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Abstract— Sequential Monte Carlo (SMC) is a group of meth-
ods that use Monte Carlo simulation to solve online estimation
problems in dynamic systems. SMC methods are traditionally
built on the techniques of sequential importance sampling (SIS)
and resampling. In this paper, we apply the SMC methodology
to the problem of symbol detection in a differentially encoded
orthogonal frequency division multiplexing (OFDM) system over
a frequency selective fading channel. We first propose the peri-
odical termination of differential phase trellis at predetermined
indices. It is seen that accelerated weight degeneracy and impov-
erished trajectory diversity – problems that are encountered in
traditional SMC methods – are mitigated. Using these observa-
tions, a novel SMC framework that circumvents resampling is
then developed. The effect of varying termination periods on the
performance of the non-resampling detector is investigated. We
also present results which show that periodic termination helps
to retard weight degeneracy. The performance of traditional and
non-resampling SMC detectors for a convolutional-coded OFDM
system is compared and simulation results suggest that the non-
resampling detector performs better than its traditional counter-
part. We also consider a low-density parity check (LDPC)-coded
OFDM system and simulation results suggest the near bound
performance of the proposed non-resampling SMC detector.

Index Terms— Sequential Monte Carlo methods, Orthogonal
frequency division multiplexing (OFDM), Iterative receivers,
Coded modulation.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) [1]- [4] is a potential candidate for multimedia

wireless services that require high bit rates over mobile radio
channels. In OFDM, the entire channel is divided into many
narrow sub-channels that are transmitted in parallel, i.e., a
frequency-selective fading channel is converted into several
flat-fading channels. This increases the symbol duration and
reduces the intersymbol interference (ISI). These features
make OFDM an effective technique for combating multipath-
fading and for high bit rate transmission over wireless mobile
channels.

Considerable research has been devoted to symbol de-
tection in slow, flat-fading channels. One such method is
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the sequential Monte Carlo (SMC) methodology [5]- [9],
which originally emerged in the field of statistics to provide
a complete theoretical framework for the usage of Monte
Carlo methods in dynamic systems [9]. SMC techniques
have since been used in fields such as computer vision,
speech recognition, and DNA sequence analysis. SMC has
also been valuable in communications [10]- [13] because
receivers based on the SMC methodology not only utilize
a priori symbol probabilities, but also produce a posteriori
symbol probabilities. This feature allows these detectors to
serve as the first-stage of an iterative (turbo) receiver. SMC
detectors are traditionally built on the techniques of sequential
importance sampling (SIS) and resampling. However, resam-
pling procedures introduce practical and theoretical problems
[6] such as (i) impoverishment of diverse trajectories, (ii)
loss of statistical independence of trajectories, (iii) increased
complexity, and (iv) difficulty in implementing the SMC
algorithm in parallel. Although resampling gives rise to the
aforementioned problems, it is a vital step since degeneracy
in the SIS algorithm is unavoidable, i.e., as the SIS algorithm
progresses, it tends to carry more imputed trajectories of low
importance weights that do not contribute significantly to the
final estimation. This is a waste of computational effort and
memory. There has been some research effort to develop
methods that mitigate the aforementioned problems, or in
some cases, skip the resampling procedure [14] - [16]. These
methods, however, can be computationally expensive [16].

In this paper, we present a scheme that allows us to circum-
vent resampling while avoiding an increase in computational
complexity when the SMC methodology is applied to a coded
OFDM system. We force the phase trellis of a differentially
encoded OFDM system to terminate at predetermined in-
dices. Periodic termination of phase trellis has implications
on weight degeneracy and trajectory diversity in the SMC
framework and these implications are analyzed. Specifically,
for an appropriately chosen period, periodic termination helps
to retard weight degeneracy and enhance trajectory diversity.
This in turn allows the resampling step present in conventional
SMC frameworks to be circumvented. The results of this
analysis are then applied to the problem of symbol detection
in a coded OFDM system employing differential phase mod-
ulation over an unknown frequency-selective multipath-fading
channel.

The remainder of the paper is organized as follows. Section
II describes a coded OFDM system that employs periodically
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Fig. 1. OFDM system with periodically terminated differential encoder
(a) Transmitter (b) Iterative receiver without channel estimator (c) Iterative
receiver with channel estimator

terminated differential phase modulation. The proposed non-
resampling SMC detector for coded OFDM systems is intro-
duced in Section III. This detector executes either Algorithm A
or Algorithm B. Algorithm A requires pilot-aided channel esti-
mates obtained from an external channel estimator to initialize
the detector and estimate a posteriori symbol probabilities.
Algorithm B, on the other hand, does not require a separate
channel estimator for the detector to function. Instead, the
detector itself updates the channel statistics using the one-
step Kalman filter. Details of these algorithms are provided
in Section III. Section IV presents computer simulations that
show the validity of our claim that periodic termination retards
weight degeneracy. This section also contains results that
suggest the promising performance of the proposed non-
resampling SMC detector for both convolutional-coded and
low-density parity check (LDPC)-coded OFDM systems in
various wireless mobile environments.

II. SYSTEM MODEL

In this section, we consider a coded OFDM system em-
ploying periodically terminated differential phase modulation
with single transmit antenna. There are N subcarriers sig-
naling through an unknown frequency-selective multipath-
fading channel. It is assumed that the fading process is quasi-
static. The transmitted signals are received through a single
receive antenna and fed into an iterative receiver after matched
filtering and sampling. The transmitter structure used in this
paper is shown in Fig. 1(a) and the iterative receiver without
and with channel estimator is shown in Fig. 1(b) and Fig. 1(c),
respectively. It is convenient to define [z], for all z ∈ Z+, as
the set containing all non-negative integers less than or equal
to z, i.e., [z] ∆= {0, 1, . . . , z}.

    Depth 
    0             1                 2             K–1              K               K+1           K+2          2K–1            

First sub–trellis of depth K Second sub–trellis of depth K

Fig. 2. Phase trellis of differential QPSK with termination period K.

