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Abstract—A cognitive radio network (CRN) is formed by either
allowing the secondary users (SUs) in a secondary communica-
tion network (SCN) to opportunistically operate in the frequency
bands originally allocated to a primary communication network
(PCN) or by allowing SCN to coexist with the primary users
(PUs) in PCN as long as the interference caused by SCN to
each PU is properly regulated. In this paper, we consider the
latter case, known as spectrum sharing, and study the optimal
power allocation strategies to achieve the ergodic capacity and the
outage capacity of the SU fading channel under different types
of power constraints and fading channel models. In particular,
besides the interference power constraint at PU, the transmit
power constraint of SU is also considered. Since the transmit
power and the interference power can be limited either by a
peak or an average constraint, various combinations of power
constraints are studied. It is shown that there is a capacity gain
for SU under the average over the peak transmit/interference
power constraint. It is also shown that fading for the channel
between SU transmitter and PU receiver is usually a beneficial
factor for enhancing the SU channel capacities.

Index Terms—Cognitive radio, power control, ergodic capac-
ity, outage capacity, delay-limited capacity, spectrum sharing,
interference power constraint, fading channel.

I. INTRODUCTION

RADIO spectrum is a precious and limited resource for
wireless communication networks. With the emergence

of new wireless applications, the currently deployed spectrum
is becoming increasingly more crowded. Hence, how to ac-
commodate more wireless services within the limited spectrum
becomes a challenging problem. On the other hand, accord-
ing to the report published by the Federal Communication
Commission (FCC), most of the allocated spectrum today is
under-utilized [1]. This fact indicates that it is perhaps the
inefficient and inflexible spectrum allocation policy rather than
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the physical shortage of spectrum that causes the spectrum
scarcity.

Cognitive radio (CR) [2] is a promising technology to deal
with the spectrum under-utilization problem caused by the cur-
rent inflexible spectrum allocation policy. In a cognitive radio
network (CRN), a secondary user (SU) in the secondary com-
munication network (SCN) is allowed to access the spectrum
that is originally allocated to the primary users (PUs) when
the spectrum is not used by any PU. This secondary spectrum
usage method is called opportunistic spectrum access [3]. In
this way, the spectrum utilization efficiency can be greatly
improved. However, to precisely detect a vacant spectrum is
not an easy task [4]. Alternatively, CRN can also be designed
to allow simultaneous transmission of PUs and SUs. From
PU’s perspective, SU is allowed to transmit as long as the
interference from SU does not degrade the quality of service
(QoS) of PU to an unacceptable level. From SU’s perspective,
SU should control its transmit power properly in order to
achieve a reasonably high transmission rate without causing
too much interference to PU. This transmission strategy is
termed as spectrum sharing [5]. Traditionally, the capacity
of fading channels is studied under various transmit power
constraints, and the corresponding optimal and suboptimal
power allocation policies are given in, e.g., [6], [7], [8].
Recently, study on the channel capacity of SU link under
spectrum sharing has attracted a lot of attention. Specifically,
SU channel capacity under spectrum sharing was addressed by
Gastpar in [9], where the capacities of different additive white
Gaussian noise (AWGN) channels are derived under a received
power constraint. The capacities derived in [9] are shown to
be quite similar to those under a transmit power constraint.
This is non-surprising because the ratio of the received power
to the transmit power is fixed in an AWGN channel; thus,
considering a received power constraint is equivalent to con-
sidering a transmit power constraint. However, in the presence
of fading, the situation becomes quite different. In [5], the
authors derived the optimal power allocation strategy for a
SU coexisting with a PU subject to an interference power
constraint at PU receiver, and evaluated the ergodic capacity
for SU channel for different fading channel models. In [10],
the authors considered the outage capacity under both the peak
and the average interference power constraints. It is noted that
optimal design of SU transmission strategy under interference-
power constraints at PU receivers has also been studied in [11]

1536-1276/09$25.00 c© 2009 IEEE



KANG et al.: OPTIMAL POWER ALLOCATION FOR FADING CHANNELS IN COGNITIVE RADIO NETWORKS 941

for multi-antenna CR transmitters, and in [12] for multiple CR
transmitters in a multiple-access channel (MAC).

In this paper, we study the ergodic capacity, the delay-
limited capacity, and the outage capacity of SU block-fading
(BF) channels under spectrum sharing. For a BF channel [13],
[14], the channel remains constant during each transmission
block, but possibly changes from one block to another. For
BF channels, the ergodic capacity is defined as the max-
imum achievable rate averaged over all the fading blocks.
Ergodic capacity is a good performance limit indicator for
delay-insensitive services, when the codeword length can be
sufficiently long to span over all the fading blocks. However,
for real-time applications, it is more appropriate to consider
the delay-limited capacity introduced in [15], which is defined
as the maximum constant transmission rate achievable over
each of the fading blocks. For certain severe fading scenarios,
such as Rayleigh fading, however, the delay-limited capacity
can be zero. Thus, for such scenarios, the outage capacity
[13], [14], which is defined as the maximum constant rate
that can be maintained over fading blocks with a given outage
probability, will be a good choice.

In this paper, we derive the optimal power allocation strate-
gies for SU to achieve aforementioned capacities. Besides
the interference power constraint to protect PU, we also
consider the transmit power constraint of SU transmitter.
Since the transmit power and the interference power can be
limited either by a peak or an average constraint, different
combinations of power constraints are considered. It is shown
that there is a capacity gain for SU under the average over the
peak transmit/interference power constraint. Furthermore, we
provide closed-form solutions for the delay-limited capacity
and the outage probability under several typical channel fading
models, including Rayleigh fading, Nakagami fading, and
Log-normal fading. It is observed that fading for the channel
between SU transmitter and PU receiver can be a beneficial
factor for enhancing the SU channel capacities.

The rest of the paper is organized as follows. Section II
describes the system model and presents various transmit and
interference power constraints. Then, the ergodic capacity, the
delay-limited capacity, and the outage capacity under different
combinations of peak/average transmit and interference power
constraints are studied in Section III, Section IV, and Section
V, respectively. In Section VI, the simulation results are
presented and discussed. Finally, Section VII concludes the
paper.

Notation: E[·] denotes the statistical expectation. K denotes
the constant log2 e, where e is the base of natural logarithm.
max(x, y) and min(x, y) denote the maximum and the mini-
mum element between x and y, respectively. (·)+ stands for
max(0, ·). The symbol � means “defined as”.

