. Ge, and L. Kuang, “AI-enabled next-generation com-
munication networks: Intelligent agent and AI router,” IEEE Wireless
Commun., vol. 27, no.6, pp. 129–133, Dec. 2020.

[51] D. C. Nguyen, P. Cheng, M. Ding, D. Lopez-Perez, P. N. Pathirana,
J. Li, A. Seneviratne, Y. Li, and H. V. Poor, “Enabling AI in future
wireless networks: A data life cycle perspective,” IEEE Commun.
Surveys Tuts., vol. 23, no.1, pp. 553–595, First Quarter 2021.

[52] J. G. A. et al., “What will 5G be?,” IEEE J. Sel. Areas Commun.,
vol. 32, no.6, pp. 1065–1082, Jun. 2014.

[53] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D fogging: An energy-efficient
and incentive-aware task offloading framework via network-assisted
D2D collaboration,” IEEE J. Sel. Areas Commun., vol. 34, no.12,
pp. 3887–3901, Dec. 2016.

[54] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, “Exploiting massive
D2D collaboration for energy-efficient mobile edge computing,” IEEE
Wireless Commun., vol. 24, pp. 64–71, Aug. 2017.

[55] Y. Yang, S. Zhao, W. Zhang, Y. Chen, X. Luo, and J. Wang, “DEBTS:
Delay energy balanced task scheduling in homogeneous fog networks,”
IEEE Internet Things J., pp. 1–1, 2018.

[56] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, “An overview
of MIMO communicatios-a key to Gigabit wireless,” in Proceedings
of the IEEE., vol. 92, no.2, pp. 198–218, Feb. 2002.

[57] K. Wang, W. Chen, J. Li, and B. Vucetic, “Green MU-MIMO/SIMO
switching for heterogeneous delay-aware services with constellation
optimization,” IEEE Trans. Commun., vol. 64, pp. 1984–1995, May
2016.

[58] K. Wang and W. Chen, “Energy-efficient communications in MIMO
systems based on adaptive packets and congestion control with delay
constraints,” IEEE Trans. Wireless Commun., vol. 14, no.4, pp. 2169–
2179, Apr. 2015.

[59] T. L. Marzetta, “Noncooperative cellular wireless with unlimited num-
bers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9,
pp. 3590–3600, Nov. 2010.

[60] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta,
O. Edfors, and F. Tufvesson, “Multiple-antenna techniques in LTE-
advanced,” IEEE Signal Process. Mag., vol. 30, pp. 40–60, Oct. 2013.

[61] K. R. Liu, Cooperative communications and networking. Cambridge,
U.K.: Cambridge Univ. Press., 2009.

[62] G. Amarasuriya, “Sum rate analysis for multi-user massive MIMO
relay networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
pp. 1–7, Dec. 2015.

[63] N. Yang, M. Elkashlan, P. L. Yeoh, and J. Yuan, “Multiuser MIMO re-
lay networks in nakagami-m fading channels,” IEEE Trans. Commun.,
vol. 60, no.11, pp. 3298–3310, Nov. 2012.

[64] F. Zhou, C. You, and R. Zhang, “Delay-optimal scheduling for IRS-
aided mobile edge computing,” IEEE Wireless Communications Letters,
vol. 10, pp. 740–744, Apr. 2021.

[65] T. Bai, C. Pan, H. Ren, Y. Deng, M. Elkashlan, and A. Nallanathan,
“Resource allocation for intelligent reflecting surface aided wireless
powered mobile edge computing in OFDM systems,” IEEE Trans.
Wireless Commun., vol. 20, pp. 5389–5407, Aug. 2021.

[66] K. Wang, Z. Ding, D. K. C. So, and G. K. Karagiannidis, “Stackelberg
game of energy consumption and latency in mec systems with NOMA,”
IEEE Trans. on Commun, vol. 69, no.4, pp. 2191–2206, Apr. 2021.

[67] C. Zhao, Y. Cai, M. Zhao, and Q. Shi, “Joint hybrid beamforming
and offloading for mmwave mobile edge computing systems,” in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), pp. 1–6, June 2019.

[68] C. Zhao, Y. Cai, A. Liu, M. Zhao, and L. Hanzo, “Mobile edge
computing meets mmWave communications: Joint beamforming and
resource allocation for system delay minimization,” IEEE Trans. Wire-
less Commun., vol. 19, no.4, pp. 2382–2396, Apr. 2020.

[69] X. Yu, F. Xu, J. Cai, X. Y. Dang, and K. Wang, “Computation efficiency
optimization for millimeter-wave mobile edge computing networks
with noma,” IEEE Trans. Mobile Computing, vol. 1, pp. 1–1, Apr.
2022.