A. Baseband Coded OFDM Signal Model

A source produces binary information bits {ck} that are
encoded by an outer channel encoder to yield code bits {bk}.
The bits {bk} are mapped to an M -PSK modulated symbol
stream {dω} taking values from the finite alphabet, AM =
{a1, a2, . . . , aM}. The stream {dω} is subsequently fed into a
differential encoder that operates at a termination period ofK,
i.e., at every Kth transition through the differential M -phase
trellis, log2 M bits are inserted into the differential encoder to
terminate it at the desired state. This terminated state then acts
as the initial state for the next K−1 data symbols before being
terminated once again on the Kth transition. This continues
until the entire set {dω} has been encoded. This periodic
termination results in a serial concatenation of sub-trellises,
each of depth K (see Fig. 2). For an OFDM system employing
N subcarriers, transitions along the phase trellis may then be
viewed as symbols transmitted from one subcarrier to the next.
Therefore, periodic termination gives rise to a set of N/K
subcarriers, Ω =

{
0th,Kth, 2Kth . . . , ((N/K)− 1)Kth

}
,

assuming K divides N . This set Ω is designated to transmit
the terminated states. It is clear that a smaller K, i.e., a
more frequent termination, will cause the cardinality of Ω to
increase and thereby increase overheads. To illustrate, consider
K − 1 M -PSK symbols {dp,j}K−1

j=1 that are differentially
encoded to yield the pth sub-trellis, p ∈ [(N/K)− 1]:

ζp,j
∆=

{
ap,initial ; j = 0
ζp,j−1 · dp,j ; j = 1, . . . , K − 1

(1)

where ap,initial ∈ AM is the initial state of the pth sub-
trellis, or equivalently, the terminated state of the (p− 1)th

sub-trellis. Thus, for the pth sub-trellis, we obtain the set
of symbols Tp

∆= {ζp,j}j∈[K−1]. For every OFDM symbol
(one time slot), the result is the parallel set of N data and
termination symbols:

{Si}i∈[N−1]
∆=

⋃

p∈[(N/K)−1]

Tp (2)

The set {Si}i∈[N−1] is then sent through a conventional
OFDM transmitter. For an OFDM system with proper cyclic
extensions and sample timing with tolerable leakage, the
demultiplexed sample Yi at the ith subcarrier can be expressed
as [13]

Yi = SiHi + Vi, i ∈ [N − 1] (3)
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where Vi is the ambient noise which is circularly symmetric
complex Gaussian noise with zero mean and variance σ2, i.e.,
Vi ∼ NC(0, σ2). Further, Hi which is the complex channel
frequency response at the ith subcarrier, is obtained from the
channel’s impulse response h by [17]

Hi
∆= H(i∆f )

=
L−1∑
l=0

αl exp
(−j 2πil

N

)

= hHwf (i)

(4)

where ∆f is the tone spacing of the OFDM system, L is
the channel length, and (·)H denotes the Hermitian trans-
pose. The vector h

∆= (α0, . . . , αL−1)
H contains the time

responses of the resolvable channel taps and wf (i) ∆=(
1, . . . , e(−j

2πi(L−1)
N )

)T

is the vector containing the FFT
coefficients. Substituting (4) into (3) yields

Yi = Sih
Hwf (i) + Vi, i ∈ [N − 1] (5)

Equation (5) shows the explicit relationship among the
channel impulse response h, the ambient noise Vi, and the
transmitted signal Si. The demultiplexed samples {Yi}i∈[N−1]

are then sent to the iterative receiver. In the following subsec-
tion, we describe a generic iterative receiver that processes the
set {Yi}i∈[N−1].

B. Iterative Receiver

Since the combination of M -PSK modulation and dif-
ferential encoding can be viewed as an inner encoder, the
aforementioned system is therefore a serial concatenation of
two encoders. Generically, a turbo receiver consists of two
stages: a soft-input soft-output (SISO) detector followed by a
SISO channel decoder.

This SISO detector utilizes the channel estimates, a pri-
ori symbol probabilities ρp,j,m

∆= Pr(dp,j = am), and
observation samples Y ∆= {Y0, Y1, . . . , YN−1} as inputs to
produce a posteriori symbol probabilities Pr(dp,j = am|Y)
as its output. The channel decoder on the other hand, uses
the a priori log-likelihood ratios (LLR) of the code bits and
delivers an update of the a posteriori LLRs of the code bits.
Being SISO in nature, the detector and the channel decoder
exchange extrinsic information with each other to improve
the receiver’s performance iteratively. Although the extrinsic
information exchanged are statistically independent at the first
iteration, they become progressively more correlated as the
iterations proceed. The reader is referred to [18] for details on
the computation of the LLRs and extrinsic information.

III. NON-RESAMPLING SMC DETECTOR FOR
OFDM SYSTEMS

In this section, we present our non-resampling SMC de-
tector for the coded OFDM system described in Section II
employing differentialM -PSK modulation over a frequency-
selective multipath-fading channel. Specifically, we look into
the problem of estimating the a posteriori probabilities of sym-
bols {dp,j}K−1

j=1 for p ∈ [(N/K)− 1] in (1). Before presenting
the algorithm, we briefly review the SMC methodology. We

also investigate the implications of periodic trellis termination
on weight degeneracy and trajectory diversity. We then show
how these implications naturally lead to our non-resampling
SMC framework.

A. Preliminaries

Consider the state-space model of a discrete dynamic sys-
tem, i.e.,

State equation : zi = Θi (6a)
Observation equation : yi = Φi(zi, vi) (6b)

where zi, yi, ui, vi are the state variable, observation, state
noise and observation noise at index i, respectively. Let Zi

∆=
(z0, z1, . . . , zi), Yi

∆= (y0, y1, . . . , yi), and suppose an on-
line estimate of some function υ(Zi) of state variables Zi

is needed, based on observations Yi. This may be estimated
using

E [υ(Zi)|Yi] =
∫

υ(Zi)f(Zi|Yi) dZi (7)

where f(Zi|Yi) is the a posteriori density of the variables Zi,
given the observations Yi, and E [·] denotes the expectation
operator. Equation (7) requires integrals that are difficult to
compute in closed form, but Monte Carlo methods allow us
to simplify (7) by sampling from the a posteriori density,
f(Zi|Yi). The estimate of υ(Zi) is then written as [11]:

Ê [υ(Zi)|Yi] = lim
Ψ→∞

1
Ψ

Ψ∑
q=1

υ(Z(q)
i ) (8)

where Ψ is the number of samples used in the estimation
of υ(Zi) and Z

(q)
i is the qth random sample drawn from

the distribution f(Zi|Yi). The convergence of (8) is ensured
by the law of large numbers. Direct sampling from the
target distribution f(Zi|Yi) is often not feasible and hence
a trial distribution g(Zi|Yi) is sometimes used to generate

the set of samples
{

Z
(q)
i

}Ψ

q=1
. In importance sampling, the

weight w
(q)
i is associated with each of the Ψ trajectories

in the set
{

Z
(q)
i

}Ψ

q=1
, where w

(q)
i = f(Z

(q)
i | Yi)

g(Z
(q)
i | Yi)