II. SYSTEM MODEL AND POWER CONSTRAINTS

A. System model

As illustrated in Fig. 1, we consider a spectrum sharing
network with one PU and one SU. The link between SU
transmitter (SU-Tx) and PU receiver (PU-Rx) is assumed to
be a flat fading channel with instantaneous channel power gain
g0 and the AWGN n0. SU channel between SU-Tx and SU
receiver (SU-Rx) is also a flat fading channel characterized

SU-Tx SU-Rx
PU-Tx

PU-Rx

0g

1g

Fig. 1. System model for spectrum sharing in cognitive radio networks.

by instantaneous channel power gain g1 and the AWGN n1.
The noises n0 and n1 are assumed to be independent random
variables with the distribution CN (0, N0) (circularly symmet-
ric complex Gaussian variable with mean zero and variance
N0). The channel power gains, g0 and g1, are assumed to
be ergodic and stationary with probability density function
(PDF) f0(g0), and f1(g1), respectively. Perfect channel state
information (CSI) on g0 and g1 is assumed to be available at
SU-Tx. Furthermore, it is assumed that the interference from
PU-Tx to SU-Rx can be ignored or considered in the AWGN
at SU-Rx.

B. Power constraints

Previous study on the fading channel capacity usually
assumes two types of power constraints at the transmitter:
peak transmit power constraint and average transmit power
constraint, either individually [14] or simultaneously [16]. The
peak power limitation may be due to the nonlinearity of power
amplifiers in practice, while the average power is restricted
below a certain level to keep the long-term power budget.
In this paper, we denote the instantaneous transmit power at
SU-Tx for the channel gain pair (g0, g1) as P (g0, g1), and
obviously it follows

P (g0, g1) ≥ 0, ∀(g0, g1). (1)

Let Ppk be the peak transmit power limit and Pav be
the average transmit power limit. The peak transmit power
constraint can then be represented by

P (g0, g1) ≤ Ppk, ∀(g0, g1), (2)

and the average transmit power constraint can be represented
by

E[P (g0, g1)] ≤ Pav. (3)

On the other hand, motivated by the interference tem-
perature concept in [3], researchers have investigated SU
channel capacities with received power constraints. If PU
provides delay-insensitive services, an average received power
constraint can be used to guarantee a long-term QoS of PU.
Let Qav denote the average received power limit at PU-Rx.
The average interference power constraint can then be written
as

E[g0P (g0, g1)] ≤ Qav. (4)
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If the service provided by PU has an instantaneous QoS
requirement, the peak interference power constraint may be
more appropriate. Let Qpk denote the peak received power at
the PU-Rx. The peak interference power constraint can then
be written as

g0P (g0, g1) ≤ Qpk, ∀(g0, g1). (5)

For the purpose of exposition, we combine the transmit
power constraint with the interference power constraint, and
obtain the following four sets of power constraints:

F1 � {P (g0, g1) : (1), (2), (5)}, (6)

F2 � {P (g0, g1) : (1), (2), (4)}, (7)

F3 � {P (g0, g1) : (1), (3), (5)}, (8)

F4 � {P (g0, g1) : (1), (3), (4)}. (9)

III. ERGODIC CAPACITY

For BF channels, ergodic capacity is defined as the max-
imum achievable rate averaged over all the fading blocks.
Using a similar approach as in [6], the ergodic capacity of
the secondary link can be obtained by solving the following
optimization problem,

max
P (g0,g1)∈F

E
[
log2

(
1 +

g1P (g0, g1)
N0

)]
, (10)

where F ∈ {F1, F2, F3, F4}, and the expectation is taken
over (g0, g1). In what follows, we will study (10) under F1,
F2, F3, and F4, respectively.

A. Peak transmit power constraint and peak interference
power constraint

In this case, F in (10) becomes F1. The two constraints
in F1 can be combined as P (g0, g1) ≤ min{Ppk,

Qpk

g0
}.

Therefore, the capacity is maximized by transmitting at the
maximum instantaneous power expressed as

P (g0, g1) =

{
Ppk, g0 ≤ Qpk

Ppk
Qpk

g0
, otherwise

. (11)

From (11), it is observed that, when g0 is less than a given
threshold, SU-Tx can transmit at its maximum power, Ppk,
which satisfies the interference power constraint at PU-Rx.
This indicates that sufficiently severe fading of the channel
between SU-Tx and PU-Rx is good from both viewpoints of
protecting PU-Rx and maximizing SU throughput. However,
when g0 becomes larger than this threshold, SU-Tx transmits
with decreasing power values that are inversely proportional
to g0.

B. Peak transmit power constraint and average interference
power constraint

In this case, F in (10) becomes F2. The optimal power
allocation is given by the following theorem.

Theorem 1: The optimal solution of (10) subject to the
power constraints given in F2 is

P (g0, g1) =

⎧⎪⎪⎨
⎪⎪⎩

0, g0 ≥ Kg1
λN0

K
λg0

− N0
g1

, Kg1
λN0

> g0 > K

λ(Ppk+
N0
g1

)

Ppk, g0 ≤ K

λ(Ppk+
N0
g1

)

, (12)

where λ is the nonnegative dual variable associated with (4) in
F2. If (4) in F2 is satisfied with strict inequality, λ must be
zero. Otherwise, λ can be obtained by substituting (12) into
the constraint E[g0P (g0, g1)] = Qav .

Proof: See Appendix A.
As can be seen from (12), if Ppk is sufficiently large,

the power allocation scheme reduces to that in [5], where
the ergodic capacity of fading channels is studied under the
interference power constraint only. It is also noticed that
the power allocation scheme given by (12) has the same
structure as that in [16], where the ergodic capacity of fading
channels is studied under both peak and average transmit
power constraints. The main difference is that the power
allocation scheme given by (12) is not only related to SU
channel but also related to the channel between SU-Tx and
PU-Rx.

C. Average transmit power constraint and peak interference
power constraint

In this case, F in (10) becomes F3. The optimal power
allocation of this problem is given by the following theorem.

Theorem 2: The optimal solution of (10) subject to the
constraints given in F3 is

P (g0, g1) =

⎧⎪⎪⎨
⎪⎪⎩

0, g1 ≤ λN0
K

K
λ − N0

g1
, g1 > λN0

K , g0 <
Qpk

( K
λ −N0

g1
)

Qpk

g0
, g1 > λN0

K , g0 ≥ Qpk

( K
λ −N0

g1
)

, (13)

where λ is the nonnegative dual variable associated with (3) in
F3. If (3) in F3 is satisfied with strict inequality, λ must be
zero. Otherwise, λ can be obtained by substituting (13) into
the constraint E[P (g0, g1)] = Pav.

Theorem 2 can be proved similarly as Theorem 1, we thus
omit the details here for brevity.

From (13), it is seen that, when the channel between
SU-Tx and PU-Rx experiences sufficiently severe fading or
Qpk is sufficiently large, the power allocation reduces to the
conventional water-filling solution [6]. It is also observed that
the power allocation given in (13) is capped by Qpk

g0
, and this

cap increases with decreasing g0. This indicates that fading
for the channel between SU-Tx and PU-Rx enables SU-Tx to
transmit more power under the same value of Qpk.