[70] S. Yu, X. Gong, Q. Shi, X. Wang, and X. Chen, “EC-SAGINs: Edge
computing-enhanced space-air-ground integrated networks for internet
of vehicles,” IEEE Internet Things J., pp. 1–13, 2021.

[71] N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and X. S.
Shen, “Software defined space-air-ground integrated vehicular net-
works: Challenges and solutions,” IEEE Commun. Mag., vol. 55,
pp. 101–109, Jul. 2017.



13

[72] Z. Zhou, J. Feng, L. Tan, Y. He, and J. Gong, “An air-ground integration
approach for mobile edge computing in IoT,” IEEE Commun. Mag.,
vol. 56, pp. 40–47, Aug. 2018.

[73] N. Kato, Z. M. Fadlullah, F. Tang, B. Mao, S. Tani, A. Okamura, and
J. Liu, “Optimizing space-air-ground integrated networks by artificial
intelligence,” IEEE Wireless Communications, vol. 26, pp. 140–147,
Aug. 2019.

[74] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for IoT applications: A
learning-based approach,” IEEE J. Sel. Areas Commun., vol. 37, no.5,
pp. 1117–1129, May 2019.

[75] B. Shang and L. Liu, “Mobile-edge computing in the sky: Energy
optimization for aircground integrated networks,” IEEE Internet Things
J., vol. 7, no.8, pp. 7443–7456, Aug. 2020.

[76] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” Apr. 2017. [Online]. Available: https://arxiv.org/
pdf/1602.05629.pdf.

[77] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proc. IEEE, vol. 107, no.8, pp. 1655–1674, Aug. 2019.

[78] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing networks,”
Mobile Networks and Applications, pp. 1–8, Nov. 2018. doi: 10.1007/
s11036-018-1177-x.

[79] G. Qu and H. Wu, “DMRO: A deep meta reinforcement learning-based
task offloading framework for edge-cloud computing,” Aug. 2020.
[Online]. Available: https://arxiv.org/abs/2008.09930.

[80] L. Huang, S. Bi, and Y. J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comput., vol. 19, pp. 2581–
2593, Nov. 2020.

[81] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation
for mobile edge computing: A deep reinforcement learning approach,”
IEEE Trans. Emerg. Topics Comput., vol. 9, pp. 1529–1541, Sep. 2021.

[82] S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, “When deep rein-
forcement learning meets federated learning: Intelligent multitimescale
resource management for multiaccess edge computing in 5G ultradense
network,” IEEE Internet Things J., vol. 8, no.4, pp. 2238–2251, Feb.
2021.

[83] H. Yang, Z. Xiong, J. Zhao, D. Niyato, L. Xiao, and Q. Wu, “Deep
reinforcement learning based intelligent reflecting surface for secure
wireless communications,” IEEE Trans. Wireless Commun., vol. 20,
pp. 375–388, Jan. 2020.

[84] A. M. Elbir, A. Papazafeiropoulos, P. Kourtessis, and S. Chatzinotas,
“Deep channel learning for large intelligent surfaces aided mm-wave
massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 9, no.9,
pp. 1447–1451, Sep. 2020.

[85] M. Chiang, S. Ha, F. Risso, T. Zhang, and I. Chih-Lin, “Clarifying fog
computing and networking: 10 questions and answers,” IEEE Commun.
Mag., vol. 55, no.4, pp. 18–20, Apr. 2017.

[86] K. Wang, W. Chen, J. Li, Y. Yang, and L. Hanzo, “Joint task offloading
and caching for massive MIMO-aided multi-tier computing networks,”
IEEE Trans. Commun., vol. 70, pp. 1820–1833, Mar. 2022.

[87] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating mini-
mization algorithms for hybrid precoding in millimeter wave MIMO
systems,” IEEE J. Sel. Topics Signal Process., vol. 10, pp. 485–500,
Apr. 2016.

[88] W. Zhao and S. Wang, “Resource allocation for device-to-device com-
munication underlaying cellular networks: An alternating optimization
method,” IEEE Commun. Lett., vol. 19, pp. 1398–1401, Aug. 2015.

[89] T. Bai, C. Pan, Y. Deng, M. Elkashlan, A. Nallanathan, and L. Hanzo,
“Latency minimization for intelligent reflecting surface aided mobile
edge computing,” IEEE J. Sel. Areas Commun., vol. 38, no.11, p-
p. 2666–2682, Nov. 2020.

[90] X. Ren, D. Li, Y. Xi, and H. Shao, “Distributed global optimization
for a class of nonconvex optimization with coupled constraints,” IEEE
Transactions on Automatic Control, 2021.