. The pair

{Z(q)
i , w

(q)
i }Ψq=1 is known as a properly weighted sample with

respect to the target distribution f(Zi|Yi). These properly
weighted samples may be used to estimate E [υ(Zi)|Yi] by
[11]:

Ê [υ(Zi)|Yi] =
1

Wi

Ψ∑
q=1

υ(Z(q)
i )w(q)

i (9)

where Wi =
Ψ∑

q=1
w

(q)
i . The Markov structure of (6a) allows

importance sampling to proceed sequentially. The sequential
importance sampling (SIS) algorithm used to propagate a set
of properly weighted samples from index i − 1 to index i is
described in Table I [11]. As seen in Table I, the choice of
trial distribution g(Zi|Yi) is important and a useful choice is
of the form [9]:

g(zi| Z(q)
i−1, Yi) = f(zi| Z(q)

i−1, Yi)

=
f(yi| zi)f(zi| z

(q)
i−1)

f(yi| z
(q)
i−1)

(10)
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For the trial distribution in (10), the sequential updating of
the weight w

(q)
i follows [9]:

w
(q)
i ∝ w

(q)
i−1 · f(yi| Z(q)

i−1, Yi−1); q = 1, . . . , Ψ; i ≥ 0 (11)

where w−1 is usually initialized to unity.

TABLE I
A SEQUENTIAL MONTE CARLO ALGORITHM FOR

PROPAGATING A SET OF PROPERLY WEIGHTED SAMPLES
FROM INDEX (i− 1) TO INDEX i

INITIALIZE: Draw a set of independent and identically distributed (i.i.d.)
samples z

(1)
−1 , z

(2)
−1 , . . . , z

(Ψ)
−1 from f(z−1| y−1). When y−1 represents the

‘null’ information, f(z−1| y−1) corresponds to the a priori distribution of
z−1.

FOR q = 1, . . . , Ψ; i ≥ 0

DO:

(1) Draw a sample z
(q)
i from the trial distribution g(zi| Z

(q)
i−1,Yi) and let

Z
(q)
i = (Z

(q)
i−1, z

(q)
i )

(2) Compute the importance weight recursively:

w
(q)
i = w

(q)
i−1 ·

f(Z
(q)
i | Yi)

f(Z
(q)
i−1| Yi−1)g(z

(q)
i | Z

(q)
i−1,Yi)

, where f (·) denotes the

target distribution.

END

The weight w
(q)
i is a measure of the ‘quality’ of the imputed

sequence (trajectory) Z
(q)
i . Trajectories with small importance

weights are said to be ineffective because large computational
effort is devoted to updating them although their contribution
to the final estimate is negligible. In general, the SIS algorithm
will get more inefficient as index i increases because the
discrepancy between the target distribution f(Zi|Yi) and trial
distribution g(Zi|Yi) can only increase with i [10]. This
progressive inefficiency is called degeneracy. Therefore, in
order to make the SIS procedure effective in practice, it is
necessary to resample and conventional SMC methods are
built on the techniques of SIS and resampling.

A useful criterion that helps to decide if resampling should
be performed during index i is the effective sample size Ψ̄i

at index i. This is approximated as [7]:

Ψ̄i ≈ Ψ
1 + Ψ ·Var(wi)

(12)

where Ψ is the number of trajectories and Var(wi) is the
variance of the normalized importance weights wi of these
trajectories at index i. The effective sample size Ψ̄i is a
heuristic measurement of the variation of the weights. When
the weights are equal (signifying that all Ψ trajectories are
drawn close to the mean of the posterior distribution), Ψ̄i

is at its maximum value of Ψ, while a very small effective
sample size suggests that one weight dominates all others.
In dynamic resampling, when Ψ̄i is below a predetermined
threshold, it is an indication that degeneracy is chronic and
resampling is thus invoked. On the other hand, in deterministic
resampling, resampling is carried out at specific values of
i, regardless of the effective sample size Ψ̄i. Regardless of
the scheme employed, resampling procedures introduce the
problems mentioned in Section I.

State
1

2

3

4

    Depth 
    0                       1                         2                            3                           4                             5 

Termination 
Period =5

Correct Path 
Erroneous Path 

Wrong transition but not taken 
into account when estimating 
data bits. The short burst error 
length is thus decreased by one 
stage. 

Fig. 3. Possible erroneous path in a sub–trellis.

B. Effect of Periodic Termination on Diversity and Degener-
acy in the SMC Framework

The receiver for a system employing differential phase
modulation may be designed using conventional SMC meth-
ods. This is because (6a) represents the data symbol ui at
index i that causes the transition from phase zi−1 to zi.
In (6b), the transmitted symbol zi is subjected to fading
and noise vi, and observed as yi. The receiver then has to
estimate the correct path through the differential phase trellis
Zi,true

∆= (z0,true, z1,true, . . . , zi,true). Therefore, it is clear
that the Ψ properly weighted trajectories {Z(q)

i , w
(q)
i }Ψq=1 are

a collection of possible paths through this trellis and are ideally
independent and as diverse as possible. However, the diversity
of these Ψ trajectories is reduced when resampling is carried
out. Further, the receiver may estimate a path other than the
one transmitted, in which case erroneous sequence estimation
occurs. Error events along a trellis tend to be bursty and the
erroneous path can diverge from and remerge with the correct
path any number of times [18]. This bursty nature of error
events can lead to accelerated importance weight degeneracy.

Consider differential M -PSK modulation on a set of in-
dependent bits in which the total length of transmission of
both information symbols and overheads is N , i.e., the trellis
consists of N stages. When periodic termination is employed,
the phase (state) transition is similar to that shown in Fig. 2
from which interesting observations can be drawn. First, the
continuous transmission of information bits is now a series of
shorter transmissions corresponding to a serial concatenation
of shorter sub-trellises. If the termination period is K, this
would give N/K serially concatenated trellises, each of depth
K. Thus, each sub-trellis is a transmission window of length
K symbols. Second, each sub-trellis is independent of all
others, given the initial states. We will exploit these two main
effects of periodic termination.

