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Abstract

In this paper, we study the average packet error probability (APEP) and effective throughput (ET)

of the control link in unmanned-aerial-vehicle (UAV) communications, where the ground central station

(GCS) sends control signals to the UAV that requires ultra-reliable and low-latency communications

(URLLC). To ensure the low latency, short packets are adopted for the control signal. As a result, the

Shannon capacity theorem cannot be adopted here due to its assumption of infinite channel blocklength.

We consider both free space (FS) and 3-Dimensional (3D) channel model by assuming that the locations

of the UAV are randomly distributed within a restricted space. We first characterize the statistical

characteristics of the signal-to-noise ratio (SNR) for both FS and 3D model. Then, the closed-form

analytical expressions of APEP and ET are derived by using Gaussian-Chebyshev quadrature. Also, the

lower and upper bounds are derived to obtain more insights. Finally, we show the solutions to obtain the

sub-optimal value of packet length numerically with the objective of maximizing the ET. Our analytical

results are verified by the Monte-Carlo simulations.

Keywords – UAV, URLLC, packet error probability, short packet transmission

I. INTRODUCTION

Unmanned aerial vehicle (UAV) communication has attracted increasingly attention from both

industry and academia [1], [2]. Compared with the conventional terrestrial communications, UAV

can be deployed in a swift and flexible way on demands. For example, it can be used to offload

heavy data load in hot spot area, and provide temporary communication services when public

communication infrastructure is damaged due to nature disasters. In addition, UAV can act as a
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2

relay when there is no reliable direct communication links between distant nodes. The channel

quality between the UAV and ground users can be enhanced due to the higher probability of

short-distance line-of-sight (LoS) links.

UAV trajectory design has been studied in [3]–[5]. In particular, Zeng et al. studied the

throughput maximization problem by jointly optimizing transmission power and UAV trajectory

for mobile relay system. The energy consumption of fixed-wing UAVs was derived in [4],

based on which energy efficiency was maximized subject to the constraints of UAV speed and

acceleration. Then, Wu et al. extended [3], [4] to a multi-UAV enabled communication system,

and the fairness issue was studied by jointly optimizing user association, UAV trajectory and

power control. The other research line is UAV location/placement optimization for static-UAV

enabled wireless networks [6]–[8]. Specifically, Hourani et al. [6] provided an analytical approach

to optimize the altitude of UAV to provide maximum radio coverage on ground users. The circle

packing theory was adopted in [7] to optimize the locations of multiple UAVs. Alzenad et al.

[8] proposed an optimal placement algorithm for maximizing the number of covered users using

the minimum transmit power. Moreover, UAV combined with mobile edge computing has been

reported in [9].

However, all the above works mainly focused on the conventional data transmission without

considering the control communication links which require much more stringent latency and

higher reliability in order to avoid collision and crash. The control communication link generally

requires low data rate for exchanging safety-critical signals. To ensure the extremely low latency

(e.g., 1 ms), short packet (e.g., 20 bytes) should be adopted [10]. Thus the Shannon capacity

formula based on the philosophy of the law of large numbers does not guarantee an asymptotically

reliable communication. Therefore non-negligible packet error probability exists and effective

throughput may drop. In [11], the authors derived the maximum range between UAVs and a

ground control station such that the transmission delay and the overall packet loss probability

requirement can be guaranteed. In [12], the UAV serves as a relay to provide URLLC services

between the controller and the robot. However, there is a paucity of contributions devoted to

the performance analysis in UAV-URLLC communication systems. In [13], the approximate

closed-form expression of the packet error probability in finite blocklength regime has been

derived, which is an involved function of packet length/channel uses, signal-to-noise ratio (SNR)

and packet size. This calls for a complete paradigm shift to the study of average packet error

probability performance (APEP) and effective throughput (ET) in UAV communications.
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Against the above background, the contributions of this paper are summarised as follows:

1) We characterize the statistical characteristics of the signal-to-noise ratio (SNR) for both

free space (FS) and 3-dimensional (3D) model by assuming that the UAV is assumed to fly

freely in a restricted area. We consider the randomness of the locations of UAV by using

the stochastic geometry theory. Both FS and 3D channel model are considered, where FS

is used for the environment where the line-of-sight (LoS) dominates, whereas 3D model

is applied to the scenario where the None Los (NLoS) cannot be ignored such as urban

areas.

2) We then study the average packet error probability (APEP) and effective throughput (ET)

under short packet transmission of the control link from ground control station (GCS)

to UAV. The Gaussian-Chebyshev quadrature method is adopted to derive the closed-

form expression of APEP and ET under short packet transmission, which can provide

engineering insights on the packet size design and more understanding of the packet error

rate incurred in transmission.

3) Then, closed-form lower bounds are derived for APEP and ET under both FS and 3D

channel model by using the convexity of error expression and Jensen’s inequality. Also,

upper bound is derived for APEP and ET under FS model with insights given to the

practical system design.

4) Moreover, the sub-optimal value of packet length with the objective of maximizing the ET

under FS and 3D is provided.

5) Monte-Carlo simulations are conducted to demonstrate the correctness of our derived

results, and show the tightness of the analytical expressions under different conditions.

The rest of this paper is organized as follows. In Section II, we first introduce the system

model including FS, 3D channel model and the point-to-point short packet transmission theory.

In Section III, the exact, lower bound and upper bound are derived for APEP and ET under

FS channel model, whereas the exact and lower bound are studied for APEP and ET under 3D

channel model in Section IV. Also, the sub-optimal value of packet length with the objective of

maximizing the ET under FS and 3D are shown in Section III and IV, respectively. Simulation

results and analysis are shown in Section V. Finally, the paper is concluded in Section VI.
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Fig. 1: Illustration of the low-latency transmission of control information from GCS to a UAV.