D. Average transmit power constraint and average interfer-
ence power constraint

In this case, F in (10) becomes F4. The optimal solution
for this problem can be obtained by applying similar tech-
niques as for Theorem 1, which can be expressed as

P (g0, g1) =
(

K

λ + μg0
− N0

g1

)+

, (14)

where λ and μ are the nonnegative dual variables associated
with (3) and (4) in F4, respectively. If (3) or (4) in F4 is
satisfied with strict inequality, λ or μ must be zero corre-
spondingly. Otherwise, λ and μ can be jointly determined by
substituting (14) into the constraints E[P (g0, g1)] = Pav and
E[g0P (g0, g1)] = Qav .
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IV. DELAY-LIMITED CAPACITY

For BF channels, delay-limited capacity [15] is defined
as the maximum constant transmission rate achievable over
each of the fading blocks. This is a good performance limit
indicator for delay-sensitive services, which may require a
constant rate transmission over all the fading blocks. Thus,
the objective is to maximize such constant rate by adapting
the transmit power of SU-Tx. At the same time, due to the
coexistence with PU, the received interference power at the
PU-Rx should not exceed the given threshold. In this section,
the delay-limited capacity is studied under F4 only. This is
due to the fact that delay-limited capacity can be shown to be
zero under the other three combinations of power constraints
for realistic fading channel models. Therefore, the delay-
limited capacity can be obtained by solving the following
problem:

max
P (g0,g1)∈F4

log2 (1 + γ) , (15)

s. t.
g1P (g0, g1)

N0
= γ, ∀(g0, g1). (16)

where γ is the constant received signal-to-noise ratio (SNR)
at SU-Rx for all pairs of (g0, g1).

Obviously, the delay-limited capacity is achieved when γ
takes its maximum value. Therefore, the above problem is
equivalent to finding the maximum value of γ under the power
constraints in F4. From (16), we have P (g0, g1) = γN0

g1
.

Substituting this into the power constraints given in F4 yields
γ ≤ Pav

N0E
[

1
g1

] and γ ≤ Qav

N0E
[

g0
g1

] , ∀(g0, g1). Therefore, γmax =

min
{

Pav

N0E
[

1
g1

] , Qav

N0E
[

g0
g1

]
}

. The delay-limited capacity is thus

given by

Cd=min

⎧⎨
⎩log2

⎛
⎝1+

Pav

N0E
[

1
g1

]
⎞
⎠ , log2

⎛
⎝1+

Qav

N0E
[

g0
g1

]
⎞
⎠
⎫⎬
⎭ .

(17)

By setting Qav = +∞ in (17), it is easy to obtain the delay-
limited capacity for the conventional fading channels [14].
Similarly, by setting Pav = +∞, the delay-limited capacity
under the interference power constraint only is obtained.

In the following, the delay-limited capacity is evaluated
under different fading channel models.

A. Rayleigh fading

For Rayleigh fading, the channel power gains g0 and g1 are
exponentially distributed. Assume g0 and g1 are unit-mean and
mutually independent. Then, E

[
1
g1

]
can be evaluated equal to

+∞. Furthermore, the PDF of g0
g1

is expressed as [5]

f g0
g1

(x) =
1

(x + 1)2
, x ≥ 0. (18)

Hence, E
[

g0
g1

]
can be shown to be +∞. Therefore, from

(17), the delay-limited capacity is zero for Rayleigh fading
channels.

B. Nakagami fading

Another widely used channel model is Nakagami-m fading.
For a unit-mean Nakagami fading channel, the distribution of
channel power gain follows the Gamma distribution, which is
expressed as

fg(x) =
mmx(m−1)

Γ(m)
e−mx, x ≥ 0, (19)

where Γ(·) is the Gamma function defined as Γ(x) =∫∞
0 t(x−1)e−tdt, and m (m ≥ 1) is the ratio of the line-of-

sight (LOS) signal power to that of the multi-path component.
Then, by [17], E

[
1
g1

]
is evaluated to be 1. If g0 and g1 are

independent and have the same parameter m, the PDF of g0
g1

is [18]

f g0
g1

(x) =
xm−1

B(m, m)(x + 1)2m
, x ≥ 0, (20)

where B(a, b) is the Beta function defined as B(a, b) =
Γ(a)Γ(b)
Γ(a+b) . Then E

[
g0
g1

]
can be evaluated equal to m

m−1 . Hence,
the delay-limited capacity in (17) is obtained as

Cd=min

{
log2

(
1+

Pav

N0

)
, log2

(
1+

Qav

N0
m

m−1

)}
. (21)

By setting Pav = +∞, the delay-limited capacity under
the interference power constraint only is obtained as Cd =
log2

(
1 + Qav

N0
m

m−1

)
. Furthermore, it is seen from (21) that the

delay-limited capacity is determined by only the interference
power constraint when Pav ≥ m−1

m Qav .

C. Log-normal shadowing

In the log-normal fading environment, the channel power
gain is modeled by a log-normal random variable (r.v.) eX

where X is a zero-mean Gaussian r.v. with variance σ2. In this
case, we model the channel by letting g0 = eX0 and g1 = eX1 ,
where X0 and X1 are independently distributed with mean
zero and variance σ2. Under the above assumptions, g0/g1 =
eY is also log-normally distributed with Y = X0 −X1 being
Gaussian distributed with mean zero and variance 2σ2 [19].
In this case, E[ 1

g1
] and E[ g0

g1
] are evaluated to be e

σ2
2 and eσ2

,
respectively. Hence, the delay-limited capacity in (17) is given
by

Cd=min

{
log2

(
1+

Pav

N0e
σ2
2

)
, log2

(
1+

Qav

N0eσ2

)}
. (22)

By setting Pav = +∞, the delay-limited capacity under
the interference power constraint only is obtained as Cd =
log2

(
1 + Qav

N0eσ2

)
. Furthermore, it is seen from (22) that the

delay-limited capacity will not be affected by the transmit
power constraint when Pav ≥ e−

σ2
2 Qav.

V. OUTAGE CAPACITY

For BF channels, outage capacity is defined as the maximum
rate that can be maintained over the fading blocks with a given
outage probability. Mathematically, this problem is defined as
finding the optimal power allocation to achieve the maximum
rate for a given outage probability, which is equivalent to
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minimizing the outage probability for a given transmission
rate (outage capacity) r0, expressed as

min
P (g0,g1)∈F

Pr

{
log2

(
1 +

g1P (g0, g1)
N0

)
< r0

}
, (23)

where Pr {·} denotes the probability.
In the following, we will study the problem (23) under F1,

F2, F3, and F4, respectively.