Let us assume that each state is able to transit to M
possible states. For a continuous trellis of depth N , there
are MN possible paths through it and N is likely to be of
moderate to large length. Even for a system employing binary
modulation, i.e., M = 2, there will be a significant number
of possible paths through the trellis. In the SMC framework,
the number of Monte Carlo samples Ψ is of moderate size [7]
and it is unlikely these would be able to impute the majority
of paths. For example, suppose 9 bits are modulated using
differential BPSK. There are 512 possible paths emanating
from the initial state. An SMC receiver is required to impute,
for example, Ψ = 50 samplers. The trajectories imputed by
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these samplers will, most likely, not be distinct. The effect
on the diversity of imputations is clear: The SMC receiver
is unlikely to produce many distinct trajectories such that
sufficient diversity exists after resampling. In fact, to allow
for enough diversity to remain after resampling, Ψ would
have to be prohibitively large. Now consider a periodically
terminated trellis that consists of sub-trellises of depth 5. For
binary modulation, each sub-trellis has 32 possible paths and
for moderate Ψ, it is likely that there will be more diversity
in the imputations.

More distinct trajectories yield more available information
and (11) shows how sufficiently diverse trajectories address the
issue of degeneracy. The values of each of the Ψ likelihood
functions f(yi| Z

(q)
i−1, Yi−1) used in updating the importance

weights w
(q)
i−1 will be less degenerated when there are more

distinct {Z(q)
i−1}Ψq=1, i.e., the likelihood functions will occupy

a range of values between 0 and 1, inclusive, rather than the
extremes of 0 or 1 (which is the case for conventional SMC
methods). There are two main reasons for this. First, it is now
more likely that there exists at least one correct trajectory
among the {Z(q)

i−1}Ψq=1, and such a trajectory has a large
importance weight associated with it. Also, the receiver would
have traced a good proportion of erroneous paths, each with
an importance weight that is smaller than that corresponding
to the correct path. Second, error events along a trellis tend to
be bursty, but periodic state termination prevents large burst
lengths because (i) erroneous path tracing does not proceed
deep into the trellis, and (ii) in the case where the erroneous
path remerges with the correct path at the last stage of a
sub-trellis, the inserted termination bits are not taken into
account in the estimation of data bits and this essentially
shortens the erroneous path length by 1 stage (see Fig. 3).
The combined result is that degeneracy is retarded while
diversity is enhanced. These factors allow the SMC receiver
to circumvent the resampling step. Also, the independence
of the transmission windows (i) prevents decisions in future
indices being affected by a wrong decision made in the current
window, and (ii) allows the path estimation through each sub-
trellis to be implemented in parallel.

C. Pilot-Aided Non-Resampling SMC Algorithm: Algorithm A

Recall the discrete dynamic system in (6a) and (6b). The
corresponding dynamic system that follows from the OFDM
system described in Section IIA is:

State equation : ζp,j = Θp,j(ζp,j−1, dp,j) (13a)
Observation equation : Yi = Φi(Si, Vi) (13b)

Although the subscripts in (13a) and (13b) are different, we
note that p ∈ [(N/K)− 1] and j ∈ [K − 1] are related to the
subcarrier index i ∈ [N − 1] through the following

i = pK + j (14)

Using (14), any set {Xi}i∈[N−1] may be represented as
{XpK+j}p∈[(N/K)−1], j∈[K−1] and vice versa.

We apply our non-resampling SMC algorithm to the prob-
lem of estimating the a posteriori symbol probabilities of

{dp,j}K−1
j=1 for p ∈ [(N/K)− 1] based on knowledge of

the samples Yi
∆= {Y0, . . . Yi} up to the ith subcarrier,

the channel estimates {Ĥi}i∈[N−1], henceforth denoted as
{ĤpK+j}p,j , and the a priori symbol probabilities of dp,j . The
set {ĤpK+j}p,j may be obtained through pilot-aided channel
estimation with the terminated states {ζp,0}p∈[(N/K)−1] of
the differential phase trellis serving as the pilot symbols.
Furthermore, the phase of these pilots can be made to cycle
through each of the M states a1, a2, . . . , aM in sequence. This
method has the advantage of simplicity for both the transmitter
and receiver since only the termination period K and the initial
state ζ0,0 of the 0th sub-trellis need to be known. To illustrate,
consider Ω , the set of N/K subcarriers designated to transmit
the terminated states. It is easy to see that the index i of the
subcarriers in Ω is related to termination period K through
the following:

i = (c− 1)K, c = 1, 2, . . . , N/K, i ∈ Ω (15)

If the initial state ζ0,0 of the 0th sub-trellis is am ∈ AM , then
the phase of the symbol for each i ∈ Ω must follow:

S(c−1)K =
{

a(m−1+c) mod M ; m− 1 + c 6= 0 mod M
aM ; m− 1 + c = 0 mod M

(16)
where c = 1, 2, . . . , N/K. Equations (15) and (16) show that
the phase of the terminated states are easily obtained from
knowledge of ζ0,0, N , K and M .

Another issue of interest is the arrangement of pilots from
one OFDM symbol (time slot) to the next. A possible method
to make the set of pilot subcarriers at the (t − 1)th time
slot different from that in the tth time slot is to vary the
termination period K from one time slot to the next, in a
predetermined fashion. The channel is then estimated using
the two-dimensional minimum mean square error (MMSE)
interpolation scheme of [20] that employs Wiener filtering.

When the receiver knows the channel estimate ĤpK+j ,
the predictive distribution of the states is given by
Pr

(
SpK+j |S(q)

pK+j−1, YpK+j , ĤpK+j

)
, where S

(q)
pK+j−1 is

the qth imputed trajectory up to the (pK + j − 1)thsubcarrier,
i.e., S

(q)
pK+j−1

∆=
(
S

(q)
0 , S

(q)
1 , . . . , S

(q)
pK+j−1

)
. It follows that

the importance weights are then updated according to:

w
(q)
pK+j ∝ w

(q)
pK+j−1 ·f

(
YpK+j |S(q)

pK+j−1, YpK+j−1, ĤpK+j

)

(17)
To obtain f

(
YpK+j |S(q)

pK+j−1, YpK+j−1, ĤpK+j

)
in (17),

we first note that the term

f
(
YpK+j |S(q)

pK+j−1, YpK+j−1, ĤpK+j , SpK+j = am

)

is a Gaussian likelihood function with mean µ
(q)
p,j,m and

variance σ
2(q)
p,j,m, given by:

µ
(q)
p,j,m

∆=E
[
YpK+j |S(q)

pK+j−1, YpK+j−1, ĤpK+j , SpK+j =am

]

= amĤpK+j (18)

σ
2(q)
p,j,m

∆=Var
[
YpK+j |S(q)

pK+j−1,YpK+j−1,ĤpK+j , SpK+j =am

]

=σ2 (19)
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where σ2 is the variance of VpK+j as previously defined. The
function of interest, f

(
YpK+j |S(q)

pK+j−1, YpK+j−1, ĤpK+j

)
,

can then be obtained from
f

(
YpK+j |S(q)

pK+j−1, YpK+j−1, ĤpK+j , SpK+j = am

)
using

f
(
YpK+j |S(q)

pK+j−1, YpK+j−1, ĤpK+j

)
=

∑
am∈AM





f
(
YpK+j |S(q)

pK+j−1,YpK+j−1,ĤpK+j , SpK+j =am

)

·Pr
(
SpK+j = am|S(q)

pK+j−1, YpK+j−1, ĤpK+j

)




︸ ︷︷ ︸
∆
=α

(q)
p,j,m

(20)
The second term on the right hand side of (20) is the a

priori probability of symbol dp,j since SpK+j is independent
of YpK+j−1 and ĤpK+j , and {SpK+j}p,j is a Markov chain.
The weight update in (17) follows from (20), i.e.,

w
(q)
pK+j ∝ w

(q)
pK+j−1 ·

∑

am∈AM

α
(q)
p,j,m · (21)

Furthermore, α
(q)
p,j,m, defined in (20), is proportional to the

state predictive distribution via the relation:

Pr
(
SpK+j = am|S(q)

pK+j−1, YpK+j , ĤpK+j

)

=

2
664
f
(
YpK+j |S(q)

pK+j−1,YpK+j−1,ĤpK+j , SpK+j =am

)

·Pr
(
SpK+j = am|S(q)

pK+j−1, YpK+j−1, ĤpK+j

)
3
775

f(YpK+j |S(q)
pK+j−1,YpK+j−1,ĤpK+j)

=
α

(q)
p,j,mP

am∈AM

α
(q)
p,j,m

∝ α
(q)
p,j,m, ∀am ∈ AM ·

(22)
With the weight update and state predictive distribution ac-
counted for in (21) and (22), respectively, the pilot-aided non-
resampling SMC algorithm proceeds as outlined in Table II.

The estimate of the a posteriori probability of symbol
dp,j is then made in the pth estimation window for each
p ∈ [(N/K)− 1] according to:

Pr (dp,j = am|YpK+j) = Pr
(
SpK+jS

∗
pK+j−1 = am|YpK+j

)

= E
[
I
(
S

(q)
pK+jS

(q)∗
pK+j−1 = am

)
|YpK+j

]

≈ 1
WpK+j

Ψ∑
q=1

I
(
S

(q)
pK+jS

(q)∗
pK+j−1 = am

)
· w(q)

pK+j

(23)

where am ∈ AM , j = 1, . . . , K − 1, WpK+j =
Ψ∑

q=1
w

(q)
pK+j

and I (·) is the indicator function, defined as

I (X = a) =
{

1, if X = a
0, otherwise. (24)

We note that the algorithm in Table II does not consider

the normalization of importance weights
{

w
(q)
pK+j

}Ψ

q=1
since

any SMC algorithm requires only the relative contribution of
each weight w

(q)
pK+j and normalization factors do not affect

the performance of the algorithm [9]. Furthermore, all weights
are finally normalized by the factor WpK+j in the estimate of
the a posteriori probability of symbol dp,j (see (23)). The a
posteriori probabilities {Pr (dp,j = am|YpK+j)}p,j,m are then
passed to the SISO channel decoder. Following the desired

number of turbo iterations between the decoder and detector,
the SISO decoder makes a hard decision on the received
symbols. This completes the description of our proposed pilot-
aided non-resampling SMC algorithm which we refer to as
Algorithm A and summarize in Table II.

TABLE II
A NON–RESAMPLING SMC DETECTOR FOR OFDM SYSTEMS

EMPLOYING DIFFERENTIAL M–PSK MODULATION
(ALGORITHM A)

For each pair (p, q) where p ∈ [(N/K)− 1] ; q = 1, . . . , Ψ,

DO:

0. Initialization: Obtain channel estimates ĤpK+j ,j ∈ [K − 1] and initialize
all importance weights to w

(q)
−1 = 1.

The following steps are implemented at the jth index for each pair (p, q),
j ∈ [K − 1]:

1. For each am ∈ AM , compute the following using the results in (18)–(20):

Pr(SpK+j = am|S(q)
pK+j−1, YpK+j , ĤpK+j)

∝ f(YpK+j |S(q)
pK+j−1, YpK+j−1, ĤpK+j , SpK+j = am)

·Pr(SpK+j = am|S(q)
pK+j−1)

=
1

πσ
2(q)
p,j,m

exp

8
<
:−

‖YpK+j − µ
(q)
p,j,m‖2

σ
2(q)
p,j,m

9
=
;·Pr(SpK+j = am|S(q)

pK+j−1)

| {z }
∆
= α

(q)
p,j,m

2. Impute the symbol S
(q)
pK+j ∈ AM with probability:

Pr(SpK+j = am|S(q)
pK+j−1, YpK+j , ĤpK+j) ∝ α

(q)
p,j,m

3. Compute the importance weight recursively:

w
(q)
pK+j = w

(q)
pK+j−1 ·

P
am∈AM

α
(q)
p,j,m

4. IF j = K − 1 ∀(p, q) STOP. ELSE return to 1.

END

Unlike conventional SMC methods, Algorithm A does not
resample at any subcarrier. Instead, we allow SIS to proceed
for all Ψ samplers, and for the N/K sub-trellises of each
sampler. This is because the termination states help to re-
tard degeneracy and enhance trajectory diversity, which in
turn allows us to circumvent resampling. This significantly
reduces the complexity of the proposed non-resampling SMC
algorithm. This non-resampling framework also allows us to
parallelize computations greatly, since (i) the Ψ samplers are
strictly independent now that resampling is not invoked, and
(ii) when termination states are known, which is the case
with pilot-aided channel estimation, all sub-trellises in the qth

sampler are independent. The combined effect is that the pth

sub-trellis of the qth trajectory is independent of all others.
A disadvantage of the preceding algorithm is its reliance on

an external channel estimator. This is because the algorithm
requires channel estimates {_

HpK+j}p,j in all its necessary
computations in (18) to (22). Since accurate channel estimates

yield more reliable imputations
{

S
(q)
pK+j

}Ψ

q=1
, and vice versa,

the algorithm’s performance depends on the quality of the set
{_

HpK+j}p,j used in initialization. Furthermore, the receiver’s
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overall complexity is increased by the channel estimator.
To overcome these disadvantages, we introduce in the next
subsection, a non-resampling SMC detector that allows us to
estimate the a posteriori symbol probabilities of dp,j as well as
the a posteriori mean and covariance of the channel. We refer
to this alternative approach as Algorithm B. The motivation
for further employing periodic termination is that it allows us
to skip resampling, thus yielding a low-complexity detector
that is independent of other receiver components.