II. SYSTEM MODEL

We consider a UAV communication network where a GCS sends remote control signals to

a UAV, which has stringent QoS requirements in terms of ultra-high reliability and ultra-low

latency, as shown in Fig. 1. For simplicity, both GCS and UAV are assumed to be equipped

with one antenna. The GCS is also assumed to be located at the center of the sphere. Two

hemispheres are introduced that share the same center point at the GCS. The UAV is assumed to

be within the outer hemisphere to ensure that the UAV is within the control range of the GCS.

In addition, we assume that the UAV will not fly into the inner hemisphere. The assumption is

reasonable since there may be some obstacles or buildings around the GCS. The radius of the

inner and outer hemisphere are denoted as Dmin and Dmax, respectively. The UAV is assumed

to fly freely within the space specified by the two hemispheres as shown in Fig. 1. Then, we

can assume that the UAV is uniformly distributed in this space, and the cumulated distribution

function (CDF) of d can be calculated as [14]

Fd(x) =

⎧⎨
⎩

x3−D3
min

D3
max−D3

min
, Dmin ≤ x ≤ Dmax,

1, x > Dmin.
(1)
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and the probability distribution function (PDF) of d is

fd(x) =

⎧⎨
⎩

dFd(x)
dx

= 3x2

D3
max−D3

min
, Dmin ≤ x ≤ Dmax,

0, otherwise.
(2)

A. Channel model

Two channel models are considered as follows:

1) Free-space (FS) Channel Model: This channel is the simplest channel model, which is for

the scenario where the LoS dominates the environment, i.e., in less crowded areas. The channel

gain from the GCS to the UAV mainly depends on the GCS-UAV distance and the antenna gain.

Then, the channel power gain from GCS to UAV follows the FS path loss model, which can

be expressed as h = βd−2 [15], where d is the GCS-UAV distance and β is the channel power

at the reference distance of d = 1 m that is related to the antenna gain. This channel model is

valid when the UAV is deployed in an obstacle-free area, such as big square, play ground, large

lawn, etc. We assume that the transmission power from the GCS to the UAV is fixed as P and

the noise power at the UAV is denoted as σ2. Then, the SNR at UAV is given by

γFS = λd−2 (3)

where λ = Pβ/σ2.

2) 3D Channel Model: We adopt the 3D channel model proposed in [6] which is more

practical than the above free space channel model for urban areas with dense obstacles such

as buildings and trees. In this model, both line-of-sight (LoS) and non line-of-sight links are

considered. The probability of having a LoS connection between the GCS and the UAV is given

by [6]

PLoS =
1

1 + a exp (−b (θ − a))
, (4)

where a and b are positive constants that depend on the environment and the values are given

in [6], θ is the elevation angle given by θ = arctan h
g

1 with h denoting the altitude of the

UAV and g horizontal distance between the UAV and the GCS. The probability of NLoS is

PNLoS = 1− PLoS. Also, one can get the PDF of θ as

fθ(x) =
1

Θmax −Θmin

(5)

1θ here means the degrees of the angle and its value ranges from 0 to 90.
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and the CDF of θ as

Fθ(x) =
x−Θmin

Θmax −Θmin

. (6)

The channel path loss models for LoS and NLoS links shown in dB are [6]

Lk = 20log10

(
4πfcd

c

)
+ ηk, k ∈ {LoS,NLoS} (7)

where the first term corresponds to the free space path loss, and ηLoS and ηNLoS are the additional

losses for LoS and NLoS, respectively. In general, ηNLoS is much larger than ηLoS due to the

severe path loss of NLoS. Then, for a given location of UAV, we consider the mean path loss

by considering the probability of both LoS and NLoS links:

L(θ, d) = LLoSPLoS + LNLoSPNLoS. (8)

By substituting (4) and (7) into (8), the mean path loss in (8) can be rewritten as

L(θ, d) =
A

1 + a exp (−b (θ − a))
+ 20log10 (d) + C, (9)

where A and C are constants given by A = ηLoS − ηNLoS and C = 20log10
(
4πfc
c

)
+ ηNLoS,

respectively.

Assume that the transmission power from GCS to UAV is fixed as P and the noise power at

UAV is denoted as σ2, then the signal-to-noise ratio (SNR) at the UAV is given by [14] [6]

γ3D =
P

σ2
10−

L(θ,d)
10

= C̃d−2e
Ã

1+a exp(−b(θ−a))

= d̂θ̂

(10)

where d̂ = C̃d−2, θ̂ = e
Ã

1+a exp(−b(θ−a)) , Ã = −A ln 10
10

> 0 and C̃ = P
σ2 e

−C ln 10
10 .

B. Point-to-point Short Packet Transmission Theory

Let us define the coding rate, R, as the ratio of the number of information bits to the total

number of bits per channel use. According to [16], the Shannon capacity is defined as the

maximum coding rate for which an arbitrarily low packet error probability is achievable for a

sufficiently large number of codewords. However, for the control signal transmission, the packet

length, or the number of codewords, should be small to ensure the stringent latency requirement.
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Thus, the Shannon capacity theorem may not guarantee an success transmission and the packet

error probability cannot be ignored.

We assume that the packet size of the control signal is L bits, which should be transmitted

within Tmax seconds. Then, the number of bits per channel use is given by M = BTmax [17],

where B denotes the system bandwidth. Thus, the coding/data rate is given by R = L/M .

