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Abstract—Unmanned aerial vehicles (UAVs) are capable of
serving as aerial base stations (BSs) for providing both cost-
effective and on-demand wireless communications. This arti-
cle investigates dynamic resource allocation of multiple UAVs
enabled communication networks with the goal of maximizing
long-term rewards. More particularly, each UAV communicates
with a ground user by automatically selecting its communicating
user, power level and subchannel without any information ex-
change among UAVs. To model the dynamics and uncertainty in
environments, we formulate the long-term resource allocation
problem as a stochastic game for maximizing the expected
rewards, where each UAV becomes a learning agent and each
resource allocation solution corresponds to an action taken by
the UAVs. Afterwards, we develop a multi-agent reinforcement
learning (MARL) framework that each agent discovers its best
strategy according to its local observations using learning. More
specifically, we propose an agent-independent method, for which
all agents conduct a decision algorithm independently but share
a common structure based on Q-learning. Finally, simulation
results reveal that: 1) appropriate parameters for exploitation
and exploration are capable of enhancing the performance of
the proposed MARL based resource allocation algorithm; 2)
the proposed MARL algorithm provides acceptable performance
compared to the case with complete information exchanges
among UAVs. By doing so, it strikes a good tradeoff between
performance gains and information exchange overheads.

Index Terms—Dynamic resource allocation, multi-agent rein-
forcement learning (MARL), stochastic games, UAV communica-
tions

I. INTRODUCTION

Aerial communication networks, encouraging new inno-
vative functions to deploy wireless infrastructure, have re-
cently attracted increasing interests for providing high network
capacity and enhancing coverage [2], [3]. Unmanned aerial
vehicles (UAVs), also known as remotely piloted aircraft
systems (RPAS) or drones, are small pilotless aircraft that are
rapidly deployable for complementing terrestrial communica-
tions based on the 3rd Generation Partnership Project (3GPP)
LTE-A (Long term evolution-advanced) [4]. In contrast to
channel characteristics of terrestrial communications, the chan-
nels of UAV-to-ground communications are more probably
line-of-sight (LoS) links [5], which is beneficial for wireless
communications.

In particular, UAVs based different aerial platforms that for
providing wireless services have attracted extensive research
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and industry efforts in terms of the issues of deployment,
navigation and control [6]–[8]. Nevertheless, resource alloca-
tion such as transmit power, serving users and subchannels,
as a key communication problem, is also essential to further
enhance the energy-efficiency and coverage for UAV-enabled
communication networks.

A. Prior Works

Compared to terrestrial BSs, UAVs are generally faster to
deploy and more flexible to configure. The deployment of
UAVs in terms of altitude and distance between UAVs was
investigated for UAV-enabled small cells in [9]. In [10], a
three-dimensional (3D) deployment algorithm based on circle
packing is developed for maximizing the downlink coverage
performance. Additionaly, a 3D deployment algorithm of a
single UAV is developed for maximizing the number of
covered users in [11]. By fixing the altitudes, a successive UAV
placement approach was proposed to minimize the number
of UAVs required while guaranteeing each ground user to be
covered by at least one UAV in [12]. Moreover, 3D drone-cell
deployments for mitigating congestion of cellular networks
was investigated in [13], where the 3D placement problem
was solved by designing the altitude and the two-dimensional
location, separately.

Despite the deployment optimization of UAVs, trajectory
designs of UAVs for optimizing the communication perfor-
mance have attracted tremendous attentions, such as in [14]–
[16]. In [14], the authors considered one UAV as a mobile relay
and investigated the throughput maximization problem by
optimizing power allocation and the UAV’s trajectory. Then, a
designing approach of the UAV’s trajectory based on succes-
sive convex approximation (SCA) techniques was proposed in
[14]. By transforming the continuous trajectory into a set of
discrete waypoints, the authors in [15] investigated the UAV’s
trajectory design with minimizing the mission completion time
in a UAV-enabled multicasting system. Additionally, multiple-
UAV enabled wireless communication networks (multi-UAV
networks) were considered in [16], where a joint design for
optimizing trajectory and resource allocation was studied with
the goal of guaranteeing fairness by maximizing the minimum
throughput among users. In [17], the authors proposed a joint
of subchannel assignment and trajectory design approach to
strike a tradeoff between the sum rate and the delay of sensing
tasks for a multi-UAV aided uplink single cell network.

Due to the versatility and manoeuvrability of UAVs, human
intervention becomes restricted for UAVs’ control design.
Therefore, machine learning based intelligent control of UAVs
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is desired for enhancing the performance for UAV-enabled
communication networks. Neural networks based trajectory
designs were considered from the perspective of UAVs’ manu-
factured structures in [18] and [19]. Furthermore, an UAV rout-
ing designing approach based on reinforcement learning was
developed in [20]. Regarding UAVs enabled communication
networks, a weighted expectation based predictive on-demand
deployment approach of UAVs was proposed to minimize the
transmit power in [21], where Gaussian mixture model was
used for building data distributions. In [22], the authors studied
the autonomous path planning of UAVs by jointly taking
energy efficiency, latency and interference into consideration,
in which an echo state networks based deep reinforcement
learning algorithm was proposed. In [23], the authors pro-
posed a liquid state machine (LSM) based resource allocation
algorithm for cache enabled UAVs over LTE licensed and
unlicensed bands. Additionally, a log-linear learning based
joint channel-slot selection algorithm was developed for multi-
UAV networks in [24].

B. Motivation and Contributions

As discussed above, machine learning is a promising and
power tool to provide autonomous and effective solutions
in an intelligent manner to enhance the UAV-enabled com-
munication networks. However, most research contributions
focus on the deployment and trajectory designs of UAVs in
communication networks, such as [21]–[23]. Though resource
allocation schemes such as transmit power and subchannels
were considered for UAV-enabled communication networks in
[16] and [17], the prior studies focused on time-independent
scenarios. That is the optimization design is independent for
each time slot. Moreover, for time-dependent scenarios, [23]
and [24] investigated the potentials of machine learning based
resource allocation algorithms. However, most of the proposed
machine learning algorithms mainly focused on single UAV
scenarios or multi-UAV scenarios by assuming the availability
of complete network information for each UAV. In practice, it
is non-trivial to obtain perfect knowledge of dynamic environ-
ments due to the high movement speed of UAVs [25], [26],
which imposes formidable challenges on the design of reliable
UAV-enabled wireless communications. Besides, most existing
research contributions focus on centralized approaches, which
makes modeling and computational tasks become challeng-
ing as the network size continues to increase. Multi-agent
reinforcement learning (MARL) is capable of providing a
distributed perspective on the intelligent resource management
for UAV-enabled communication networks especially when
these UAVs only have individual local information.

The main benefits of MARL are: 1) agents consider indi-
vidual application-specific nature and environment; 2) local
interactions between agents can be modeled and investigated;
3) difficulties in modelling and computation can be handled in
distributed manners. The applications of MARL for cognitive
radio networks were studied in [27] and [28]. Specifically, in
[27], the authors focused on the feasibilities of MARL based
channel selection algorithms for a specific scenario with two
secondary users. A real-time aggregated interference scheme

based on MARL was investigated in [28] for wireless re-
gional area networks (WRANs). Moreover, in [29], the authors
proposed a MARL based channel and power level selection
algorithm for device-to-device (D2D) pairs in heterogeneous
cellular networks. The potential of machine learning based
user clustering for mmWave-NOMA networks was presented
in [30]. Therefore, invoking MARL to UAV-enabled commu-
nication networks provides a promising solution for intelligent
resource management. Due to the high mobility and adaptive
altitude, to the best of our knowledge, multi-UAV networks
are not well-investigated, especially for the resource allocation
from the perspective of MARL. However, it is challenging
for MARL based multi-UAV networks to specify a suitable
objective and strike a exploration-exploitation tradeoff.