A. Peak transmit power constraint and peak interference
power constraint

In this case, F in (23) becomes F1. The optimal solution
of this problem can be easily obtained as

P (g0, g1)=

{
N0(2

r0−1)
g1

, g1 ≥ N0(2
r0−1)

Ppk
, g0 ≤ g1Qpk

N0(2r0−1)

0, otherwise
.

(24)

Substituting (24) into (23), we get

Pout=1−
∫ +∞

N0(2r0−1)
Ppk

∫ g1Qpk

N0(2r0−1)

0

f0(g0)f1(g1)dg0dg1. (25)

It is seen that (24) has the similar structure as the truncated
channel inversion [6] for the convenional fading channel. The
difference between these two methods lies in that the condition
in (24) for channel inversion is determined by both g0 and
g1, while that in [6] is by g1 only. Therefore, we refer to
this power allocation strategy as two-dimensional-truncated-
channel-inversion (2D-TCI) over g0 and g1.

B. Peak transmit power constraint and average interference
power constraint

In this case, F in (23) becomes F2. The optimal solution
of this problem is given by the following theorem.

Theorem 3: The optimal solution of (23) subject to the
power constraints given in F2 is

P (g0, g1)=

{
N0(2

r0−1)
g1

, g1 ≥ N0(2
r0−1)

Ppk
, g0 < g1

λN0(2r0−1)

0, otherwise
,

(26)

and the corresponding minimum outage probability is given
by

Pout=1−
∫ +∞

N0(2r0−1)
Ppk

∫ g1
λN0(2r0−1)

0

f0(g0)f1(g1)dg0dg1,

(27)

where λ is the nonnegative dual variable associated with (4) in
F2. If (4) in F2 is satisfied with strict inequality, λ must be
zero. Otherwise, λ can be obtained by substituting (26) into
the constraint E [g0P (g0, g1)] = Qav.

Proof: See Appendix B.
It is seen that (26) has the same structure as that in (24).

Therefore, the optimal power control policy obtained in (26)
is also 2D-TCI.

C. Average transmit power constraint and peak interference
power constraint

In this case, F in (23) becomes F3. The optimal solution
of this problem is given by the following theorem.

Theorem 4: The optimal solution of (23) subject to the
power constraints given in F3 is

P (g0, g1)=

{
N0(2

r0−1)
g1

, g1 > λN0(2r0−1), g0 ≤ g1Qpk

N0(2r0−1)

0, otherwise
,

(28)

and the corresponding minimum outage probability is given
by

Pout=1−
∫ +∞

λN0(2r0−1)

∫ g1Qpk

N0(2r0−1)

0

f0(g0)f1(g1)dg0dg1, (29)

where λ is the nonnegative dual variable associated with (3) in
F3. If (3) in F3 is satisfied with strict inequality, λ must be
zero. Otherwise, λ can be obtained by substituting (28) into
the constraint E[P (g0, g1)] = Pav,

Theorem 4 can be proved similarly as Theorem 3; the proof
is thus omitted here. Clearly, the power control policy given
in (28) is also 2D-TCI.

D. Average transmit power constraint and average interfer-
ence power constraint

In this case, F in (23) becomes F4. The optimal solution
of (23) in this case is given by the following theorem.

Theorem 5: The optimal solution of (23) subject to the
power constraints given in F4 is

P (g0, g1) =

{
N0(2

r0−1)
g1

, λ + μg0 < g1
N0(2r0−1)

0, otherwise
, (30)

where λ and μ are the nonnegative dual variables associated
with (3) and (4) in F4, respectively. If (3) or (4) in F4 is
satisfied with strict inequality, λ or μ must be zero corre-
spondingly. Otherwise, λ and μ can be jointly determined by
substituting (30) into the constraints E[P (g0, g1)] = Pav and
E[g0P (g0, g1)] = Qav .

Theorem 5 can be proved similarly as Theorem 3.

E. Analytical Results

In this part, we provide the analytical results for the min-
imum outage probability under only the peak or the average
interference power constraint.

1) Peak interference power constraint only: From (24), by
setting Ppk = +∞, we have

P (g0, g1) =
Qpk

g0
. (31)

Substituting (31) into (23) yields

Pout = Pr

{
g1

g0
<

N0 (2r0 − 1)
Qpk

}
. (32)

In the following, the minimum outage probability is evalu-
ated under different fading models.
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a) Rayleigh fading: Since g1
g0

has the same PDF as g0
g1

, with
the PDF of g0

g1
given in (18), we have

Pout=
∫ N0(2r0−1)

Qpk

0

1
(x+1)2

dx=1− Qpk

N0 (2r0−1)+Qpk
. (33)

b) Nakagami fading: With the PDF of g1
g0

given in (20) (note
that g1

g0
has the same PDF as g0

g1
), we have

Pout =
∫ N0(2r0−1)

Qpk

0

xm−1

B(m, m)(x + 1)2m
dx

=
1

B(m, m)

∫ N0(2r0−1)
Qpk

0

xm−1

(x + 1)2m
dx. (34)

From (3.194-1) in [17], the above equation is simplified as

Pout =
1

mB(m, m)

[
N0 (2r0 − 1)

Qpk

]m

×
{

2F1

(
2m, m; m + 1;−N0 (2r0 − 1)

Qpk

)}
, (35)

where 2F1(a, b; c; x) is known as Gauss’s hypergeometric
function [17].

c) Log-normal fading: With the PDF of g1
g0

given in Section
IV (note that g1

g0
has the same PDF as g0

g1
), we have

Pout = Pr

{
eY <

N0 (2r0 − 1)
Qpk

}

= 1 − 1
2
erfc

(
1
2σ

log
[
N0 (2r0 − 1)

Qpk

])
, (36)

where erfc(·) is defined as erfc(t) � 2√
π

∫∞
t

e−x2
dx.

2) Average interference power constraint only: From (26),
by setting Ppk = +∞ and denoting ω∗ = 1

λN0(2r0−1) , we
have

P (g0, g1) =

{
N0(2

r0−1)
g1

, g0
g1

< ω∗

0, otherwise
, (37)

and the minimum outage probability is given by

Pout = 1 − Pr

{
g0

g1
< ω∗

}
, (38)

where ω∗ is obtained by substituting (37) into the constraint
E[g0P (g0, g1)] = Qav.

In the following, the minimum outage probability is evalu-
ated under different fading models.

a) Rayleigh fading: With the PDF of g0
g1

given in (18), we
have

Pout = 1 −
∫ ω∗

0

1
(x + 1)2

dx =
1

1 + ω∗ , (39)

where ω∗ is given by∫ ω∗

0

x

(x + 1)2
dx =

Qav

N0 (2r0 − 1)
. (40)

From (40), we have

ω∗ =exp

[
W

(
−e

−1− Qav
N0(2r0−1)

)
+1+

Qav

N0 (2r0−1)

]
−1, (41)

where W(x) is the Lambert-W function, which is defined as
the inverse function of f(w) = wew.