According to [17], a very tight approximation of the packet error probability for a point-to-point

transmission under finite blocklength transmission region is given by

ε(γ+) = Q
(
f
(
γ+

))
, (11)

where γ+ can be either γFS or γ3D, f (γ+) =
√

M
V (γ+)

(ln(1 + γ+)−Rs), Rs =
L ln 2
M

(nats per

channel use, or npcu), V (γ+) is the channel dispersion that is given by V (γ+) = 1− (1+γ+)−2

[13], and Q (x) is the Gaussian Q-function given by Q (x) = 1√
2π

∫∞
x

e−
t2

2 dt. The expression of

(11) can be interpreted as follows: ε is minimum packet error probability for which there exists

an encoder/decoder pair to transmit L information bits within M bits per channel use.

Also, the ET can be given by

H(γ+) = Rs

(
1− ε(γ+)

)
. (12)

In the following, we will derive the APEP and ET by considering the randomness of the UAV

location in the restricted area, under both FS and 3D scenarios. The complicated expression of ε

in (11), especially the expression of V (γ+), makes the analysis of APEP and ET a challenging

task. Next, the APEP and ET are derived for FS and 3D channel model in Section III and IV,

respectively.

III. APEP AND ET UNDER FREE-SPACE CHANNEL MODEL

A. PDF of γFS

In this section, we aim to derive the APEP under free-space channel model by transmitting a

packet with fixed size of L. Specifically, the APEP in this case is defined as

ε̄FS = E{ε(γFS)} =

∫ Dmax

Dmin

ε(γFS)fd(x)dx, (13)

where fd(x) is the PDF of d that can be obtained from (1), and γFS in ε(γFS) is provided in

(3) and (11) respectively.
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Then, the ET is given by

H̄FS = E(Rs

(
1− γFS

)
) = Rs

(
1− ε̄FS

)
. (14)

To reduce the analysis complexity, we consider the PDF of γFS in the following lemma.

Lemma 1: The PDF of SNR γFS denoted as fγFS(x) is given by [14]

fγFS(x) =

⎧⎨
⎩

3x−
5
2 λ3/2

2(D3
max−D3

min)
, γFS

min ≤ x ≤ γFS
max

0, otherwise,
(15)

where γFS
min = λ

D2
max

and γFS
max = λ

D2
min

.

Proof : Please refer to Appendix A.

Moreover, when Dmin = 0, one has fγFS(x) = 3x−
5
2 (λFS)

3/2

2D3
max

, x ≥ γFS
min. This can be seen as

the case where there is no obstacle between the control centre and UAV and also, UAV may fly

back to the control centre.

B. Chebyshev Approximation

By using (11) and (15), APEP can be re-expressed as

ε̄ =

∫ γFS
max

γFS
min

Q

(√
M

V (x)
(ln(1 + x)−Rs)

)
fγFS(x)dx

=
3λ3/2

4(D3
max −D3

min)
·
∫ γFS

max

γFS
min

erfc

(
1√
2

√
M

V (x)
(ln(1 + x)−Rs)

)
x−

5
2dx,

(16)

where γFS
min and γFS

max are given in Lemma 1, and the last equality follows by using the relationship

of erfc(x) = 2Q(
√
2x). To the best of our knowledge, it is very difficult to find the closed-form

expression of (16), if not impossible.

Next, we apply Gaussian-Chebyshev quadrature to address this issue by using [18, Eq. (25.4.30)].

Let us first define

qFS(x) = erfc

(
1√
2

√
M

V (x)
(ln(1 + x)−Rs)

)
x−

5
2 . (17)

Then, one can have∫ γFS
max

γFS
min

qFS(x)dx ≈ γFS
max − γFS

min

2

N∑
i=1

ai · qFS

(
γFS
max − γFS

min

2
ti +

γFS
max + γFS

min

2

)
, (18)
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where ti is the i-th zero of Legendre polynomials, N is the number of terms, ai is the Gaussian

weight given by Table (25.4) of [18]. By substituting (18) into (16), one can have

ε̄FS ≈ 3λ3/2(γFS
max − γFS

min)

8(D3
max −D3

min)

N∑
i=1

ai · qFS

(
γFS
max − γFS

min

2
ti +

γFS
max + γFS

min

2

)
Δ
= ε̄FS

C . (19)

With the increase of N , the accuracy of the above expression will be increased, but at the cost

of more computations. To obtain more insights, we derive the approximate expression of ε̄ in

the following section.

Then, by using (19) and (14), one can get the ET as

H̄FS
C = Rs

(
1− ε̄FS

)
. (20)

C. Lower Bound

In the following, we aim to derive the lower bound of the APEP in FS channel model in

closed form. To this end, we first introduce the following lemma.

Lemma 2: ε(γ+) is a convex function of γ+.

Proof : Please refer to Appendix B.

According to Lemma 2, by employing the Jensen’s inequality, we can obtain the lower bound

of APEP as follows:

ε̄FS = E{ε(γFS)} ≥ ε(E{γFS}) Δ
= ε̄FS

LB . (21)

To obtain ε̄FS
LB , we only need to calculate E{γFS}, which is much easier than directly calculating

ε̄FS .

By using (15), one can get E{γFS} as

E{γFS} =

∫ γFS
max

γFS
min

fγFS(x)xdx

=

∫ γFS
max

γFS
min

3λ3/2x−
5
2 · x

2(D3
max −D3

min)
dx

=
3λ3/2√

γFS
max (D

3
max −D3

min)
− 3λ3/2√

γFS
min (D

3
max −D3

min)

(22)

Then, by using (11) and (21), ε̄FS
LB can be written as

ε̄FS
LB = ε

(
3λ

D2
max +D2

min +DmaxDmin

)
. (23)
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Similarly, ET can be expressed as

H̄FS
LB = Rs

(
1− ε̄FS

LB

)
= Rs

(
1− ε

(
3λ

D2
max +D2

min +DmaxDmin

))
.