Motivated by the features of MARL and UAVs, this article
aims to develop a MARL framework for multi-UAV networks.
In [1], we introduced a basic MARL inspired resource alloca-
tion framework for UAV networks and presented some initial
results under a specific system set-up. The work of this article
is an improvement and an extension on the studies in [1],
we provide a detailed description and analysis on the benefits
and limits on modeling resource allocation of the considered
multi-UAV network. More specifically, we consider a multi-
UAV enabled downlink wireless network, in which multiple
UAVs try to communicate with ground users simultaneously.
Each UAV flies according to the predefined trajectory. It
is assumed that all UAVs communicate with ground users
without the assistance of a central controller. Hence, each
UAV can only observe its local information. Based on the
proposed framework, our major contributions are summarized
as follows:

1) We investigate the optimization problem of maximizing
long-term rewards of multi-UAV downlink networks
by jointly designing user, power level and subchannel
selection strategies. Specifically, we formulate a quality
of service (QoS) constrained energy efficiency function
as the reward function for providing a reliable com-
munication. Because of the time-dependent nature and
environment uncertainties, the formulated optimization
problem is non-trivial. To solve the challenging problem,
we propose a learning based dynamic resource allocation
algorithm.

2) We propose a novel framework based on stochastic game
theory [31] to model the dynamic resource allocation
problem of multi-UAV networks, in which each UAV
becomes a learning agent and each resource allocation
solution corresponds to an action taken by the UAVs.
Particularly, in the formulated stochastic game, the ac-
tions for each UAV satisfy the properties of Markov
chain [32], that is the reward of a UAV is only depen-
dant on the current state and action. Furthermore, this
framework can be also applied to model the resource
allocation problem for a wide range of dynamic multi-
UAV systems.

3) We develop a MARL based resource allocation algo-
rithm for solving the formulated stochastic game of
multi-UAV networks. Specifically, each UAV as an in-
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Fig. 1: Illustration of multi-UAV communication networks.

dependent learning agent runs a standard Q-learning
algorithm by ignoring the other UAVs, and hence in-
formation exchanges between UAVs and computational
burdens on each UAV are substantially reduced. Ad-
ditionally, we also provide a convergence proof of the
proposed MARL based resource allocation algorithm.

4) Simulation results are provided to derive parameters for
exploitation and exploration in the ε-greedy method over
different network setups. Moreover, simulation results
also demonstrate that the proposed MARL based re-
source allocation framework for multi-UAV networks
strikes a good tradeoff between performance gains and
information exchange overheads.

C. Organization

The rest of this article is organized as follows. In Section
II, the system model for downlink multi-UAV networks is
presented. The problem of resource allocation is formulated
and a stochastic game framework for the considered multi-
UAV network is presented in Section III. In Section IV, a
Q-learning based MARL algorithm for resource allocation is
designed. Simulation results are presented in Section V, which
is followed by the conclusions in Section VI.

II. SYSTEM MODEL

Consider a multi-UAV downlink communication network as
illustrated in Fig. 1 operating in a discrete-time axis, which
consists of M single-antenna UAVs and L single-antenna
users, denoted by M = {1, · · · ,M} and L = {1, · · · , L},
respectively. The ground users are randomly distributed in the
considered disk with radius rd. As shown in Fig. 1, multiple
UAVs fly over this region and communicate with ground users
by providing direct communication connectivity from the sky
[2]. The total bandwidth W that the UAVs can operate is
divided into K orthogonal subchannels, denoted by K =
{1, · · · ,K}. Note that the subchannels occupied by UAVs may
overlap with each other. Moreover, it is assumed that UAVs
fly autonomously without human intervention based on pre-
programmed flight plans as in [33]. That is the trajectories

of UAVs are predefined based on the pre-programmed flight
plans. As shown in Fig. 1, there are three UAVs flying on
the considered region based on the pre-defined trajectories,
respectively. This article focuses on the dynamic design of
resource allocation for multi-UAV networks in term of user,
power level and subchannel selections. Additionally, assuming
that all UAVs communicate without the assistance of a central
controller and have no global knowledge of wireless com-
munication environments. In other words, the channel state
information (CSI) between a UAV and users are known locally.
This assumption is reasonable in practical due to the mobilities
of UAVs, which is similar to the research contributions such
as in [25], [26].

A. UAV-to-Ground Channel Model

In contrast to the propagation of terrestrial communications,
the air-to-ground (A2G) channel is highly dependent on the
altitude, elevation angle and the type of the propagation
environment [4], [5], [7]. In this article, we investigate the
dynamic resource allocation problem for multi-UAV networks
under two types of UAV-to-ground channel models:

1) Probabilistic Model: As discussed in [4], [5], UAV-to-
ground communication links can be modeled by a probabilistic
path loss model, in which the LoS and non-LoS (NLoS) links
can be considered separately with different probabilities of
occurrences. According to [5], at time slot t, the probability
of having a LoS connection between UAV m and a ground
user l is given by

PLoS(t) =
1

1 + a exp(−b sin−1( H
dm,l(t)

)− a)
, (1)

where a and b are constants that depend on the environment.
dm,l denotes the distance between UAV m and user l and H
denotes the altitude of UAV m. Furthermore, the probability
of have NLoS links is PNLoS(t) = 1− PLoS(t).

Accordingly, in time slot t, the LoS and NLoS pathloss from
UAV m to the ground user l can be expressed as

PLLoS
m,l = LFS

m,l(t) + ηLoS, (2a)

PLNLoS
m,l = LFS

m,l(t) + ηNLoS, (2b)

where LFS
m,l(t) denotes the free space pathloss with LFS

m,l(t) =

20 log(dm,l(t)) + 20 log(f) + 20 log( 4π
c ), and f is the carrier

frequency. Furthermore, ηLoS and ηNLoS are the mean addi-
tional losses for LoS and NLoS, respectively. Therefore, at
time slot t, the average pathloss between UAV m and user l
can be expressed as

Lm,l(t) = PLoS(t) · PLLoS
m,l (t) + PNLoS(t) · PLNLoS

m,l (t).
(3)

2) LoS Model: As discussed in [14], the LoS model
provides a good approximation for practical UAV-to-ground
communications. In the LoS model, the path loss between a
UAV and a ground user relies on the locations of the UAV and
the ground user as well as the type of propagation. Specifically,
under the LoS model, the channel gains between the UAVs
and the users follow the free space path loss model, which
is determined by the distance between the UAV and the user.
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Therefore, at time slot t, the LoS channel power gain from
the m-th UAV to the l-th ground user can be expressed as

gm,l(t) = β0d
−α
m,l(t) =

β0(
‖vl − um(t)‖2 +H2

m

)α
2
, (4)

where um(t) = (xm(t), ym(t)), and (xm(t), ym(t)) denotes
the location of UAV m in the horizontal dimension at time
slot t. Correspondingly, vl = (xl, yl) denotes the location of
user l. Furthermore, β0 denotes the channel power gain at the
reference distance of d0 = 1 m, and α ≥ 2 is the path loss
exponent.