D. Non-Resampling SMC Algorithm without Pilot-Aided
Channel Estimation: Algorithm B

We first assume that the channel impulse response h, of
length L, has an a priori Gaussian distribution with mean
vector ε−1 and covariance matrix Σ−1. Following (10), the
sample for subcarrier pK + j is drawn from the distribution
Pr

(
SpK+j |S(q)

pK+j−1, YpK+j

)
, and consequently the impor-

tance weights are updated according to:

w
(q)
pK+j ∝ w

(q)
pK+j−1 · f

(
YpK+j |S(q)

pK+j−1, YpK+j−1

)
·

(25)

To obtain f
(
YpK+j |S(q)

pK+j−1, YpK+j−1

)
, we first note the

following:

f
(
YpK+j |S(q)

pK+j−1, YpK+j−1

)

∝ ∑
am∈AM

f
(
YpK+j |S(q)

pK+j−1, YpK+j−1, SpK+j = am

)

·Pr
(
SpK+j = am|S(q)

pK+j−1, YpK+j−1

)

=
∑

am∈AM





f
(
YpK+j |S(q)

pK+j−1, YpK+j−1, SpK+j =am

)

·Pr
(
SpK+j = am|S(q)

pK+j−1

)




︸ ︷︷ ︸
∆
= α

(q)
p,j,m

(26)
The term f

(
YpK+j |S(q)

pK+j−1, YpK+j−1, SpK+j = am

)
in

(26) is Gaussian since it can be written as an integral of a
Gaussian density with respect to another Gaussian density
[13]:

f
(
YpK+j |S(q)

pK+j−1, YpK+j−1, SpK+j = am

)

=
∫

f
(
YpK+j |S(q)

pK+j−1, YpK+j−1, SpK+j = am, h
)
·

f
(
h|S(q)

pK+j−1, YpK+j−1

)
dh

(27)
The mean µ

(q)
p,j,m and variance σ

2(q)
p,j,m of

f
(
YpK+j |S(q)

pK+j−1, YpK+j−1, SpK+j = am

)
are given

by

µ
(q)
p,j,m

∆= E
[
YpK+j |S(q)

pK+j−1, YpK+j−1, SpK+j = am

]

= amwH
f (pK + j)ε(q)

pK+j−1
(28)

σ
2(q)
p,j,m

∆= Var
[
YpK+j |S(q)

pK+j−1, YpK+j−1, SpK+j = am

]

= σ2 + wH
f (pK + j)Σ(q)

pK+j−1wf (pK + j)
(29)

where wf (i) ∆=
(
1, e(−j 2πi

N ), . . . , e(−j
2πi(L−1)

N )
)H

. For
subcarrier pK + j, (28) and (29) make use of the chan-
nel’s most recent mean εpK+j−1 and covariance ΣpK+j−1

instead of {ĤpK+j}p,j in (18) and (19). These most re-
cent estimates are obtained from the preceding subcar-
rier. Using a similar approach as (22), it is easy to see
that α

(q)
p,j,m, defined in (26), is proportional to the state

predictive distribution Pr
(
SpK+j |S(q)

pK+j−1, YpK+j

)
, i.e.,

Pr
(
SpK+j = am|S(q)

pK+j−1, YpK+j

)
∝ α

(q)
p,j,m.

We now make use of the one-step Kalman filter to update
the a posteriori mean and covariance of the channel. Assume
that in the qth trajectory, the imputation for subcarrier pK +
j is aimputed, i.e., S

(q)
pK+j = aimputed. We then update the

channel mean ε
(q)
pK+j and covariance Σ(q)

pK+j using

ε
(q)
pK+j = ε

(q)
pK+j−1 +

YpK+j − µ
(q)
p,j,imputed

σ
2(q)
p,j,imputed

χ (30)

Σ(q)
pK+j = Σ(q)

pK+j−1 −
1

σ
2(q)
p,j,imputed

χχT (31)

where χ
∆= Σ(q)

pK+j−1wf (pK+j)a∗imputed. With the predictive
distribution and updating of importance weights and channel
statistics accounted for, Algorithm B is ready to proceed
according to Table III. We see that (30) and (31) are the
dominant computations needed in this algorithm. Even so,
each term in these equations is easily obtainable.

As in Algorithm A, the a posteriori probability of symbol
dp,j is made in the pth estimation window for each p ∈
[(N/K)− 1] using (23). Similarly, the symbol a posteriori
probabilities are passed to the SISO channel decoder which
makes a hard decision on the received symbols following a
prescribed number of turbo iterations.

E. Computational Complexity of Algorithm A and
Algorithm B

In this subsection, we present a brief comparison of the
computational complexity of Algorithms A and B. Specif-
ically, we compute the number of multiplications and im-
putations needed for each (p, q, j) , p ∈ [(N/K)− 1] , j ∈
[K − 1] , q = 1, . . . , Ψ. The result of this investigation is
shown in Table IV. It is seen that for a given channel length
L, the number of multiplications in both algorithms are linear
with respect to M . In particular, the dependence of Algorithm
B on L is a result of the one-step Kalman filter used to
update the a posteriori mean and covariance of the channel. It
follows from Table IV that the total number of multiplications
needed for Algorithm A and Algorithm B from start to finish is
3MNΨ and NΨ

{
M

(
(L + 1)2 + 1

)
+ 4L2

}
, respectively.

Further, the total number of imputations needed for both
algorithms is NΨ.