(24)

Remark 1: When λ � 1 (i.e., P/σ2 � 1), ε̄FS
LB in (23) can be further simplified as

ε̄FS
LB = Q

(√
M

(
ln

(
KFλ

)−Rs

))
, (25)

where KF = 3
D2

max+D2
min+DmaxDmin

. Then, one can see that the APEP decreases proportionally

with the increase of Q
(√

M(ln(KFλ))
)

, i.e., M or λ. .

Proof : Please refer to Appendix C.

Remark 2: When λ � 1 (i.e., P/σ2 � 1), one can have H̄FS
LB → Rs.

Proof : Please refer to Appendix D.

D. Upper Bound

In this section, we provide the upper bound of APEP, which is especially tight in high SNR

region when λ � 1.

By using (60) and (61), (16) can be approximated as

ε̄FS
UB =

3λ3/2

4(D3
max −D3

min)
·
∫ γFS

max

γFS
min

erfc

(
ln 2 · √M√

2

(
log2(x)−

L

M

))
x−

5
2dx

=
3λ3/2

4(D3
max −D3

min)

(
u(γFS

max)− u(γFS
min)

)
,

(26)

where the last equality is obtained by variable substitution and using [19], [20], and function

u(x) is given by

u(x) =−
2erfc

(
M lnx−L ln 2√

2
√
M

)
3x3/2

− 2

3
e

(L ln 4−3)2−4L2 ln2(2)
8M · erf

(−L ln 4 + 2M ln x+ 3

2
√
2
√
M

)
. (27)

Remark 3: One can further approximate (26) as

ε̄FS
UB ≈ D3

max

2 (D3
max −D3

min)

⎛
⎝erfc

⎛
⎝M ln

(
λ

D2
max

)
− L ln(2)

√
2M

⎞
⎠−

erfc

⎛
⎝M ln

(
λ

D2
min

)
− L ln(2)

√
2M

⎞
⎠
⎞
⎠ .

(28)
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Then, one can get the insights that APEP increases with the increase of L, with other parameters

fixed.

Proof : Please refer to Appendix E.

E. Throughput Maximization

In this section, we consider the throughput maximization problem under the latency constraint

as follows

P1 : max
M

H̄FS

subject to : Mmin ≤ M ≤ Mmax.

(29)

One can see that the above optimization can be transformed as

max
M

H̄FS
LB

subject to : Mmin ≤ M ≤ Mmax

(30)

Proof : It is obvious that maximizing H̄FS may be equivalent to maximizing its lower bound.

By using (25), one can get H̄FS
LB as

H̄FS
LB = Rs

(
1−Q

(√
M

(
ln

(
KFλ

)−Rs

)))
. (31)

Then, by taking the first-order derivative of H̄FS
LB with respect to M , one can have

∂H̄FS
LB (M)

∂M
=

L ln 2

2M2

(
erfc

(
M ln

(
KFλ

)− L ln 2√
2M

)
+

(
M ln

(
KFλ

)
+ L ln 2

)
√
2πM

e

⎛
⎝−(L ln 2−M ln(KFλ))

2

2M

⎞
⎠
− 2

⎞
⎟⎠ .

(32)

Next, by equating (32) to zero, one can get

∂H̄FS
LB

∂M
= 0. (33)

Then, one can obtain the root of above equation numerically as

M∗ = Root

(
∂H̄FS

LB

∂M
= 0

)
(34)
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where Root(·) means finding roots of the given equation. As there is no closed-form of M∗

above, one may apply the bisection search method by setting lower and upper limit as Mmin

and Mmax, respectively. Then, the optimal value of M can be approximated as

MFS = argmax
(
H̄FS

LB (M)|M ∈ {Mmax,Mmin,M
∗}) (35)

IV. APEP AND ET UNDER 3D CHANNEL MODEL

In this section, we aim to derive the APEP under 3D channel model. Since we consider the

3D channel model, we introduce the minimum and maximum elevation angle Θmin and Θmax,

respectively, so that the UAV will not collide into nearby obstacles such as tall buildings and

trees.

A. PDF and CDF of γ3D

In that case, the APEP is given by

ε̄3D = E{ε(γ3D)} =

∫ Dmax

Dmin

∫ Θmax

Θmin

ε(γ3D)fd,θ(x, y)dydx, (36)

where fd,θ(x, y) is the joint PDF of d and θ, and γ in ε(γ) is given in (10). Since the UAV is

randomly deployed in the restricted space in Fig. 1, the PDF of θ is given by (5). In addition,

since d and θ are independent, the joint PDF of d and θ are given by

fd,θ(x, y) = fd(x)fθ(y) =
1

Θmax −Θmin

3x2

D3
max −D3

min

. (37)

The method developed for the free-space channel model cannot be adopted here since double

integral needs to be calculated in (13).

Similar to Lemma 1, we derive the PDF of d̂ in (10) as

fd̂(x) =
3x−

5
2 C̃3/2

2(D3
max −D3

min)
, d̂min ≤ x ≤ d̂max, (38)

where d̂min = C̃
D2

max
and d̂min = C̃

D2
min

.

Lemma 3: The CDF of θ̂ can be given by

Fθ̂(x) =
−

ln

⎛
⎝

Ã
ln(x)

−1

a

⎞
⎠

b
+ a−Θmin

Θmax −Θmin

, θ̂min ≤ θ̂ ≤ θ̂max

(39)
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where θ̂min = exp
(

Ã
a exp(−b(Θmin−a))+1

)
and θ̂max = exp

(
Ã

a exp(−b(Θmax−a))+1

)
.