B. Signal Model
In the UAV-to-ground transmission, the interference to each

UAV-to-ground user pair is created by other UAVs operating
on the same subchannel. Let ckm(t) denote the indicator of
subchannel, where ckm(t) = 1 if subchannel k occupied by
UAV m at time slot t; ckm(t) = 0, otherwise. It satisfies∑

k∈K

ckm(t) ≤ 1. (5)

That is each UAV can only occupy a single subchannel for
each time slot. Note that the number of states and actions
would becomes huge with no limits on subchannel allocations,
which results in extremely heavy complexities in learning and
storage. In this case, modeling of the cooperation between
the UAVs and the approximation approaches for the learning
process are required to be introduced and treated carefully. In-
tegrating more sophisticated subchannel allocation approaches
into the learning process may be considered in future. Let
alm(t) be the indicator of users. alm(t) = 1 if user l served
by UAV m in time slot t; alm(t) = 0, otherwise. Therefore,
the observed signal-to-interference-plus-noise ratio (SINR) for
a UAV-to-ground user communication between UAV m and
user l over subchannel k at time slot t is given by

γkm,l(t) =
Gkm,l(t)a

l
m(t)ckm(t)Pm(t)

Ikm,l(t) + σ2
, (6)

where Gkm,l(t) denotes the channel gain between UAV m
and user l over subchannel k at time slot t. Pm(t) de-
notes the transmit power selected by UAV m at time slot
t. Ikm,l(t) is the interference to UAV m with Ikm,l(t) =∑
j∈M,j 6=mG

k
j,l(t)c

k
m(t)Pj(t). Therefore, at any time slot t,

the SINR for UAV m can be expressed as

γm(t) =
∑
l∈L

∑
k∈K

γkm,l(t). (7)

In this article, discrete transmit power control is adopted
at UAVs [34]. The transmit power values by each UAV
to communicate with its respective connected user can be
expressed as a vector P = {P1, · · · , PJ}. For each UAV m,
we define a binary variable pjm(t), j ∈ J = {1, · · · , J}.
pjm(t) = 1, if UAV m selects to transmit at a power level Pj
at time slot t; and pjm(t) = 0, otherwise. Note that only one
power level can be selected at each time slot t by UAV m, we
have ∑

j∈J
pjm(t) ≤ 1,∀m ∈M. (8)

As a result, we can define a finite set of possible power
level selection decisions made by UAV m, as follows.

Pm = {pm(t) ∈ P|
∑
j∈J

pjm(t) ≤ 1}, ∀m ∈M. (9)

Similarly, we also define finite sets of all possible subchannel
selection and user selection by UAV m, respectively, which
are given as follows:

Cm ={cm(t) ∈ K|
∑
k∈K

ckm(t) ≤ 1},∀m ∈M, (10)

Am ={am(t) ∈ L|
∑
l∈L

alm(t) ≤ 1},∀m ∈M. (11)

To proceed further, we assume that the considered multi-
UAV network operates on a discrete-time basis where the
time axis is partitioned into equal non-overlapping time in-
tervals (slots). Furthermore, the communication parameters
are assumed to remain constant during each time slot. Let
t denote an integer valued time slot index. Particularly, each
UAV holds the CSI of all ground users and decisions for a
fixed time interval Ts ≥ 1 slots, which is called decision
period. We consider the following scheduling strategy for the
transmissions of UAVs: Any UAV is assigned a time slot t
to start its transmission and must finish its transmission and
select the new strategy or reselect the old strategy by the end
of its decision period, i.e., at slot t + Ts. We also assume
that the UAVs do not know the accurate duration of their stay
in the network. This feature motivates us to design an on-
line learning algorithm for optimizing the long-term energy-
efficiency performance of multi-UAV networks.

III. STOCHASTIC GAME FRAMEWORK FOR MULTI-UAV
NETWORKS

In this section, we first describe the optimization problem
investigated in this article. Then, to model the uncertainty of
stochastic environments, we formulate the problem of joint
user, power level and subchannel selections by UAVs to be a
stochastic game.

A. Problem Formulation

Note that from (6) to achieve the maximal throughput, each
UAV transmits at a maximal power level, which, in turn,
results in increasing interference to other UAVs. Therefore,
it is reasonable to consider the tradeoff between the achieved
throughput and the consumed power as in [29]. Moreover,
as discussed in [35], the reward function defines the goal of
the learning problem, which indicates what are the good and
bad events for the agent. Hence, it is rational for the UAVs
to model the reward function in terms of throughput and the
power consumption. To provide reliable communications of
UAVs, the main goal of the dynamic design for joint user,
power level and subchannel selection is to ensure that the
SINRs provided by the UAVs no less than the predefined
thresholds. Specifically, the mathematical form can be ex-
pressed as

γm(t) ≥ γ̄,∀m ∈M, (12)
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where γ̄ denotes the targeted QoS threshold of users served
by UAVs.

At time slot t, if the constraint (12) is satisfied, then the UAV
obtains a reward Rm(t), defined as the difference between the
throughput and the cost of power consumption achieved by
the selected user, subchannel and power level. Otherwise, it
receives a zero reward. That is the reward would be zero when
the communications cannot happen successfully between the
UAV and the ground users. Therefore, we can express the
reward function Rm(t) of UAV m at time slot t, as follows:

Rm(t) =

{
W
K log2(1 + γm(t))− ωmPm(t), if γm(t) ≥ γ̄m,

0, o.w.,
(13)

for all m ∈ M and the corresponding immediate reward is
denoted as Rm(t). In (13), ωm is the cost per unit level of
power. Note that at any time slot t, the instantaneous reward
of UAV m in (13) relies on: 1) the observed information: the
individual user, subchannel and power level decisions of UAV
m, i.e., am(t), cm(t) and pm(t). In addition, it also relates with
the current channel gain Gkm,l(t); 2) unobserved information:
the subchannels and power levels selected by other UAVs and
the channel gains. It should be pointed out that we omitted
the fixed power consumption for UAVs, such as the power
consumed by controller units and data processing [36]. As
UAVs’ trajectories are pre-defined and fixed during its flight,
we assume that the UAVs can always find at least one user
that would be satisfied with the QoS requirements at each time
slot. It’s reasonable such as in some UAV aided user-intensive
networks and cellular hotspots. Note that if some of the UAVs
cannot find an user with satisfying the QoS requirements, these
UAV would be non-functional from the network’s point of
view resulting in the problem related to “isolation of network
components”. In this case, more complex reward functions are
required to be modeled for ensuring the effectiveness of the
UAVs in the network, which we may include in our future
work.

Next, we consider to maximize the long-term reward vm(t)
by selecting the served user, subchannel and transmit power
level at each time slot. Particularly, we adopt a future dis-
counted reward [37] as the measurement for each UAV.
Specifically, at a certain time slot of the process, the discounted
reward is the sum of its payoff in the present time slot, plus
the sum of future rewards discounted by a constant factor.
Therefore, the considered long-term reward of UAV m is given
by

vm(t) =

+∞∑
τ=0

δτRm(t+ τ + 1), (14)

where δ denotes the discount factor with 0 ≤ δ < 1.
Specifically, values of δ reflect the effect of future rewards
on the optimal decisions: if δ is close to 0, it means that the
decision emphasizes the near-term gain; By contrast, if δ is
close to 1, it gives more weights to future rewards and we say
the decisions are farsighted.