IV. SIMULATION RESULTS

In this section, simulation results are provided to show the
performance of the non-resampling SMC detectors for the
coded OFDM system described in Section III. These non-
resampling SMC detectors, which execute Algorithm A or
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TABLE III
A NON–RESAMPLING SMC DETECTOR FOR OFDM SYSTEMS

EMPLOYING DIFFERENTIAL M–PSK MODULATION
(ALGORITHM B)

For each pair (p, q) where p ∈ [(N/K)− 1] ; q = 1, . . . , Ψ,
DO:

0. Initialization: Draw initial samples of the channel vector from h ∼
NC(ε−1, Σ−1). All importance weights are initialized as w

(q)
−1 = 1.

The following steps are implemented at the jth index for each pair (p, q),
j ∈ [K − 1]:

1. For each am ∈ AM , compute the following using results in (26)–(29):

Pr(SpK+j = am|S(q)
pK+j−1, YpK+j)

∝ f(YpK+j |S(q)
pK+j−1, YpK+j−1, SpK+j = am)

·Pr(SpK+j = am|S(q)
pK+j−1)

=
1

πσ
2(q)
p,j,m

exp

8
<
:−

‖YpK+j−µ
(q)
p,j,m‖2

σ
2(q)
p,j,m

9
=
;·Pr(SpK+j =am|S(q)

pK+j−1)

| {z }
∆
= α

(q)
p,j,m

2. Impute the symbol S
(q)
pK+j ∈ AM with probability:

Pr(SpK+j = am|S(q)
pK+j−1, YpK+j , ĤpK+j) ∝ α

(q)
p,j,m

3. Compute the importance weight recursively:
w

(q)
pK+j = w

(q)
pK+j−1 ·

P
am∈AM

α
(q)
p,j,m

4. Update the a posteriori mean and covariance of the channel using one–step
Kalman filter updates. If S

(q)
pK+j = aimputed:

ε
(q)
pK+j = ε

(q)
pK+j−1 +

YpK+j − µ
(q)
p,j,imputed

σ
2(q)
p,j,imputed

χ

Σ
(q)
pK+j = Σ

(q)
pK+j−1 −

1

σ
2(q)
p,j,imputed

χχT

where χ
∆
= Σ

(q)
pK+j−1wf (pK + j)a∗imputed

5. IF j = K − 1, ∀(p, q) STOP. ELSE return to 1.

END

Algorithm B, are denoted as NR-SMC(A) and NR-SMC(B),
respectively. The traditional SMC detector that is based on
both SIS and resampling is also considered and is repre-
sented as T-SMC. Similar to the NR-SMC detectors, the T-
SMC detector can employ either pilot-aided estimation or the
one-step Kalman filter to obtain channel statistics. The T-
SMC detector that uses pilot-aided estimation (respectively,
Kalman filter updates) is denoted as T-SMC(A) (respectively,
T-SMC(B)). The only difference between the corresponding
NR-SMC and T-SMC algorithms lies in the resampling step
present in the T-SMC detectors. In the T-SMC(A) detector,
this resampling step is invoked between steps 3 and 4 in
Table II. The T-SMC(B) detector, on the other hand, carries
out resampling between steps 4 and 5 in Table III. Therefore,
any difference in performance between T-SMC and NR-SMC
may be attributed solely to the resampling step. In this paper,
we use the deterministic resampling scheme of [9] at every
5th subcarrier.

We restrict modulation to the case where M = 4, i.e.,
QPSK. A channel bandwidth of 800 kHz is divided into N =

TABLE IV
COMPARISON OF COMPUTATIONAL COMPLEXITY OF

ALGORITHM A AND ALGORITHM B FOR A GIVEN TRIPLET
(p, q, j)

Algorithm A Algorithm B

Number of multiplica-
tions per (p, q, j)

3M M
�
(L + 1)2 + 1

�
+ 4L2

Number of imputations
per (p, q, j)

1 1

64 sub-channels. To make the tones orthogonal to each other, a
symbol duration of 80µs and an additional 20µs guard interval
is used to provide protection from ISI due to multipath delay
spread. This results in a total block length of 100µs and a
sub-channel symbol rate of 10 kbits per second. Channels with
uniform (UNI), typical urban (TU) and hilly terrain (HT) delay
profiles [17], and a Doppler frequency of 40 Hz are used to
represent various mobile environments. It is also assumed that
the coefficients of the channel’s tap delay line are wide-sense-
stationary, narrowband, complex, Gaussian random processes
with uncorrelated scattering (WSSUS) [21] of band-limited
Doppler power spectral density following Jakes’ model [22].

We first analyze the effect of varying termination periods
on the performance of our proposed NR-SMC detector. It is
intuitive that a more frequent trellis termination may improve
performance, at the expense of increased overheads. We con-
sider different termination periods, subject to the constraint
that K divides N = 64 and overheads should not exceed
25%, i.e., K ∈ {32, 16, 8, 4}. We also consider the case when
the differential phase trellis is not terminated periodically, i.e.,
K = ∞. This coded OFDM system uses a convolutional
outer channel encoder of rate half and constraint length 5
with generators [23 35]8. The SISO channel decoder is the
maximum a posteriori (MAP) probability algorithm of [23].
Signals are transmitted through a UNI channel of delay spread
τd = 1.06µs and channel order L = 3; although the latter is
assumed unknown to the detector. This detector, employing
Ψ = 50 Monte Carlo samples at every recursion, is then
required to trace five fading coefficients. When K = ∞,
the channel cannot be estimated using pilots since known
symbols are not transmitted at any subcarrier, in which case
Algorithm A cannot be applied. Instead, we use Algorithm
B for all K ∈ {∞, 32, 16, 8, 4} so that a fair comparison
of performance can be made among different values of K.
For each K, we ensure that the user’s coded symbols occupy
a single OFDM time slot. The result of this investigation
is shown in Fig. 4. It is seen that when the NR-SMC(B)
detector is used, performance improves as K decreases. We
also include the performance of the T-SMC(B) detector for
K ∈ {∞, 8, 4}. When K = ∞, the NR-SMC(B) detector
yields a performance loss of roughly 3.5 dB when compared
to its traditional counterpart. This is in contrast to K = 8
and K = 4 where gains of approximately 0.7 dB and 2
dB are observed, respectively. These results highlight the fact
that circumventing resampling is beneficial at some values
of K, while detrimental at others. This is because a large
K yields a sub-trellis that still has a considerable number
of possible paths through it. For Ψ = 50, it is unlikely
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Fig. 4. Effect of varying termination periods on performance of NR–SMC(B)
Detector for convolutional–coded OFDM propagated over a UNI channel with
τd = 1.06µs

that a good proportion of paths would be traced and this
means weight degeneracy still exists. When resampling is
circumvented, the inherent degeneracy is not addressed and
it therefore propagates quickly from one index to the next,
yielding poor estimates. The converse is true for lower values
of K.