As can be seen from (39), if ω∗ goes to infinity, the outage
probability becomes zero; however, from (41), it is seen that
ω∗ is infinity only when r0 = 0. This indicates that the zero-
outage capacity for Rayleigh fading is zero, which is consistent
with the result obtained in Section IV.

b) Nakagami fading: With the PDF of g0
g1

given in (20), we
have

Pout = 1 −
∫ ω∗

0

xm−1

B(m, m)(x + 1)2m
dx

= 1 − (ω∗)m

mB(m, m)2F1 (2m, m; m + 1;−ω∗) , (42)

where ω∗ is given by

1
B(m, m)

∫ ω∗

0

xm

(x + 1)2m
dx =

Qav

N0 (2r0 − 1)
. (43)

From (3.194-1) in [17], the above equation is simplified as

(w∗)m+1
2F1 (2m, m + 1; m + 2;−w∗)

(m + 1)B(m, m)
=

Qav

N0 (2r0 − 1)
.

(44)

From the above, for the case of m = 2, the outage
probability can be shown to be Pout = 1+3ω∗

(1+ω∗)3
, and ω∗

satisfies 2
[
1 − 1+3ω∗+3(ω∗)2

(1+ω∗)3

]
= Qav

N0(2r0−1) . From the above
two formulas, when ω∗ is infinity, the outage probability
becomes zero and r0 becomes the delay-limited capacity
log2

(
1 + Qav

2N0

)
. This is consistent with the result obtained

in Section IV.
c) Log-normal fading: With the PDF of g0

g1
given in Section

IV, we have

Pout = 1 − Pr
{
eY < ω∗} =

1
2
erfc

(
1
2σ

log (ω∗)
)

, (45)

where ω∗ is determined by∫ log(ω∗)

−∞
ey 1√

2π
(√

2σ
) exp

(
− y2

2 × 2σ2

)
dy =

Qav

N0 (2r0 − 1)
.

(46)

The above equation can be simplified to

eσ2
[
1 − 1

2
erfc

(
log (ω∗) − 2σ2

2σ

)]
=

Qav

N0 (2r0 − 1)
. (47)

It is seen from (45), the zero-outage probability is achieved
when ω∗ goes to infinity. It is clear from (47) that, when
ω∗ goes to infinity, r0 = log2

(
1 + Qav

N0eσ2

)
. Again, this is

consistent with the delay-limited capacity obtained in Section
IV.

VI. SIMULATION RESULTS

In this section, we present and discuss the simulation results
for the capacities of the SU fading channels under spectrum
sharing with the proposed power allocation strategies.
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Fig. 2. Ergodic capacity vs. Ppk with Qpk = −5dB for different channel
models.
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Fig. 3. Ergodic capacity under peak transmit and average interference power
constraints.

A. Ergodic capacity

In this subsection, the simulation results for ergodic capacity
are presented. For Rayleigh fading channels, the channel
power gains (exponentially distributed) are assumed to be unit
mean. For AWGN channels, the channel power gains are also
assumed to be one.

Fig. 2 shows the ergodic capacity under peak transmit and
peak interference power constraints for Qpk = −5dB. It is
observed that when Ppk is very small, the ergodic capacities
for the three curves shown in this figure are almost the same.
This indicates that Ppk limits the performance of the network.
However, when Ppk is sufficiently large compared with Qpk,
the ergodic capacities become different. In this case, when g0

models the AWGN channel, the capacity of SU link when g1

also models the AWGN channel is higher than that when g1

models the Rayleigh fading channel. This indicates that fading
of the SU channel is harmful. However, when g1 models the
Rayleigh fading channel, the capacity for SU link when g0

models the AWGN channel is lower than that when g0 models
the Rayleigh fading channel. This illustrates that fading of the
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Fig. 4. Ergodic capacity vs. Pav under peak or average interference power
constraints.
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Fig. 5. Delay-limited capacity vs. Qav with Pav = 10dB for different
fading channel models.

channel between SU-Tx and PU-Rx is a beneficial factor in
terms of maximizing the ergodic capacity of SU channel.

Fig. 3 shows the ergodic capacity versus Qav under peak
transmit and average interference power constraints. For com-
parison, the curve with Ppk = +∞ (i.e. no transmit power
constraint) is also shown. It is observed that when Qav is
small, the capacities for different Ppk’s do not vary much.
This illustrates that Qav limits the achievable rate of SU.
However, when Ppk is sufficiently large compared to Qav,
the capacities become flat. This indicates that Ppk becomes
the dominant constraint in this case. Furthermore, with Ppk

being sufficiently large, the ergodic capacity of SU channel
becomes close to that without transmit power constraint.

Fig. 4 shows the ergodic capacity versus Pav under different
types of interference power constraints. As shown in the
figure, the ergodic capacity under average interference power
constraint is larger than that under peak interference power
constraint with the same value of Pav . This is because the
power control of SU is more flexible under average over peak
interference power constraint.
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Fig. 6. Outage probability vs. Qpk for r0 = 1 bit/complex dim. Ppk =
10dB for different fading channel models.
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Fig. 7. Outage probability for r0 = 1 bit/complex dim. under peak or
average interference power constraints

B. Delay-limited capacity and outage capacity

In this subsection, the simulation results for delay-limited
and outage capacities are presented. For Rayleigh fading
channels, the channel power gains (exponentially distributed)
are assumed to be unit mean. Besides, m = 2 is chosen
for the unit-mean Nakagami fading channels used in the
simulation. For log-normal fading channels, σ2 = 1 is used.
This is because log-normal shadowing is usually characterized
in terms of its dB-spread σdB , which ranges from 4dB to
12dB by empirical measurements, and is related to σ by
σ = 0.1 log(10)σdB [5]. We thus choose σ2 = 1 as this value
of σ makes the dB-spread lying within its typical ranges.

Fig. 5 shows the delay-limited capacity under Pav = 10dB
for different fading models versus Qav. It is seen that the
delay-limited capacity for Nakagami fading and log-normal
shadowing increases with Qav . However, when Qav is suffi-
ciently large, the delay-limited capacity will get saturated due
to Pav . Note that the delay-limited capacity of Rayleigh fading
model is zero regardless of Qav. This is consistent with our
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Fig. 8. Outage probability for r0 = 1 bit/complex dim. under peak
interference power constraint only.
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Fig. 9. Outage probability for r0 = 1 bit/complex dim. under average
interference power constraint only.

analysis in Section IV.
Fig. 6 shows the outage probability for different fading

models under Ppk = 10dB and r0 = 1 bit/complex dimension
(dim.). It is seen that when Qpk is small, the outage probability
of SU link when g0 models a fading channel is smaller
than that when g0 models the AWGN channel. Besides, more
severe the fading is, the smaller the outage probability is. This
illustrates that fading of the channel between SU-Tx and PU-
Rx is good in terms of minimizing the outage probability of
SU channel. However, when Qpk has the same value of Ppk,
the outage probability when g0 models a fading channel is
larger than that when g0 models the AWGN channel. This
can be foreseen from (24). When Qpk = Ppk, the channel
inversion condition for the AWGN case is 2r0−1

g1
≤ Ppk.