Next we introduce the set of all possible user, subchannel
and power level decisions made by UAV m, m ∈ M, which

can be denoted as Θm = Am⊗Cm⊗Pm with ⊗ denoting the
Cartesian product. Consequently, the objective of each UAV
m is to make a selection θ∗m(t) = (a∗m(t), c∗m(t), p∗m(t)) ∈
Θm, which maximizes its long-term reward in (14). Hence the
optimization problem for UAV m, m ∈M, can be formulated
as

θ∗m(t) = arg maxθm∈ΘmRm(t). (15)

Note that the optimization design for the considered multi-
UAV network consists of M subproblems, which corresponds
to M different UAVs. Moreover, each UAV has no information
about other UAVs such as their rewards, hence one cannot
solve problem (15) accurately. To solve the optimization prob-
lem (15) in stochastic environments, we try to formulate the
problem of joint user, subchannel and power level selections
by UAVs to a stochastic non-cooperative game in the following
subsection.

B. Stochastic Game Formulation

In this subsection, we consider to model the formulated
problem (15) by adopting a stochastic game (also called
Markov game) framework [31], since it is the generalization
of the Markov decision processes to the multi-agent case.

In the considered network, M UAVs communicate to users
with having no information about the operating environment.
It is assumed that all UAVs are selfish and rational. Hence, at
any time slot t, all UAVs select their actions non-cooperatively
to maximize the long-term rewards in (15). Note that the
action for each UAV m is selected from its action space Θm.
The action conducted by UAV m at time slot t, is a triple
θm(t) = (am(t), cm(t), pm(t)) ∈ Θm, where am(t), cm(t)
and pm(t) represent the selected user, subchannel and power
level respectively, for UAV m at time slot t. For each UAV m,
denote by θ−m(t) the actions conducted by the other M − 1
UAVs at time slot t, i.e., θ−m(t) ∈ Θ \Θm.

As a result, the observed SINR of (7) for UAV m at time
slot t can be rewritten as

γm(t)[θm(t), θ−m(t),Gm(t)]

=
∑
l∈L

∑
k∈K

Skm,l(t)[θm(t), θ−m(t),Gm,l(t)]

Ikm,l(t)[θm(t), θ−m(t),Gm,l(t)] + σ2
,

(16)

where Skm,l(t) = Gkm,l(t)a
l
m(t)ckm(t)Pm(t), and Ikm,l(t)(·)

is given in (6). Furthermore, Gm,l(t) denotes the matrix of
instantaneous channel responses between UAV m and user l
at time slot t, which can be expressed as

Gm,l(t) =


G1

1,l(t) · · · GK1,l(t)

...
. . .

...
G1
M,l(t) · · · GKM,l(t)

 , (17)

with Gm,l(t) ∈ RM×K , for all l ∈ L and m ∈ M.
Specifically, Gm,l(t) includes the channel responses between
UAV m and user l and the interference channel responses from
the other M −1 UAV. Note that Gm,l(t) and σ2 in (16) result
in the dynamics and uncertainty in communications between
UAV m and user l.
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At any time slot t, each UAV m can measure its current
SINR level γm(t). Hence, the state sm(t) for each UAV m,
m ∈M, is fully observed, which can be defined as

sm(t) =

{
1, if γm(t) ≥ γ̄,

0, o.w..
(18)

Let s = (s1, · · · , sM ) be a state vector for all UAVs. In this
article, UAV m does not know the states for other UAVs as
UAV cannot cooperate with each other.

We assume that the actions for each UAV satisfy the
properties of Markov chain, that is the reward of a UAV is only
dependant on the current state and action. As discussed in [32],
Markov chain is used to describes the dynamics of the states
of a stochastic game where each player has a single action in
each state. Specifically, the formal definition of Markov chains
is given as follows.

Definition 1. A finite state Markov chain is a discrete stochas-
tic process, which can be described as follows: Let a finite
set of states S = {s1, · · · , sq} and a q × q transition matrix
F with each entry 0 ≤ Fi,j ≤ 1 and

∑q
j=1 Fi,j = 1 for any

1 ≤ i ≤ q. The process starts in one of the states and moves to
another state successively. Assume that the chain is currently
in state si. The probability of moving to the next state sj is

Pr{s(t+ 1) = sj |s(t) = si} = Fi,j , (19)

which depends only on the present state and not on the
previous states and is also called Markov property.

Therefore, the reward function of UAV m in (13), m ∈M,
can be expressed as

rtm = Rm(θtm, θ
t
−m, s

t
m)

= stm

(
Ctm[θtm, θ

t
−m,G

t
m]− ωmPm[θtm]

)
.

(20)

Here we put the time slot index t in the superscript for notation
compactness and it is adopted in the following of this article
for notational simplicity. In (20), the instantaneous transmit
power is a function of the action θtm and the instantaneous
rate of UAV m is given by

Ctm(θtm, θ
t
−m,G

t
m) =

W

K
log2

(
1 + γm(θtm, θ

t
−m,G

t
m)
)
, (21)

Notice that from (20), at any time slot t, the reward rtm
received by UAV m depends on the current state stm, which
is fully observed, and partially-observed actions (θtm, θ

t
−m).

At the next time slot t+ 1, UAV m moves to a new random
state st+1

m whose possibilities are only based on the previous
state sm(t) and the selected actions (θtm, θ

t
−m). This procedure

repeats for the indefinite number of slots. Specifically, at
any time slot t, UAV m can observe its state stm and the
corresponding action θtm, but it does not know the actions
of other players, θt−m, and the precise values Gt

m. The state
transition probabilities are also unknown to each player UAV
m. Therefore, the considered UAV system can be formulated
as a stochastic game [38].

Definition 2. A stochastic game can be defined as a tuple
Φ = (S,M,Θ, F,R) where:

• S denotes the state set with S = S1 × · · · × SM , Sm ∈
{0, 1} being the state set of UAV m, for all m ∈M;

• M is the set of players;
• Θ denotes the joint action set and Θm is the action set

of player UAV m;
• F is the state transition probability function which

depends on the actions of all players. Specifically,
F (stm, θ, s

t+1
m ) = Pr{st+1

m |stm, θ}, denotes the probabil-
ity of transitioning to the next state st+1

m from the state stm
by executing the joint action θ with θ = {θ1, · · · , θM} ∈
Θ;

• R = {R1, · · · , RM}, where Rm : Θ × S → R is a real
valued reward function for player m.

In a stochastic game, a mixed strategy πm: Sm → Θm,
denoting the mapping from the state set to the action set,
is a collection of probability distribution over the available
actions. Specifically, for UAV m in the state sm, its mixed
strategy is πm(sm) = {πm(sm, θm)|θm ∈ Θm}, where each
element πm(sm, θm) of πm(sm) is the probability with UAV
m selecting an action θm in state sm and πm(sm, θm) ∈ [0, 1].
A joint strategy π = {π1(s1), · · · , πM (sM )} is a vector of
strategies for M players with one strategy for each player.
Let π−m = {π1, · · · , πm−1, πm+1, · · · , πM (sM )} denote the
same strategy profile but without the strategy πm of player
UAV m. Based on the above discussions, the optimization
goal of each player UAV m in the formulated stochastic game
is to maximize its expected reward over time. Therefore, for
player UAV m under a joint strategy π = (π1, · · · , πm)
with assigning a strategy πi to each UAV i, the optimization
objective in (14) can be reformulated as

Vm(s, π) = E

{ +∞∑
τ=0

δτrt+τ+1
m | st = s, π

}
, (22)

where rt+τ+1
m represents the immediate reward received by

UAV m at time t + τ + 1. E{·} denotes the expectation
operations and the expectation here is taken over the prob-
abilistic state transitions under strategy π from state s. In the
formulated stochastic game, players (UAVs) have individual
expected reward which depends on the joint strategy and not
on the individual strategies of the players. Hence one cannot
simply expect players to maximize their expected rewards as
it may not be possible for all players to achieve this goal at
the same time. Next, we describe a solution for the stochastic
game by Nash equilibrium [39].