We also use the preceding system to substantiate the claim
that termination states help to retard weight degeneracy. Equa-
tion (12), which measures the effective sample size Ψ̄i at
subcarrier i, also provides a convenient way of measuring
weight degeneracy. Therefore, we use (12) to calculate Ψ̄i

for the first 16 subcarriers of the NR-SMC(B) detector when
K ∈ {∞, 8, 4}. The result of this investigation is shown in
Fig. 5. It can be seen that Ψ̄i drops quickly for K = ∞, and is
always smaller than Ψ̄i for any K ∈ {8, 4}. Furthermore, the
importance weights degenerate the least when K = 4 since
the effective sample size is greater than any K ∈ {∞, 8}. In
addition, the smallest value that Ψ̄i assumes for K = 4 is
approximately 60% of the maximum possible value Ψ. These
results suggest that more information is available for K = 4
since there are more effective samples, and this leads to better
performance as seen previously in Fig. 4.

The performance of the traditional and non-resampling
SMC frameworks is also compared. We maintain the afore-
mentioned outer channel encoder and set the termination pe-
riod to K = 4, i.e., 25% overheads. As mentioned earlier, the
value of K is a tradeoff between performance and overheads.
Hence, the exact value chosen is dictated by the particular
application. We justify the choice of K = 4 by noting that
in the OFDM-based IEEE 802.11a standard for wireless local
area networks, each OFDM data symbol employs N = 64
subcarriers, 52 of which are used for data or pilot symbols.
There are also 12 null subcarriers with one in the center
and the other 11 on the two ends of the frequency band.
Therefore, the IEEE 802.11a standard operates with at least
18.75% overheads regardless of whether pilots are used or
not. Since detectors T-SMC(B) and NR-SMC(B) do not have
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Fig. 5. Effective sample size for first 16 subcarriers of the NR–SMC(B)
detector when K ∈ {∞, 8, 4}.

prior knowledge of the channel, the initial mean vector ε−1

and covariance matrix Σ−1 of h are initialized to an L-
by-1 zero vector and 1000IL respectively, where IL is the
L-by-L identity matrix. Note that the large entries in the
main diagonal of Σ−1 follow from the lack of prior channel
knowledge. The required number of turbo iterations between
any detector and the MAP decoder is set to 4, and the bit-
error-rate (BER) of the information bits is calculated based
on observations over a single OFDM symbol duration. The
results of this investigation are shown in Fig. 6. It is seen
that for K = 4, the performance of the NR-SMC(B) detector
offers an asymptotic gain of approximately 2 dB over the T-
SMC(B) detector. Similarly, the NR-SMC(A) detector offers
a gain of approximately 1 dB over the T-SMC(A) detector.
Furthermore, the known channel bound, which is obtained
by providing perfect channel state information (CSI) to the
NR-SMC(A) detector, is approximately 0.5 dB from the
asymptotic performance of the NR-SMC(A) detector. These
simulation results show that for a fixed algorithm, the NR-
SMC detector offers an improvement in performance over the
T-SMC detector when K = 4. The results also suggest that for
a given detector (T-SMC or NR-SMC), Algorithm A performs
better than Algorithm B.

An LDPC-coded OFDM system is also investigated. In this
paper, the LDPC code is of rate half and encodes a block of
624 information bits. The column weight of the parity check
matrix is 3 and the row weights are randomized. Care is taken
to ensure that the equivalent factor graph representation of
the code has no cycles less than or equal to four. The SISO
decoder is the message-passing algorithm [24], which iterates
at most 100 times. With termination period K set to 4, the
resulting OFDM system is one in which the user’s coded
symbols occupy 13 consecutive time slots. These symbols
are sent through the same UNI channel as in the previous
investigation, and a sampling grid spanning five consecutive
time slots t − 2 to t + 2 estimates the channel at time t.
The phase of each pilot at any time t is made to cycle
through the phases a1, a2, a3 and a4 in sequence, though K
is not varied from one OFDM symbol to the next. Since
these pilots are made to estimate the channel as well, the NR-
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Fig. 6. Comparison of performance between T–SMC and NR–SMC Detectors
for convolutional–coded OFDM propagated over a UNI channel with τd =
1.06µs.
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Fig. 7. Effect of number of turbo iterations on performance of NR–SMC(A)
detector for LDPC–coded OFDM propagated over a UNI channel with τd =
1.06µs.

SMC(A) detector is employed. The performance of this system
is reflected in Fig. 7. As expected, the gain in performance
diminishes with increasing turbo iterations (not to be confused
with iterations that occur within the SISO decoder) and 5
turbo iterations yield a performance that is less than 0.5dB
from the known UNI channel bound. The effect of other
mobile environments on performance is also investigated and
in this paper, HT and TU delay profiles of τd = 5.04µs and
τd = 1.06µs, respectively, are employed. The number of turbo
iterations is maintained at 5 and Fig. 8 shows the performance
of the UNI, TU, and HT profiles. It is observed that the delay
profiles perform consistently close to their respective channel
bounds.
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Fig. 8. Performance of NR–SMC(A) detector for LDPC–coded OFDM in
HT (τd = 5.04µs), TU (τd = 1.06µs), and UNI (τd = 1.06µs) mobile
environments with number of turbo iterations set to five.

V. CONCLUSIONS

In this paper, we first study the effects of periodic termi-
nation of the state equation of a dynamic system. It is seen
that periodic termination causes the trellis representation of
the state equation to become a series of sub-trellises of much
shorter length. This in turn enhances trajectory diversity and
retards weight degeneracy. With these problems of traditional
SMC frameworks mitigated, we then propose circumventing
the resampling step, which allows us to achieve highly paral-
lelized computation.

The non-resampling SMC framework is then applied to
symbol detection in a coded OFDM system employing peri-
odically terminated differential QPSK modulation. Simulation
results are presented for convolutional and LDPC-coded sys-
tems and these results suggest the promising performance of
the non-resampling SMC detector.
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