Proof : Please refer to Appendix F.

By taking the first-order derivative of (39) with respect to θ̂, the PDF of θ̂ can be derived as

fθ̂(x) =
Ã

bx(Θmax −Θmin) ln
2(x)

(
Ã

ln(x)
− 1

) , θ̂min ≤ θ̂ ≤ θ̂max. (40)

Lemma 4: The PDF of γ3D can be given by

fγ3D(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
W1(z), θ̂min · d̂min ≤ z ≤ θ̂min · d̂max

W2(z), θ̂min · d̂max ≤ z ≤ θ̂max · d̂min

W3(z), θ̂max · d̂min ≤ z ≤ θ̂max · d̂max

(41)

where W1(z), W2(z) and W3(z) are given by (65), (66) and (67), respectively.

Proof : Please refer to Appendix G.

B. Chebyshev Approximation

In this section, we provide the Chebyshev Approximation to ε̄3D. By using (41), one can get

ε̄3D = E{ε(γ3D)} =

∫ θ̂min·d̂max

θ̂min·d̂min

ε(z)W1(z)dz

+

∫ θ̂max·d̂min

θ̂min·d̂max

ε(z)W2(z)dz +

∫ θ̂max·d̂max

θ̂max·d̂min

ε(z)W3(z)dz

(42)

Let q3D1 (z) = ε(z)W1(z), q
3D
2 (z) = ε(z)W2(z) and q3D3 (z) = ε(z)W3(z), one can have

ε̄3D ≈
N∑
i=1

ai · q3D1
(
θ̂min · d̂max − θ̂min · d̂min

2
ti +

θ̂min · d̂max + θ̂min · d̂min

2

)
+

N∑
i=1

ai · q3D2 ·
(
θ̂max · d̂min − θ̂min · d̂max

2
ti +

θ̂max · d̂min + θ̂min · d̂max

2

)

+
N∑
i=1

ai · q3D3
(
θ̂max · d̂min − θ̂max · d̂min

2
ti +

θ̂max · d̂min + θ̂max · d̂min

2

)
.

(43)

One can see that with the increase of N , the accuracy of the above expression will be increased,

but at the cost of more computations. Then, by using (12) and (43), one can obtain the ET as

H̄3D
C = Rs

(
1− ε̄3D

)
. (44)
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C. Lower Bound

Similarly, the lower bound of APEP can be given by

ε̄3D = E{ε(γ3D)} ≥ ε(E{γ3D}) Δ
= ε̄3DLB. (45)

Then E{γ3D} can be given by

ε̄3DLB = ε(U1 + U2 + U3), (46)

where U1, U2 and U3 are given by (69), (70) and (71), respectively.

Proof : Please refer to Appendix H.

Similarly, ET can be expressed as

H̄3D
LB = Rs

(
1− ε̄3DLB

)
= Rs (1− ε (U1 + U2 + U3)) . (47)

Remark 4: When C̃ � 1, i.e., P/σ2 � 1, one can have H̄3D
LB → Rs.

Proof : Please refer to Appendix I.

D. Throughput Maximization

In this section, we consider the throughput maximization under the latency constraint as

follows

P1 : max
M

H̄3D

subject to : Mmin ≤ M ≤ Mmax.

(48)

One can see that the above problem can be transferred to

max
M

H̄3D
LB

subject to : Mmin ≤ M ≤ Mmax

(49)

By taking the first-order derivative of H̄3D
LB with respect to M and equate the result to zero,

one can get

∂H̄3D
LB

∂M
= 0 (50)

Then, one can obtain the root of above equation numerically as

M∗ = Root

(
∂H̄3D

LB

∂M
= 0

)
(51)
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It is very difficult to obtain the closed-form solution of M∗. Therefore, similar with before, one

may apply the bisection search method by setting the lower and upper limit as Mmin and Mmax,

respectively. Then, the optimal value of M can be approximated as

M3D = argmax
(
H̄3D

LB(M)|M ∈ {Mmax,Mmin,M
∗}) . (52)

V. NUMERICAL RESULTS

In this section, simulation results are presented to verify the correctness of our derived results

in this paper. Unless otherwise stated, the simulation parameters are set as follows: Dmin = 900

m, Dmax = 950 m, B = 1 MHz, L = 500 and σ2 = −173 dBm/Hz. In FS scenario, we set

β = −40 dB. In 3D case, we set fc = 2.5 GHz, c = 3 · 108 m/s and Θmax = 90. Two scenarios

are considered: dense urban and suburban. The values of the corresponding parameters can be

found in [21]. Θmin is set to be 70 and 30 for dense urban and suburban, respectively. The other

parameters are specified in each simulation figure. The curve labelled ‘Simulation’ is obtained

by randomly and uniformly deploying the UAV in the specified region for 10000 times. The

curve labelled ‘Chebyshev’ is obtained by using (19) in FS and (43) in 3D scenario. The curve

labelled ‘Upper’ is obtained by using (28) in FS. Also, the curve labelled ‘Lower’ is obtained

by using (23) in FS and (46) in 3D scenario.

A. FS Channel Model

In Fig. 2, we plot the APEP versus P in Fig. 2 (a) with the packet length given by M = 100,

and APEP versus M in Fig. 2 (b) with the power given by P = −5 dBm. It is observed

from Fig. 2 (a) that the APEP with finite blocklength regime decreases with the increase of

P as expected. Also, one can see from Fig. 2 (b) that the APEP decreases with the increase

of M as well, which confirms the conclusion from Remark 1. From Fig. 2, one can also see

that our derived Chebyshev approximation result approximates the exact result very well. Also,

the derived lower bound and upper bound results have similar performance as the exact curve.