Definition 3. A Nash equilibrium is a collection of strategies,
one for each player, so that each individual strategy is a
best-response to the others. That is if a solution π∗ =
{π∗1 , · · · , π∗M} is a Nash equilibrium, then for each UAV m,
the strategy π∗m such that

Vm(π∗m, π−m) ≥ Vm(π′m, π−m), ∀π′m, (23)

where π′m ∈ [0, 1] denotes all possible strategies taken by UAV
m.

It means that in a Nash equilibrium, each UAV’s action is
the best response to other UAVs’ choice. Thus, in a Nash
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Fig. 2: Illustration of MARL framework for multi-UAV net-
works.

equilibrium solution, no UAV can benefit by changing its
strategy as long as all the other UAVs keep their strategies
constant. Note that the presence of imperfect information
in the formulated non-cooperative stochastic game provides
opportunities for the players to learn their optimal strategies
through repeated interactions with the stochastic environment.
Hence, each player UAV m is regarded as a learning agent
whose task is to find a Nash equilibrium strategy for any state
sm. In next section, we propose a multi-agent reinforcement-
learning framework for maximizing the sum expected reward
in (22) with partial observations.

IV. PROPOSED MULTI-AGENT
REINFORCEMENT-LEARNING ALGORITHM

In this section, we first describe the proposed MARL
framework for multi-UAV networks. Then a Q-Learning based
resource allocation algorithm will be proposed for maximizing
the expected long-term reward of the considered for multi-
UAV network.

A. MARL Framework for Multi-UAV Networks

Fig. 2 describes the key components of MARL studied in
this article. Specifically, for each UAV m, the left-hand side
of the box is the locally observed information at time slot
t–state stm and reward rtm; the right-hand side of the box is
the action for UAV m at time slot t. The decision problem
faced by a player in a stochastic game when all other players
choose a fixed strategy profile is equivalent to an Markov
decision processes (MDP) [32]. An agent-independent method
is proposed, for which all agents conduct a decision algorithm
independently but share a common structure based on Q-
learning.

Since Markov property is used to model the dynamics
of the environment, the rewards of UAVs are based only
on the current state and action. MDP for agent (UAV) m
consists of: 1) a discrete set of environment state Sm, 2) a
discrete set of possible actions Θm, 3) a one-slot dynamics
of the environment given by the state transition probabilities
Fstm→s

t+1
m

= F (stm, θ, s
t+1
m ) for all θm ∈ Θm and stm, s

t+1
m ∈

Sm; 4) a reward function Rm denoting the expected value of
the next reward for UAV m. For instance, given the current

state sm, action θm and the next state s′m: Rm(sm, θm, s
′
m) =

E{rt+1
m |stm = sm, θ

t
m = θm, s

t+1
m = s′m}, where rt+1

m

denotes the immediate reward of the environment to UAV m
at time t + 1. Notice that UAVs cannot interact with each
other, hence each UAV knows imperfect information of its
operating stochastic environment. In this article, Q-learning is
used to solve MDPs, for which a learning agent operates in
an unknown stochastic environment and does not know the
reward and transition functions [35]. Next we describe the Q-
learning algorithm for solving the MDP for one UAV. Without
loss of generalities, UAV m is considered for simplicity. Two
fundamental concepts of algorithms for solving the above
MDP is the state value function and action value function (Q-
function) [40]. Specifically, the former in fact is the expected
reward for some state in (22) giving the agent in following
some policy. Similarly, the Q-function for UAV m is the
expected reward starting from the state sm, taking the action
θm and following policy π, which can be expressed as

Qm(sm, θm, π) = E

{ +∞∑
τ=0

δτrt+τ+1
m | st = s, θtm = θm

}
, (24)

where the corresponding values of (24) are called action values
(Q-values).

Proposition 1. A recursive relationship for the state value
function can be derived from the established return. Specif-
ically, for any strategy π and any state sm, the following
condition holds between two consistency states stm = sm and
st+1
m = s′m, with sm, s′m ∈ Sm:

Vm(sm, π) = E

{
+∞∑
τ=0

δτrt+τ+1
m |stm = sm

}
=

∑
s′m∈Sm

F (sm, θ, s
′
m)
∑
θ∈Θ

∏
j∈M

πj(sj , θj)

× [Rm(sm, θ, s
′
m) + δV (s′m, π)] ,

(25)

where πj(sj , θj) is the probability of choosing action θj in
state sj for UAV m.

Proof. See Appendix A.

Note that the state value function Vm(sm, π) is the expected
return when starting in state sm and following a strategy π
thereafter. Based on Proposition 1, we can rewrite the Q-
function in (24) also into a recursive from, which is given
by

Qm(sm, θm, π) = E

{
rt+1
m +

δ

+∞∑
τ=0

δτrt+τ+2
m |stm = sm, θ

t
m = θ, st+1

m = s′m

}
=

∑
s′m∈Sm

F (sm, θ, s
′
m)

∑
θ−m∈Θ−m

∏
j∈M\{m}

πj(sj , θj)

× [R(sm, θ, s
′
m) + δVm(s′m, π)] .

(26)

Note that from (26), Q-values depend on the actions of all
the UAVs. It should be pointed out that (25) and (26) are
the basic equations for the Q-learning based reinforcement
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learning algorithm for solving the MDP of each UAV. From
(25) and (26), we also can derive the following relationship
between state values and Q-values:

Vm(sm, π) =
∑

θm∈Θm

πm(sm, θm)Qm(sm, θm, π). (27)

As discussed above, the goal of solving a MDP is to find
an optimal strategy to obtain a maximal reward. An optimal
strategy for UAV m at state sm, can be defined, from the
perspective of state value function, as

V ∗m = max
πm

Vm(sm, π), sm ∈ Sm. (28)

For the optimal Q-values, we also have

Q∗m(sm, θm) = max
πm

Qm(sm, θm, π), sm ∈ Sm, θm ∈ Θm. (29)

Substituting (27) to (28), the optimal state value equation in
(28) can be reformulated as

V ∗m(sm) = max
θm

Q∗m(sm, θm), (30)

where the fact that
∑
θm
π(sm, θm)Q∗m(sm, θm) ≤

maxθm Q
∗
m(sm, θm) was applied to obtain (30). Note that in

(30), the optimal state value equation is a maximization over
the action space instead of the strategy space.

Next by combining (30) with (25) and (26), one can obtain
the Bellman optimality equations, for state values and for Q-
values, respectively:

V ∗m(sm) =
∑

θ−m∈Θ−m

∏
j∈M\{m}

πj(sj , θj)

×max
θm

∑
s′m

F (sm, θ, s
′
m) [R(sm, θm, s

′
m) + δV ∗m(s′m)] ,

(31)

and

Q∗m(sm, θm) =
∑

θ−m∈Θ−m

∏
j∈M\{m}

πj(sj , θj)×

∑
s′m

F (sm, θ, s
′
m)

[
R(sm, θm, s

′
m) + δmax

θ′m
Q∗m(s′m, θ

′
m)

]
.