[91] T. Tatarenko and B. Touri, “Non-convex distributed optimization,”
IEEE Transactions on Automatic Control, vol. 62, no.8, pp. 3744–3757,
Aug. 2017.

[92] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,”
IEEE Trans. Sig. Proc., vol. 66, no.11, pp. 2834–2848, Jun. 2018.

[93] I. V. Sergienko, L. F. Hulianytskyi, and S. I. Sirenko, “Classification of
applied methods of combinatorial optimization,” Cybern. Syst. Analysis,
vol. 45, no.5, no. 5, pp. 732–741, 2009.

[94] L. F. Hulyanytskyi and S. I. Sirenko, “ACO-H metaheuristic combi-
natorial optimization method,” J. Autom. Inform. Sci., vol. 42, no.7,
no. 7, pp. 30–42, 2010.

[95] T. N. Barbolina, “Solution of mixed combinatorial optimization prob-
lems on arrangements by the method of construction of lexicographic
equivalence,” Cybern. Syst. Analysis, vol. 49, no.6, no. 6, pp. 922–931,
2013.

[96] O. A. Yemets, T. N. Barbolina, and O. A. Chernenko, “Soving
optimization problems with linear-fractional objective functions and
additional constraints on arrangements,” Cybern. Syst. Analysis, vol. 42,
no.5, no. 5, pp. 680–685, 2006.

[97] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A
joint learning and communications framework for federated learning
over wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no.1,
pp. 269–283, Jan. 2021.

[98] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM Trans.
Networking, vol. 24, pp. 2795–2808, Oct. 2016.

[99] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision and
resource allocation for multi-user multi-task mobile cloud,” in Proc. of
the IEEE ICC, (Kuala Lumpur, Malaysia), pp. 1–6, May 2016.

[100] Z. Ding, D. W. K. Ng, R. Schober, and H. V. Poor, “Delay minimization
for NOMA-MEC offloading,” IEEE Sign. Proc. Lett, vol. 25, no.12,
pp. 1875–1879, Dec. 2018.

[101] J. Zheng, Y. Cai, Y. Wu, and X. Shen, “Dynamic computation
offloading for mobile cloud computing: A stochastic game-theoretic
approach,” IEEE Trans. Mobile Comput., vol. 18, no.4, pp. 771–786,
Apr. 2019.

[102] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Trans. Veh. Tech., vol. 68,
no.5, pp. 5031–5044, May 2019.

[103] M. Sheng, Y. Dai, J. Liu, N. Cheng, X. Shen, and Q. Yang, “Delay-
aware computation offloading in NOMA MEC under differentiated
uploading delay,” IEEE Trans. Wireless Commun., vol. 19, no.4,
pp. 2813–2826, Apr. 2020.

[104] Z. Yang, Y. Liu, Y. Chen, and N. Al-Dhahir, “Cache-aided NOMA
mobile edge computing: A reinforcement learning approach,” IEEE
Trans. Wireless Commun., vol. 19, no.10, pp. 6899–6915, Oct. 2020.

[105] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT press, 2016.

[106] X. Cao, J. Zhang, and H. V. Poor, “Online stochastic optimization with
time-varying distributions,” IEEE Transactions on Automatic Control,
vol. 66, no.4, pp. 1840–1847, Apr. 2021.

[107] Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao, “DATS: Dispersive
stable task scheduling in heterogeneous fog networks,” IEEE Internet
of Things Journal, vol. 6, no. 2, pp. 3423–3436, 2019.

[108] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1826–1857,
2018.

[109] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on
markov decision process,” IEEE/ACM Trans. Networking, vol. 27, no.3,
pp. 1272–1288, Jun. 2019.

[110] I. A. Ridhawi, M. Aloqaily, Y. Kotb, Y. Jararweh, and T. Baker, “A prof-
itable and energy-efficient cooperative fog solution for IoT services,”
IEEE Transactions on Industrial Informatics, vol. 16, pp. 3578–3586,
May 2020.

[111] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based
on deep reinforcement learning in IoT edge computing,” IEEE J. Sel.
Areas Commun., vol. 38, no.6, pp. 1133–1146, Jun. 2020.

[112] X. Zhang, J. Zhang, Z. Liu, Q. Cui, X. Tao, and S. Wang, “MDP-
based task offloading for vehicular edge computing under certain and
uncertain transition probabilities,” IEEE Trans. Veh. Tech., vol. 69, no.3,
pp. 3296–3309, Mar. 2020.

[113] S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison, “The
extended cloud: Review and analysis of mobile edge computing and
fog from a security and resilience perspective,” IEEE J. Sel. Areas
Commun., vol. 35, no.11, pp. 2586–2595, Nov. 2017.