Hence, these results can be used to analyse the trend of the APEP. When the SNR value P is

set to 5 dBm, the APEP can be as low as 10−16. Also, it is noted that when the packet length M

reaches 200, APEP can be as low as 10−7, which satisfies the extremely reliability requirement

for control signal transmission.

In Fig. 3, we plot the ET versus P in Fig. 3 (a) with the packet length given by M = 100,

and ET versus M in Fig. 3 (b) with the power given by P = −5 dBm. One can see from Fig. 3
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(a) APEP versus P with M = 100
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(b) APEP versus M with P = −5 dBm

Fig. 2: APEP in FS channel model

(a) that the ET increase with the increase of P , as expected. Also, one can see that the value of

ET reaches the roof, i.e., Rs = 3.47 with the further increase of P , which can also be derived

from Remark 2.

In Fig. 3 (b), one can see that ET first increases and then decreases with the increase of M .

The maximal value can be reached when M is around 180. From (35), one can obtain MFS

numerically as MFS = 188.432.
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(a) ET versus P with M = 100
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(b) ET versus M with P = −5 dBm

Fig. 3: ET in FS channel model

B. 3D Channel Model

In Fig. 4, we plot the APEP versus P in 3D scenario with the packet length M = 100,

where Fig. 4 (a) shows suburban area while Fig. 4 (b) shows dense urban area. One can see

that the APEP increase with the increase of P for both suburban and dense urban cases, as

expected. Also, one can see in dense urban areas, we have worse APEP performance compared

with suburban case.

In Fig. 5, we plot the APEP versus M in 3D scenario with the power of P = −5 dBm, where

Fig. 5 (a) shows suburban area while Fig. 5 (b) shows dense urban area. One can see that the
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Fig. 4: APEP versus P with M = 100

APEP increases with the increase of M for both suburban and dense urban cases, as expected.

Also, one can see in dense urban areas, we have worse APEP compared with suburban case.

In Fig. 6, we plot the ET versus P in 3D scenario with the packet length M = 100, where

Fig. 6 (a) shows suburban area while Fig. 6 (b) shows dense urban area. One can see that the

ET increase with the increase of P for both suburban and dense urban cases, as expected. Also,

one can see in dense urban areas, we have worse ET compared with suburban area in the same

parameter settings.

Also, one can see with the increase of P , ET reaches its upper floor 3.47 for both cases,
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Fig. 5: APEP versus M with P = −5 dBm

which verifies Remark 6.

In Fig. 7, we plot the ET versus M in 3D scenario with the power of P = −5 dBm, where

Fig. 7 (a) shows suburban area while Fig. 7 (b) shows dense urban area. One can see that ET

first increases and then decreases with the increase of M for both cases. The maximal value can

be reached when M is around 190 for suburban and 210 for dense urban scenarios. From (52),

one can approximately get M3D as M3D = 178.37 for suburban scenario and M3D = 186.95

for dense urban scenario.
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Fig. 6: ET versus P with M = 100

VI. CONCLUSIONS

In this paper, we have studied the APEP and ET for a GCS-to-UAV control link transmis-

sion under the short packet transmission regime to enable the stringent latency and reliable

requirements. For the general scenario in FS and 3D, we have derived an accurate approximate

expression of the APEP and ET by using the Gaussian-Chebyshev quadrature method. To obtain

more insights, lower bound of APEP and ET for both FS and 3D scenarios have been derived.

Moreover, the sub-optimal value of packet length with the objective of maximizing the ET has

been obtained numerically.
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Fig. 7: ET versus M with P = −5 dBm

APPENDIX A

PROOF OF LEMMA 1

The CDF of γ can be given by [14]

FγFS(x) = Pr{γFS ≤ x} = 1− Pr

{
d ≤

(
λ

x

)1/2
}
. (53)
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By applying (1) and (53), the CDF of γFS can be obtained as follows

FγFS(x) =

⎧⎨
⎩ 1− (λ

x
)3/2−D3

min

D3
max−D3

min
, γFS

min ≤ x ≤ γFS
max

0, otherwise
. (54)

By taking the first-order derivative of (54), the PDF of γFS can be derived as (15).

APPENDIX B

PROOF OF LEMMA 2

ε(γ+) defined in (11) can be regarded as a composition function of Q-function and f -function.

For the Q-function Q (x) = 1√
2π

∫∞
x

e−
t2

2 dt, the first-order derivative of Q (x) w.r.t. x can be

calculated as Q′ (x) = − 1√
2π
e−

x2

2 < 0, and the second-order derivative is Q′′ (x) = x√
2π
e−

x2

2 > 0

when x > 0. For URLLC applications, the decoding error probability is generally much smaller

than 0.5, which is equal to Q(0). Since Q(x) is a decreasing function, x > 0 always holds.

Hence, Q(x) is a decreasing and convex function w.r.t. x. According to the composition rules

in [22], ε(γ+) is a convex function of γ+ if f (γ+) is a concave function of γ+, which will be

proved in the following.

The first-order derivative of f (γ+) w.r.t. γ+ is given by

f ′
(
γ+

)
=

√
M

(1 + γ+)
2 − 1− (

ln (1 + γ+)− L
M

ln 2
)

(
(1 + γ+)2 − 1

) 3
2

(55)

The second-order derivative of f (γ+) w.r.t. γ+ can be calculated as

f ′′
(
γ+

)
=

√
M(

(1 + γ+)2 − 1
) 5

2

g
(
γ+

)
. (56)

where function g (γ+) is given by

g (γ+) =
(
−(1 + γ+)− 1

1+γ+

)(
(1 + γ+)

2 − 1
)
+ 3 (1 + γ+)

(
ln (1 + γ+)− L

M
ln 2

)
. (57)

Hence, we need to check the sign of function g (γ+). The first-order derivative of g (γ+) w.r.t.