(32)

Note that (32) indicates that the optimal strategy will always
choose an action that maximizes the Q-function for the current
state. In the multi-agent case, the Q-function of each agent
depends on the joint action and is conditioned on the joint
policy, which makes it complex to find an optimal joint
strategy [40]. To overcome these challenges, we consider UAV
are independent learners (ILs), that is UAVs do not observe
the rewards and actions of the other UAVs, they interact with
the environment as if no other UAUs exist 1. As for the UAVs
with partial observability and limited communication, a belief
planing approach was proposed in [42], by casting the par-
tially observable problem as a fully observable underactuated
stochastic control problem in belief space. Furthermore, evo-
lutionary Bayesian coalition formation game was proposed in
[43] to model the distributed resource allocation for multi-cell

1Note that in comparison with the joint learning with cooperation, IL
approach needs less storage and computational overhead in the action-space
as the size of the state-action space is linear with the number of agents in IL
[41].

device-to-device networks. As observability of joint actions
is a strong assumption in partially observable domains, ILs
are more practical [44]. More complicated partially observable
network would be considered in our future work.

B. Q-Learning based Resource Allocation for Multi-UAV Net-
works

In this subsection, an ILs [41] based MARL algorithm
is proposed to solve the resource allocation among UAVs.
Specifically, each UAV runs a standard Q-learning algorithm
to learn its optimal Q-value and simultaneously determines an
optimal strategy for the MDP. Specifically, the selection of an
action in each iteration depends on the Q-function in terms
of two states-sm and its successors. Hence Q-values provide
insights on the future quality of the actions in the successor
state. The update rule for Q-learning [35] is given by

Qt+1
m (sm, θm) = Qtm(sm, θm) + αt

{
rtm

+ δ max
θ′m∈Θm

Qtm(s′m, θ
′
m)−Qtm(sm, θm)

}
,

(33)

with stm = sm, θ
t
m = θm, where s′m and θ′m correspond to

st+1
m and θt+1

m , respectively. Note that an optimal action-value
function can be obtained recursively from the correspond-
ing action-values. Specifically, each agent learns the optimal
action-values based on the updating rule in (33), where αt
denotes the learning rate and Qtm is the action-value of UAV
m at time slot t.

Another important component of Q-learning is action selec-
tion mechanisms, which are used to select the actions that the
agent will perform during the learning process. Its purpose
is to strike a balance between exploration and exploitation
that the agent can reinforce the evaluation it already knows
to be good but also explore new actions [35]. In this article,
we consider ε-greedy exploration. In ε-greedy selection, the
agent selects a random action with probability ε and selects
the best action, which corresponds to the highest Q-value at
the moment, with probability 1 − ε. As such, the probability
of selecting action θm at state sm is given by

πm(sm, θm) =

{
1− ε, if Qm of θmis the highest,

ε, otherwise.
(34)

where ε ∈ (0, 1). To ensure the convergence of Q-learning,
the learning rate αt are set as in [45], which is given by

αt =
1

(t+ cα)ϕα
, (35)

where cα > 0, ϕα ∈ ( 1
2 , 1] .

Note that each UAV runs the Q-learning procedure indepen-
dently in the proposed ILs based MARL algorithm. Hence,
for each UAV m, m ∈ M, the Q-learning procedure is
concluded in Algorithm 1. In Algorithm 1, the initial Q-
values are set to zero, therefore, it is also called zero-initialized
Q-learning [46]. Since UAVs have no prior information on the
initial state, a UAV takes a strategy with equal probabilities,
i.e., πm(sm, θm) = 1

|Θm| . Note that though no coordination
problems are addressed explicitly in independent learners (ILs)
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based MARL, IL based MARL has been applied in some
applications by choosing the proper exploration strategy such
as in [27], [47]. More sophisticated joint learning algorithms
with cooperation between the UAVs as well as modelings of
cooperation quantifications would be considered in our future
work.

Algorithm 1 Q-learning based MARL algorithm for UAVs

1: Initialization:
2: Set t = 0 and the parameters δ, cα
3: for all m ∈M do
4: Initialize the action-value Qtm(sm, θm) = 0, strategy

πm(sm, θm) = 1
|Θm| = 1

MKJ ;
5: Initialize the state sm = stm = 0;
6: end for
7: Main Loop:
8: while t < T do
9: for all UAV m, m ∈M do

10: Update the learning rate αt according to (35).
11: Select an action θm according to the strategy

πm(sm).
12: Measure the achieved SINR at the receiver according

to (16);
13: if γm(t) ≥ γ̄m then
14: Set stm = 1.
15: else
16: Set stm = 0.
17: end if
18: Update the instantaneous reward rtm according to

(20).
19: Update the action-value Qt+1

m (sm, θm) according to
(33).

20: Update the strategy πm(sm, θm) according to (34).
21: Update t = t+ 1 and the state sm = stm.
22: end for
23: end while

C. Analysis of the proposed MARL algorithm

In this subsection, we investigate the convergence of the
proposed MARL based resource allocation algorithm. Notice
that the proposed MARL algorithm can be treated as an
independent multi-agent Q-learning algorithm, in which each
UAV as a learning agent makes a decision based on the Q-
learning algorithm. Therefore, the convergence is concluded
in the following proposition.

Proposition 2. In the proposed MARL algorithm of Algorithm
1, the Q-learning procedure for each UAV is always converged
to the Q-value for individual optimal strategy.

The proof of Proposition 2 depends on the following ob-
servations. Due to the non-cooperative property of UAVs, the
convergence of the proposed MARL algorithm is dependent on
the convergence of Q-learning algorithm [41]. Therefore, we
focus on the proof of convergence for the Q-learning algorithm
in Algorithm 1.

Theorem 1. The Q-learning algorithm in Algorithm 1 with
the update rule in (33) converges with probability one (w.p.1)
to the optimal Q∗m(sm, θm) value if

1) The state and action spaces are finite;
2)
∑+∞
t=0 α

t =∞,
∑+∞
t=0 (αt)2 <∞ uniformly w.p. 1;

3) Var{rtm} is bounded;

Proof. See Appendix B.

V. SIMULATION RESULTS

In this section, we verify the effectiveness of the proposed
MARL based resource allocation algorithm for multi-UAV
networks by simulations. The deployment and parameters
setup of the multi-UAV network are mainly based on the
investigations in [6], [11], [29]. Specifically, we consider the
multi-UAV network deployed in a disc area with a radius
rd = 500 m, where the ground users are randomly and
uniformly distributed inside the disk and all UAVs are assumed
to fly at a fixed altitude H = 100 m [2], [16]. In the
simulations, the noise power is assumed to be σ2 = −80 dBm,
the subchannel bandwidth is W

K = 75 KHz and Ts = 0.1 s
[6]. For the probabilistic model, the channel parameters in
the simulations follow [11], where a = 9.61 and b = 0.16.
Moreover, the carrier frequency is f = 2 GHz, ηLoS = 1 and
ηNLoS = 20. For the LoS channel model, the channel power
gain at reference distance d0 = 1 m is set as β0 = −60
dB and the path loss coefficient is set as α = 2 [16]. In the
simulations, the maximal power level number is J = 3, the
maximal power for each UAV is Pm = P = 23 dBm, where
the maximal power is equally divided into J discrete power
values. The cost per unit level of power is ωm = ω = 100
[29] and the minimum SINR for the users is set as γ0 = 3
dB. Moreover, cα = 0.5, ρα = 0.8 and δ = 1.