However, the channel inversion condition for the fading case
is 2r0−1

g1
≤ min(Ppk,

Qpk

g0
), which can be more restrictive than

that in the AWGN case if g0 > 1. The higher the probability
g0 > 1 is, the larger the resultant outage probability is.
However, when Qpk is sufficiently large, both fading and
AWGN channels will have the same outage probability, since
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Ppk becomes the dominant constraint in this case.
Fig. 7 shows the outage probability under peak and average

interference power constraints for r0 = 1 bit/complex dim.
under Ppk = 0dB or Ppk = 10dB. It is seen that under
the same Ppk, the outage probability under the average inter-
ference power constraint is smaller than that under the peak
interference power constraint. This is due to the fact that the
power control policy of SU is more flexible under the average
over the peak interference power constraint.

Fig. 8 shows the outage probability for different fading
models under the peak interference power constraint only with
r0 = 1 bit/complex dim.. It is observed that the simulation
results match the analytical results very well. Moreover, it is
observed that the outage probability curves overlap when Qpk

is very small, indicating that the fading models do not affect
the outage probability notably for small value of Qpk.

Fig. 9 illustrates the outage capacity versus average inter-
ference power constraint Qav when the target rate r0 is 1
bit/complex dim.. It is observed that the outage probability
for Nakagami fading and log-normal shadowing drop sharply
when Qav reaches a certain value. This demonstrates that
when Qav approaches infinity, the outage probability becomes
zero. In contrast, there is no such an evident threshold ob-
served for Rayleigh fading channel, since its delay-limited
capacity is zero. Additionally, comparing Fig.s 8 and 9, it is
observed that the outage probability under average interference
power constraint is smaller than that under peak interference
power constraint when Qav = Qpk, suggesting that the power
allocation scheme under the former is more flexible over the
latter. Furthermore, comparing Fig. 9 with Fig. 5, it is observed
that Qav required to achieve the zero-outage probability for
r0 = 1 bit/complex dim. is consistent with that required to
achieve the same delay-limited capacity.

VII. CONCLUSIONS

In this paper, the optimal power allocation strategies to
achieve the ergodic, delay-limited, and outage capacities of
a SU fading channel under spectrum sharing are studied,
subject to different combinations of peak/average transmit
and/or peak/average interference power constraints. It is shown
that under the same threshold value, average interference
power constraints are more flexible over their peak constraint
counterparts to maximize SU fading channel capacities. The
effects of different fading channel statistics on achievable SU
capacities are also analyzed. One important observation made
in this paper is that fading of the channel between SU-Tx
and PU-Rx can be a good phenomenon for maximizing the
capacity of SU fading channel.

APPENDIX A PROOF OF THEOREM 1

By introducing the dual variable associated with the average
interference power constraint, the partial Lagrangian of this
problem is expressed as

L(P (g0, g1), λ) = E
[
log2

(
1+

g1P (g0, g1)
N0

)]
−λ (E[g0P (g0, g1)]−Qav), (48)

where λ is the nonnegative dual variable associated with the
constraint E[g0P (g0, g1)] ≤ Qav.

Let A denote the set of {0 ≤ P (g0, g1) ≤ Ppk}. The dual
function is then expressed as

q(λ) = max
P (g0,g1)∈A

L(P (g0, g1), λ). (49)

The Lagrange dual problem is then defined as minλ≥0 q(λ).
It can be verified that the duality gap is zero for the convex
optimization problem addressed here, and thus solving its dual
problem is equivalent to solving the original problem. There-
fore, according to the Karush-Kuhn-Tucker (KKT) conditions
[20], the optimal solutions needs to satisfy the following
equations:

0 ≤ P (g0, g1) ≤ Ppk, E[g0P (g0, g1)] ≤ Qav, (50)

λ(E[g0P (g0, g1)] − Qav) = 0. (51)

For a fixed λ, by dual decomposition [21], the dual function
can be decomposed into a series of similar sub-dual-functions
each for one fading state. For a particular fading state, the
problem can be shown equivalent to

max
P (g0,g1)

log2

(
1+

g1P (g0, g1)
N0

)
− λg0P (g0, g1), (52)

s.t. P (g0, g1) ≤ Ppk, (53)

P (g0, g1) ≥ 0. (54)

The dual function of this sub-problem is

Lsub(P (g0, g1), μ,ν)=log2

(
1+

g1P (g0, g1)
N0

)
−λg0P (g0, g1)

−μ(P (g0, g1)−Ppk) + νP (g0, g1), (55)

where μ and ν are the nonnegative dual variables associated
with the constraints (53) and (54), respectively.

The sub-dual problem is then defined as qsub(μ, ν) =
minμ≥0,ν≥0 Lsub(P (g0, g1), μ, ν). This is also a convex opti-
mization problem for which the duality gap is zero. Therefore,
according to the KKT conditions, the optimal solutions needs
to satisfy the following equations:

μ(P (g0, g1) − Ppk) = 0, (56)

νP (g0, g1) = 0, (57)
Kg1

g1P (g0, g1) + N0
− λg0 − μ + ν = 0. (58)

From (58), it follows

P (g0, g1) =
K

μ − ν + λg0
− N0

g1
. (59)

Suppose that P (g0, g1) < Ppk, when g0 ≤ K

λ(Ppk+
N0
g1

)
or

equivalently ( K
λg0

−N0
g1

) ≥ Ppk. Then, from (56), it follows that
μ = 0. Therefore, (59) reduces to P (g0, g1) = K

−ν+λg0
− N0

g1
.