γ+ is given by

g′
(
γ+

)
=−3(1 + γ+)2− 1

(1+γ+)2
+ 3

(
ln

(
1+γ+

)− L

M
ln 2

)
+ 3. (58)
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The second-order derivative of g (γ+) w.r.t. γ+ is

g′′
(
γ+

)
=

h(γ+)

(1 + γ+)3
, (59)

where h(γ+) = −6(1 + γ+)4 + 2 + 3(1 + γ+)2. The first-order derivative of h(γ+) w.r.t. γ+ is

given by h′(γ+) = 6(1 + γ+)
(
1− 4(1 + γ+)

2
)

, which is smaller than zero. Hence, h(γ+) is a

monotonically decreasing function. We then have h(γ+) < h(0) = −1. Then, according to (59),

we have g′′ (γ+) < 0, which means g′ (γ+) is also a monotonically decreasing function. Hence,

we have g′ (γ+) < g′ (0) = − L
M
3 ln 2− 1 < 0. Again, this means g(γ+) is also a monotonically

decreasing function. Then, we have g(γ+) < g(0) = − L
M
3 ln 2 < 0. By substituting the relation

g(γ+) < 0 into (56), we can prove that f ′′ (γ+) < 0, which means f (γ+) is a concave function,

which completes the proof.

APPENDIX C

PROOF OF REMARK 1

When x � 1, one has the following approximation

log(1 + x) ≈ log(x), (60)

and √
V (x) =

√
1− 1

(x+ 1)2
≈ 1. (61)

By using above two approximations, (23) can be written as (25).

APPENDIX D

PROOF OF REMARK 2

When λ � 1, similar with before, H̄FS
LB in (24) can be written as

H̄FS
LB = Rs

(
1− 1

2
erfc

(√
M/2

(
ln

(
KFλ

)−Rs

)))
. (62)

By using erf(x) → 1 when x → ∞ and erfc(x) = 1 − erf(x), one can get H̄FS
LB → Rs, which

completes the proof.
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APPENDIX E

PROOF OF REMARK 3

In the case of x → ∞ in (27), one has erf(x) → 1. Therefore, u(x) can be approximated as

u(x) ≈−
2erfc

(
M ln(x)−L ln(2)√

2
√
M

)
3x3/2

− 2

3
e

(L ln(4)−3)2−4L2 ln2(2)
8M .

Then, after some simple manipulations, one can get (28).

APPENDIX F

PROOF OF LEMMA 3

The CDF of θ̂ can be given by

Fθ̂(x) = Pr{e Ã
1+a exp(−b(θ−a)) ≤ x}. (63)

Similar to Appendix A and by applying Fθ(x) in (6), the CDF of θ̂ can be obtained as (39).

APPENDIX G

PROOF OF LEMMA 4

Without loss of generality, we assume that θ̂min ·d̂max ≤ z ≤ θ̂max ·d̂min in the next derivations.

For the cases of θ̂min · d̂max = z ≤ θ̂max · d̂min or θ̂min · d̂max = z ≥ θ̂max · d̂min, similar derivations

can be used which are omitted here due to space limitation.

By using fd̂(x) in (38) and fθ̂(x) in (40) and [23], one can get the PDF of γ3D as

fγ3D(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
W1(z) =

∫ z/d̂min

θ̂min
fθ̂(x)fd̂(

z
x
) 1
x
dx, θ̂min · d̂min ≤ z ≤ θ̂min · d̂max;

W2(z) =
∫ z/d̂min

z/d̂max
fθ̂(x)fd̂(

z
x
) 1
x
dx, θ̂min · d̂max ≤ z ≤ θ̂max · d̂min;

W3(z) =
∫ θ̂max

z/d̂max
fθ̂(x)fd̂(

z
x
) 1
x
dx, θ̂max · d̂min ≤ z ≤ θ̂max · d̂max.

(64)

For W1(z), by using the variable substitution and [20], [24], one can have

W1(z) =

∫ z/d̂min

θ̂min

fθ̂(x)fd̂(
z

x
)
1

x
dx =

3ÃC̃3/2z−5/2

2b (D3
max −D3

min) (Θmax −Θmin)

∫ z/d̂min

θ̂min

√
xdx

Ã ln(x)− ln2(x)

=
3C̃3/2z−5/2

2b (D3
max −D3

min) (Θmax −Θmin)

(
g(

z

d̂min

)− g(θ̂min)

)
(65)
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where g(x) = Ei
(

3 ln(x)
2

)
−e

3Ã
2 Ei

(
3
2
(ln(x)− Ã)

)
and Ei gives the exponential integral function,

defined by Ei(z) = − ∫∞
−z

e−t

t
dt [20].

Similarly, one can get W2(z) as

W2(z) =
3C̃3/2z−5/2

2b (D3
max −D3

min) (Θmax −Θmin)
·
(
g(z/d̂min)− g(z/d̂max)

)
. (66)

Also, one can get W3(z) as

W3(z) =
3C̃3/2z−5/2

2b (D3
max −D3

min) (Θmax −Θmin)
·
(
g(θ̂max)− g(z/d̂max)

)
. (67)

Then, one can obtain the PDF of γ3D as (41).