In Fig. 3, we consider a random realization of a multi-
UAV network in horizontal plane, where L = 100 users are
uniformly distributed in a disk with radius r = 500 m and two
UAVs are initially located at the edge of the disk with the angle
φ = π

4 . For illustrative purposes, Fig. 4 shows the average
reward and the average reward per time slot of the UAVs
under the setup of Fig. 3, where the speed of the UAVs are
set as 40 m/s. Fig. 4(a) shows average rewards with different
ε, which is calculated as vt = 1

M

∑
m∈M vtm. As it can be

observed from Fig. 4(a), the average reward increases with the
algorithm iterations. This is because the long-term reward can
be improved by the proposed MARL algorithm. However, the
curves of the average reward become flat when t is higher than
250 time slots. In fact, the UAVs will fly outside the disk when
t > 250. As a result, the average reward will not increase.
Correspondingly, Fig. 4(b) illustrates the average instantaneous
reward per time slot rt =

∑
m∈M rtm. As it can be observed

from Fig. 4(b), the average reward per time slot decreases with
algorithm iterations. This is because the learning rate αt in the
adopted Q-learning procedure is a function of t in (35), where
αt decreases with time slots increasing. Notice that from (35),
αt will decrease with algorithm iterations, which means that
the update rate of the Q-values becomes slow with increasing
t. Moreover, Fig. 4 also investigates the average reward with
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Fig. 3: Illustration of UAVs based networks with M = 2 and
L = 100.

different ε = {0, 0.2, 0.5, 0.9}. If ε = 0, each UAV will
choose a greedy action which is also called exploit strategy.
If ε goes to 1, each UAV will choose a random action with
higher probabilities. Notice that from Fig. 4, ε = 0.5 is a good
choice in the considered setup.

In Fig. 5 and Fig. 6, we investigate the average reward
under different system configurations. Fig. 5 illustrates the
average reward with LoS channel model given in (4) over
different ε. Moreover, Fig. 6 illustrates the average reward
under probabilistic model with M = 4, K = 3 and L = 200.
Specifically, the UAVs randomly distributed in the cell edge. In
the iteration procedure, each UAV flies over the cell followed
by a straight line over the cell center, that is the center of the
disk. As can be observed from Fig. 5 and Fig. 6, the curves
of the average reward have the similar trends with that of
Fig. 4 under different ε. Besides, the considered multi-UAV
network attains the optimal average reward when ε = 0.5
under different network configurations.

In Fig. 7, we investigate the average reward of the proposed
MARL algorithm by comparing it to the matching theory
based resource allocation algorithm (Mach). In Fig. 7, we
consider the same setup as in Fig. 4 but with J = 1 for
the simplicity of algorithm implementation, which indicates
that the UAV’s action only contains the user selection for
each time slot. Furthermore, we consider complete information
exchanges among UAVs are performed in the matching theory
based user selection algorithm, that is each UAV knows other
UAVs’ action before making its own decision. For compar-
isons, in the matching theory based user selection procedure,
we adopt the Gale-Shapley (GS) algorithm [48] at each time
slot. Moreover, we also consider the performance of the
randomly user selection algorithm (Rand) as a baseline scheme
in Fig. 7. As can be observed that from Fig. 7, the achieved
average reward of the matching based user selection algorithm
outperforms that of the proposed MARL algorithm. This is
because there is not information exchanges in the proposed
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Fig. 4: Comparisons for average rewards with different ε,
where M = 2 and L = 100.

MARL algorithm. In this case, each UAV cannot observe
the other UAVs’ information such as rewards and decisions,
and thus it makes its decision independently. Moreover, it
can be observed from Fig. 7, the average reward for the
randomly user selection algorithm is lower than that of the
proposed MARL algorithm. This is because of the randomness
of user selections, it cannot exploit the observed information
effectively. As a result, the proposed MARL algorithm can
achieve a tradeoff between reducing the information exchange
overhead and improving the system performance.

In Fig. 8, we investigate the average reward as a function of
algorithm iterations and the UAV’s speed, where a UAU from
a random initial location in the disc edge, flies over the disc
along a direct line across the disc center with different speeds.
The setup in Fig. 8 is the same as that in Fig. 6 but with M = 1
and K = 1 for illustrative purposes. As can be observed that
for a fixed speed, the average reward increases monotonically
with increasing the algorithm iterations. Besides, for a fixed
time slot, the average reward of larger speeds increases faster
than that with smaller speeds when t is smaller than 150. This
is due to the randomness of the locations for users and the
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Fig. 5: LoS channel model with different ε, where M = 2 and
L = 100.
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Fig. 6: Illustration of multi-UAV networks with M = 4, K =
3 and L = 200.
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Fig. 8: Average rewards with different time slots and speeds.

UAV, at the start point the UAV may not find an appropriate
user satisfying its QoS requirement. Fig. 8 also shows that the
achieved average reward decreases when the speed increases
at the end of algorithm iterations. This is because if the UAV
flies with a high speed, it will take less time to fly out the
disc. As a result, the UAV with higher speeds has less serving
time than that of slower speeds.

VI. CONCLUSIONS

In this article, we investigated the real-time designs of
resource allocation for multi-UAV downlink networks to max-
imize the long-term rewards. Motivated by the uncertainty of
environments, we proposed a stochastic game formulation for
the dynamic resource allocation problem of the considered
multi-UAV networks, in which the goal of each UAV was to
find a strategy of the resource allocation for maximizing its



12

expected reward. To overcome the overhead of the informa-
tion exchange and computation, we developed an ILs based
MARL algorithm to solve the formulated stochastic game,
where all UAVs conducted a decision independently based
on Q-learning. Simulation results revealed that the proposed
MARL based resource allocation algorithm for the multi-
UAV networks can attain a tradeoff between the information
exchange overhead and the system performance. One promis-
ing extension of this work is to consider more complicated
joint learning algorithms for multi-UAV networks with the
partial information exchanges, that is the need of cooperation.
Moreover, incorporating the optimization of deployment and
trajectories of UAVs into multi-UAV networks is capable of
further improving energy efficiency of multi-UAV networks,
which is another promising future research direction.

APPENDIX A: PROOF OF PROPOSITION 1

Here, we show that the state values for one UAV m over
time in (25). For one UAV m with state sm ∈ Sm at time step
t, its state value function can be expressed as

V (sm, π) = E

{
+∞∑
τ=0

δτrt+τ+1
m |stm = sm

}

= E

{
rt+1
m + δ

+∞∑
τ=0

δτrt+τ+2
m |stm = sm

}

= E
{
rt+1
m |stm = sm

}
+ δE

{
+∞∑
τ=0

δτrt+τ+2
m |stm = sm

}
,

(A.1)

where the first part and the second part represent the expected
value and the state value function, respectively, at time t +
1 over the state space and the action space. Next we show
the relationship between the first part and the reward function
R(sm, θ, s

′
m) with stm = sm, θ

t
m = θ and st+1

m = s′m.