Then P (g0, g1) < Ppk results in K
−ν+λg0

− N0
g1

< Ppk . Since
ν ≥ 0, it follows that Ppk > K

−ν+λg0
− N0

g1
≥ K

λg0
− N0

g1
. This

contradicts the presumption. Therefore, from (50), it follows
that

P (g0, g1) = Ppk, if g0 ≤ K

λ(Ppk + N0
g1

)
. (60)

Suppose P (g0, g1) > 0, when g0 ≥ Kg1
λN0

or equivalently
K

λg0
− N0

g1
≤ 0. Then, from (57), it follows that ν = 0.
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Therefore, (59) reduces to P (g0, g1) = K
μ+λg0

− N0
g1

. Then
P (g0, g1) > 0 results in K

μ+λg0
− N0

g1
> 0. Since μ ≥ 0, it

follows that K
λg0

− N0
g1

≥ K
μ+λg0

− N0
g1

> 0. This contradicts
with the presumption. Therefore, from (50), it follows

P (g0, g1) = 0, if g0 ≥ Kg1

λN0
. (61)

Suppose P (g0, g1) = 0, when Kg1
λN0

> g0 > K

λ(Ppk+
N0
g1

)

or equivalently 0 < K
λg0

− N0
g1

< Ppk . Then, from (56), it
follows that μ = 0. Therefore, (59) reduces to P (g0, g1) =

K
−ν+λg0

−N0
g1

. Then P (g0, g1) = 0 results in K
−ν+λg0

−N0
g1

= 0.
Since ν ≥ 0, it follows that 0 > K

−ν+λg0
− N0

g1
≥ K

λg0
− N0

g1
.

This contradicts the presumption. Therefore, P (g0, g1) �= 0 for
this set of g0. Next, suppose P (g0, g1) = Ppk for the same set
of g0. Then, from (57), it follows that ν = 0. Therefore, (59)
reduces to P (g0, g1) = K

μ+λg0
− N0

g1
. Then P (g0, g1) = Ppk

indicates K
μ+λg0

− N0
g1

= Ppk. Since μ ≥ 0, it follows K
λg0

−
N0
g1

≥ K
μ+λg0

− N0
g1

= Ppk . This contradicts the presumption.
Therefore, P (g0, g1) �= Ppk for this set of g0. Now, from (57),
P (g0, g1) �= 0 results in ν = 0. From (56), P (g0, g1) �= Ppk

results in μ = 0. Therefore, from (59), it follows

P (g0, g1) =
K

λg0
− N0

g1
, if

Kg1

λN0
> g0 >

K

λ(Ppk + N0
g1

)
.

(62)

From (51), it is easy to observe that λ is either equal to
zero or determined by solving E[g0P (g0, g1)] = Qav.

Theorem 1 is thus proved.

APPENDIX B
PROOF OF THEOREM 3

The proof is organized in two steps. First, we show that the
solution of (23) subject to F2 must have the same structure as
(26). Secondly, we show that λ is determined by substituting
(26) into the constraint E [g0P (g0, g1)] = Qav.

Step 1: Define an indicator function,

χ =

{
1, log2

(
1 + g1P (g0,g1)

N0

)
< r0

0, otherwise
. (63)

Then the optimization problem (23) subject to F2 can be
rewritten as

min
P (g0,g1)∈F2

E {χ} . (64)

By introducing the dual variable λ associated with the
average interference power constraint, the partial Lagrangian
of this problem is expressed as

L (P (g0, g1), λ) = E {χ} + λ (E{g0P (g0, g1)} − Qav) .
(65)

Let A denote the set of {P (g0, g1) : 0 ≤ P (g0, g1) ≤ Ppk}.
The dual function is then expressed as

min
P (g0,g1)∈A

E {χ} + λ (E{g0P (g0, g1)} − Qav) . (66)

For a fixed λ, by dual decomposition, the dual function can
be decomposed into a series of similar sub-dual-functions each

for one fading state. For a particular fading state, the problem
can be shown equivalent to

min
P (g0,g1)

χ + λg0P (g0, g1), (67)

s.t. P (g0, g1) ≤ Ppk, (68)

P (g0, g1) ≥ 0. (69)

When χ = 1, (67) is minimized if P (g0, g1) = 0, and the
minimum value of (67) is 1; when χ = 0, (67) is minimized
if P (g0, g1) = N0(2

r0−1)
g1

, and the minimum value of (67) is

λg0
N0(2

r0−1)
g1

. Thus, P (g0, g1) = N0(2
r0−1)
g1

is the optimal

solution of the problem, only when λg0
N0(2

r0−1)
g1

< 1 and
N0(2

r0−1)
g1

≤ Ppk are satisfied simultaneously. Otherwise,
P (g0, g1) = 0 is the optimal solution of the problem. There-
fore, the optimal solution has the same structure as (26).

Step 2: Suppose P ∗(g0, g1) is the optimal solution of (23)
subject to F2 with λ = λ∗ > 0 satisfying E [g0P

∗(g0, g1)] <
Qav. Suppose P ′(g0, g1) is a solution of (23) subject to F2

with λ = λ′ > 0, which satisfies E [g0P
′(g0, g1)] = Qav.

Then, it is easy to verify that λ∗ > λ′. Therefore, from (27),
it follows

P∗
out > P ′

out (70)

where the inequality results from the fact that λ∗ > λ′ and
Pout is an increasing function with respect to λ. This result
contradicts our presumption. Therefore, the optimal λ must be
determined by solving E [g0P (g0, g1)] = Qav . Otherwise, if
λ = 0, the power allocation strategy obtained in step 1 reduces
to the truncated channel inversion given in [6], and this holds
only when E [g0P (g0, g1)] < Qav.

Theorem 3 is thus proved.

REFERENCES

[1] “Spectrum policy task force," Federal Communications Commission, ET
Docket No. 02-135, Tech. Rep., Nov. 2002.

[2] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios
more personal," IEEE Pers. Commun., vol. 6, no. 6, pp. 13-18, Aug.
1999.

[3] S. Haykin, “Cognitive radio: brain-empowered wireless communications,"
IEEE J. Select. Areas Commun., vol. 23, no. 2, pp. 201-220, Feb. 2005.

[4] Y.-C. Liang, Y. Zeng, E. C. Y. Peh, and A. T. Hoang, “Sensing-throughput
tradeoff for cognitive radio networks," IEEE Trans. Wireless Commun.,
vol. 7, no. 4, pp. 1326-1337, Apr. 2008.

[5] A. Ghasemi and E. S. Sousa, “Fundamental limits of spectrum-sharing
in fading environments," IEEE Trans. Wireless Commun., vol. 6, no. 2,
pp. 649-658, Feb. 2007.

[6] A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with
channel side information," IEEE Trans. Inform. Theory, vol. 43, no. 6,
pp. 1986-1992, Nov. 1997.

[7] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: information-
theoretic and communications aspects," IEEE Trans. Inform. Theory,
vol. 44, no. 6, pp. 2619-2692, Oct. 1998.

[8] Y.-C. Liang, R. Zhang, and J. Cioffi, “Subchannel grouping and statistical
waterfilling for vector block-fading channels," IEEE Trans. Commun.,
vol. 54, no. 6, pp. 1131-1142, June 2006.

[9] M. Gastpar, “On capacity under receive and spatial spectrum-sharing
constraints," IEEE Trans. Inform. Theory, vol. 53, no. 2, pp. 471-487,
Feb. 2007.