APPENDIX H

PROOF OF (46)

E{γ3D} can be written as

E{γ3D} =

∫ θ̂min·d̂max

θ̂min·d̂min

zW1(z)dz︸ ︷︷ ︸
U1

+

∫ θ̂max·d̂min

θ̂min·d̂max

zW2(z)dz︸ ︷︷ ︸
U2

+

∫ θ̂max·d̂max

θ̂max·d̂min

zW3(z)dz︸ ︷︷ ︸
U3

.
(68)

By using W1(z) in (65), one can have U1 as [20], [25]

U1 =
3C̃3/2

2b (D3
max −D3

min) (Θmax −Θmin)
·

⎛
⎜⎜⎜⎝
∫ θ̂min·d̂max

θ̂min·d̂min

z−3/2
Ei

(
3

2
ln

(
zD2

max

C̃

))
dz

︸ ︷︷ ︸
U11

−

∫ θ̂min·d̂max

θ̂min·d̂min

e
3Ã
2 z−3/2

Ei

(−3

2

(
Ã− ln

(
zDmax

2

C̃

)))
dz

︸ ︷︷ ︸
U12

−

∫ θ̂min·d̂max

θ̂min·d̂min

z
−3
2 Ei

(
3

2
ln

(
e

Ã
a exp(−b(Θmin−a))+1

))
dz

︸ ︷︷ ︸
U13

+

∫ θ̂min·d̂max

θ̂min·d̂min

e
3Ã
2 z

−3
2 Ei

(−3

2

(
Ã− ln

(
e

Ã
a exp(−b(Θmin−a))+1

)))
dz

︸ ︷︷ ︸
U14

⎞
⎟⎟⎟⎠

(69)

Then, by using [20], [25], for U11 above, one can have U11 = L11(θ̂min · d̂max)−L11(θ̂min · d̂min),

where L11(z) = − 2√
z
(Ei(3

2
ln(D

2
maxz

C̃
)) −

√
D2

maxz

C̃
li(D

2
maxz

C̃
)) and li(z) =

∫ z

0
dt

log t
denotes the

logarithmic integral function [20]; for U12, one can have U12 = L12(θ̂min ·d̂max)−L12(θ̂min ·d̂min),

Page 25 of 28

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26

where L12(z) =
2√
z
e

3Ã
2 (e−

Ã
2

√
D2

maxz

C̃
Ei(ln(D

2
maxz

C̃
)−Ã)−Ei(−3

2
(Ã−ln(D

2
maxz

C̃
)))); for U13, one can

have U13 = L13(θ̂min · d̂max)−L13(θ̂min · d̂min), where L13(z) = − 2√
z
Ei(3

2
ln(e

Ã

eb(a−Θmin)a+1 )) and

for U14, one can have U14 = L14(θ̂min·d̂max)−L14(θ̂min·d̂min), where L14(z) = − 2√
z
e

3Ã
2 Ei(−3

2
(Ã−

ln(e
Ã

eb(a−Θmin)a+1 ))).

Similarly, for U2, one can have

U2 =
3C̃3/2

2b (D3
max −D3

min) (Θmax −Θmin)
· (U21 + U22 + U23 + U24) (70)

where U21 = L21(θ̂max · d̂min) − L21(θ̂min · d̂max), U22 = L22(θ̂max · d̂min) − L22(θ̂min · d̂max),

U23 = L23(θ̂max · d̂min)− L23(θ̂min · d̂max), U24 = L24(θ̂max · d̂min)− L24(θ̂min · d̂max), L21(z) =

− 2√
z
(Ei(3

2
ln(D

2
maxz

C̃
)) −

√
D2

maxz

C̃
li(D

2
maxz

C̃
)), L22(z) =

2√
z
e

3Ã
2 [e−

Ã
2

√
D2

maxz

C̃
Ei(ln(Dmax

2z
C̃

) − Ã) −
Ei(−3

2
(Ã − ln(Dmax

2z
C̃

)))], L23(z) = − 2√
z
(Ei(3

2
ln(

D2
minz

C̃
)) −

√
D2

minz

C̃
li(

D2
minz

C̃
)) and L24(z) =

2√
z
e

3Ã
2 [e−

Ã
2

√
D2

minz

C̃
Ei(ln(Dmin

2z

C̃
)− Ã)− Ei(−3

2
(Ã− ln(

D2
minz

C̃
)))].

Similarly, for U3, one can have

U3 =
3C̃3/2

2b (D3
max −D3

min) (Θmax −Θmin)
· (U31 + U32 + U33 + U34) (71)

where U31 = L31(θ̂max · d̂max) − L31(θ̂max · d̂min), U32 = L32(θ̂max · d̂max) − L32(θ̂max · d̂min),

U33 = L33(θ̂max · d̂max)−L33(θ̂max · d̂min), U34 = L34(θ̂max · d̂max)−L34(θ̂max · d̂min), L31(z) =

− 2√
z
Ei(3

2
ln(e

Ã

eb(a−Θmax)a+1 )), L32(z) = − 2√
z
e

3Ã
2 Ei(−3

2
(Ã− ln(e

Ã

eb(a−Θmax)a+1 ))),

L33(z) = − 2√
z
(Ei(3

2
ln(

D2
minz

C̃
))−

√
D2

minz

C̃
li(

D2
minz

C̃
)) and L34(z) =

2√
z
e

3Ã
2 [e−

Ã
2

√
D2

minz

C̃
Ei(ln(

D2
minz

C̃
)−

Ã)− Ei(−3
2
(Ã− ln(

D2
minz

C̃
)))].

APPENDIX I

PROOF OF REMARK 4

When C̃ � 1, i.e., P/σ2 � 1, similar with before, by using erf(x) → 1 when x → ∞ and

erfc(x) = 1− erf(x), one can get H̄3D
LB → Rs, which completes the proof.
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