E
{
rt+1
m |stm = sm

}
=

∑
s′m∈Sm

F (sm, θ, s
′
m)
∑
θ∈Θ

∏
j∈M

πj(sj , θj) ×

E
{
rt+1|stm = sm, θ

t
m = θm, s

t+1
m = s′m

}
=

∑
s′m∈Sm

F (sm, θ, s
′
m)
∑
θ∈Θ

∏
j∈M

πj(sj , θj)Rm(sm, θ, s
′
m),

(A.2)

where the definition of Rm(sm, θ, s
′
m) has been used to obtain

the final step. Similarly, the second part can be transformed
into

E

{
+∞∑
τ=0

δτrt+τ+2
m |stm = sm

}
=

∑
s′m∈Sm

F (sm, θ, s
′
m)
∑
θ∈Θ

∏
j∈M

πj(sj , θj)×

E

{
+∞∑
τ=0

δτrt+τ+2
m |stm = sm, θ

t
m = θm, s

t+1
m = s′m

}
=

∑
s′m∈Sm

F (sm, θ, s
′
m)
∑
θ∈Θ

∏
j∈M

πj(sj , θj)V (s′m, π).

(A.3)

Substituting (A.2) and (A.3) into (A.1), we get

V (sm, π) =
∑

s′m∈Sm

F (sm, θ, s
′
m)
∑
θ∈Θ

∏
j∈M

πj(sj , θj)×

[Rm(sm, θ, s
′
m) + δV (s′m, π)] .

(A.4)

Thus, Proposition 1 is proved.

APPENDIX B: PROOF OF THEOREM 1

The proof of Theorem 1 follows from the idea in [45],
[49]. Here we give a more general procedure for Algorithm 1.
Note that the Q-learning algorithm is a stochastic form of value
iteration [45], which can be observed from (26) and (32). That
is to perform a step of value iteration requires knowing the
expected reward and the transition probabilities. Therefore, to
prove the convergence of the Q-learning algorithm, stochastic
approximation theory is applied. We first introduce a result of
stochastic approcximation given in [45].

Lemma 1. A random iterative process 4t+1(x), which is
defined as

4t+1(x) = (1− αt(x))4t (x) + βt(x)Ψt(x), (B.1)

converges to zero w.p.1 if and only if the following conditions
are satisfied.

1) The state space is finite;
2)
∑+∞
t=0 α

t = ∞,
∑+∞
t=0 (αt)2 < ∞,

∑+∞
t=0 β

t = ∞,∑+∞
t=0 (βt)2 < ∞, and E{βt(x)|Λt} ≤ E{αt(x)|Λt}

uniformly w.p. 1;
3) ‖E{Ψt(x)|Λt}‖W ≤ %‖ 4t ‖W , where % ∈ (0, 1);
4) Var{Ψt(x)|Λt} ≤ C(1 + ‖4t ‖W )2, where C > 0 is a

constant.
Note that Λt = {4t,4t−1, · · · ,Ψt−1, · · · , αt−1, · · · , βt−1}
denotes the past at time slot t. ‖ · ‖W denotes some weighted
maximum norm.

Based on the results given in Lemma 1, we now prove
Theorem 1 as follows.

Note that the Q-learning update equation in (33) can be
rearranged as

Qt+1
m (sm, θm) =(1− αt)Qtm(sm, θm)+

αt
{
rtm + δ max

θ′m∈Θm
Qtm(s′m, θ

′
m)
}
. (B.2)

By subtracting Q∗m(sm, θm) from both side of (B.2), we have

4t+1
m (sm, θm)

= (1− αt)4tm (sm, θm) + αtδΨt(sm, θm),
(B.3)

where

4tm (sm, θm) = Qtm(sm, θm)−Q∗m(sm, θm), (B.4)
Ψt
m(sm, θm) = rtm + δ max

θ′m∈Θm
Qtm(s′m, θ

′
m)−Q∗m(sm, θm).

(B.5)

Therefore, the Q-learning algorithm can be seen as the random
process of Lemma 1 with βt = αt.

Next we prove that the Ψt(sm, θm) has the properties of 3)
and 4) in Lemma 1. We start by showing that Ψt(sm, θm) is
a contraction mapping with respect to some maximum norm.
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Definition 4. For a set X , a mapping H : X → X is a
contraction mapping, or contraction, if there exists a constant
δ, with delta ∈ (0, 1), such that

‖Hx1 −Hx2‖ ≤ δ‖x1 − x2‖, (B.6)

for any x1, x2 ∈ X .

Proposition 3. There exists a contraction mapping H for the
function q with the form of the optimal Q-function in (B.8).
That is
‖Hq1(sm, θm)−Hq2(sm, θm)‖∞

≤ δ‖q1(sm, θm)− q2(sm, θm)‖∞,
(B.7)

Proof. From (32), the optimal Q-function for Algorithm 1
can be expressed as

Q∗m(sm, θm) =
∑
s′m

F (sm, θm, s
′
m)

×
[
R(sm, θm, s

′
m) + δmax

θ′m
Q∗m(s′m, θ

′
m)
]
.
(B.8)

Hence, we have

Hq(sm, θm) =
∑
s′m

F (sm, θm, s
′
m)

×
[
R(sm, θm, s

′
m) + δmax

θ′m
q(s′m, θ

′
m)
]
.

(B.9)

To obtain (B.7), we make the following calculations in (B.10).
Note that the definition of q is used in (a), (b) and (c) follows
properties of absolute value inequalities. Moreover, (d) comes
from the definition of infinity norm and (e) is based on the
maximum calculation.

Based on (B.5) and (B.9),

E{Ψt(sm, θm)} =
∑
s′m

F (sm, θ, s
′
m)

×
[
rtm + δ max

θ′m∈Θm
Qtm(s′m, θ

′
m)−Q∗m(sm, θm)

]
= HQtm(sm, θm)−Q∗m(sm, θm)

= HQtm(sm, θm)−HQ∗m(sm, θm).

(B.11)

where we have used the fact that Q∗m(sm, θm) =
HQ∗m(sm, θm) since Q∗m(sm, θm) is a some constant value.
As a result, we can obtain from Proposition 3 and (B.4) that

‖E{Ψt(sm, θm)}‖∞ ≤ δ‖Qtm(sm, θm)−Q∗m(sm, θm)‖∞
= δ‖ 4tm (sm, θm)‖∞,

(B.12)

Note that (B.12) corresponds to condition 3) of Lemma 1 in
the form of infinity norm.

Finally, we verify the condition in 4) of Lemma 1 is
satisfied.

Var{Ψt(sm, θm)}
= E{rtm + δ max

θ′m∈Θm
Qtm(s′m, θ

′
m)−Q∗m(sm, θm)−

HQtm(sm, θm) +Q∗m(sm, θm)}
= E{rtm + δ max

θ′m∈Θm
Qtm(s′m, θ

′
m)−HQtm(sm, θm)}

= Var{rtm + δ max
θ′m∈Θm

Qtm(s′m, θ
′
m)}

≤ C(1 + ‖ 4tm (sm, θm)‖2W ),

(B.13)

where C is some constant. The final step is based on the fact
that the variance of rtm is bounded and Qtm(s′m, θ

′
m) at most

linearly.
Therefore, ‖ 4tm (sm, θm)‖ converges to zero w.p.1

in Lemma 1, which indicates Qtm(sm, θm) converges to
Q∗m(sm, θm) w.p.1 in Theorem 1.
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