[10] L. Musavian and S. Aissa, “Ergodic and outage capacities of spectrum-
sharing systems in fading channels," in Proc. IEEE Global Telecommu-
nications Conference (GLOBECOM¡ 0̄7), Washington. DC, USA, 2007,
pp. 3327-3331.

[11] R. Zhang and Y.-C. Liang, “Exploiting multi-antennas for opportunistic
spectrum sharing in cognitive radio networks," IEEE J. Select. Topics
Signal Processing, vol. 2, no. 1, pp. 1-14, Feb. 2008.



950 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 2, FEBRUARY 2009

[12] L. Zhang, Y.-C. Liang, and Y. Xin, “Joint beamforming and power
allocation for multiple access channels in cognitive radio networks," IEEE
J. Select. Areas Commun., vol. 26, no. 1, pp. 38-51, Jan. 2008.

[13] L. Ozarow, S. Shamai, and A. D. Wyner, “Information theoretic consid-
erations for cellular mobile radio," IEEE Trans. Veh. Technol., vol. 43,
pp. 359-378, May 1994.

[14] G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over
fading channels," IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1468-
1489, July 1999.

[15] S. V. Hanly and D. N. Tse, “Multi-access fading channels-part ii: delay-
limited capacities," IEEE Trans. Inform. Theory, vol. 44, no. 7, pp. 2816-
2831, Nov. 1998.

[16] M. Khojastepour and B. Aazhang, “The capacity of average and peak
power constrained fading channels with channel side information," in
Proc. IEEE Wireless Commun. Networking Conf., vol. 1, Mar. 2004, pp.
77-82.

[17] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, 5th ed. San Diego: Academic Press, 1994.

[18] M. Nakagami, “The m-distribution, a general formula of intensity
distribution of rapid fading," in Statistical Methods in Radio Wave
Propagatio, W. G. Hoffman, Ed. Oxford, England: Pergamon, 1960.

[19] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochas-
tic Processes. New York: McGraw Hill Higher Education, 2002.

[20] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[21] R. Zhang, S. Cui, and Y.-C. Liang, “On ergodic sum capacity of fading
cognitive multiple-access and broadcast channels," submitted to IEEE
Trans. Inform. Theory (also available at arXiv: 0806.4468).

Xin Kang (S’08) received his B.Sc. degree in
Electrical Engineering from the Xi’an Jiao Tong
University, China, in 2005. He is currently working
toward his Ph.D. degree in the Electrical and Com-
puter Engineering Department at the National Uni-
versity of Singapore. His research interests include
cognitive radio networks, multiuser communication
systems and power allocation for fading channels.

Ying-Chang Liang (SM’00) is now Senior Scien-
tist in the Institute for Infocomm Research (I2R),
Singapore, where he has been leading the research
activities in the area of cognitive radio and co-
operative communications and the standardization
activities in IEEE 802.22 wireless regional networks
(WRAN) for which his team has made fundamen-
tal contributions in physical layer, MAC layer and
spectrum sensing solutions. He also holds adjunct
associate professorship positions in Nanyang Tech-
nological University (NTU) and National University

of Singapore (NUS), both in Singapore, and adjunct professorship position in
University of Electronic Science and Technology of China (UESTC). He has
been teaching graduate courses in NUS since 2004. From Dec 2002 to Dec
2003, he was a visiting scholar with the Department of Electrical Engineering,
Stanford University. His research interest includes cognitive radio, dynamic
spectrum access, reconfigurable signal processing for broadband communica-
tions, space-time wireless communications, wireless networking, information
theory and statistical signal processing.

He is now an Associate Editor of IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY. He served as an Associate Editor of IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS from 2002 to 2005, Lead Guest-Editor
of IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, Special
Issue on Cognitive Radio: Theory and Applications, and Guest-Editor of
COMPUTER NETWORKS JOURNAL (Elsevier) Special Issue on Cognitive
Wireless Networks. He received the Best Paper Awards from IEEE VTC-
Fall’1999 and IEEE PIMRC’2005, and 2007 Institute of Engineers Singapore
(IES) Prestigious Engineering Achievement Award.

Arumugam Nallanathan (S’97−M’00−SM’05)
received the B.Sc. with honors from the University
of Peradeniya, Sri-Lanka, in 1991, the CPGS from
the Cambridge University, United Kingdom, in 1994
and the Ph.D. from the University of Hong Kong,
Hong Kong, in 2000, all in Electrical Engineering.
He was an Assistant Professor in the Department
of Electrical and Computer Engineering, National
University of Singapore, Singapore from August
2000 to December 2007. Currently, he is a Senior
Lecturer in the Department of Electronic Engineer-

ing at King’s College London, United Kingdom. His research interests include
cooperative communications, cognitive radio, MIMO-OFDM systems, ultra-
wide bandwidth (UWB) communication and localization. In these areas, he
has published over 130 journal and conference papers. He is a co-recipient
of the Best Paper Award presented at 2007 IEEE International Conference on
Ultra-Wideband (ICUWB’2007).

He currently serves on the Editorial Board of IEEE TRANSACTIONS ON
WIRELESS COMMUNICATIONS and IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY as an Associate Editor. He served as a Guest Editor for
EURASIP JOURNAL OF WIRELESS COMMUNICATIONS AND NETWORK-
ING: Special issue on UWB Communication Systems–Technology and Ap-
plications. He served as a technical program committee member for more than
30 IEEE international conferences. He also served as the General Track Chair
for the IEEE VTC’2008-Spring. He currently serves as the Co-Chair for the
IEEE GLOBECOM’2008 Signal Processing for Communications Symposium,
and IEEE ICC’2009 Wireless Communications Symposium.

Hari Krishna Garg received the B.Tech. degree
from the Indian Institute of Technology (IIT), Delhi,
the M.Eng. and Ph.D. degrees from Concordia Uni-
versity, Montreal, QC, Canada, and the MBA degree
from Syracuse University, Syracuse, NY, USA.

He has been a faculty member of the Electrical
and Computer Engineering Department at Syracuse
University. Currently, he is with the Electrical and
Computer Engineering Department at National Uni-
versity of Singapore. His research area of interest
is mobile communications from the physical layer

to the applications on both technology as well as applications’ front. More
recently, he has been active as entrepreneur having founded or co-founded
four companies.

Rui Zhang (S’00-M’07) received the B.S. and
M.S. degrees in electrical and computer engineering
from National University of Singapore in 2000 and
2001, respectively, and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
in 2007. Since 2007, he has been a Research Fellow
with the Institute for Infocomm Research (I2R),
A*STAR, Singapore. His recent research interests
include cognitive radio networks, cooperative com-
munication systems, and multiuser MIMO transmis-
sion systems.


