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Abstract—This paper investigates the application of non-
orthogonal multiple access (NOMA) in millimeter wave
(mmWave) communications by exploiting beamforming, user
scheduling and power allocation. Random beamforming is in-
voked for reducing the feedback overhead of considered systems.
A non-convex optimization problem for maximizing the sum
rate is formulated, which is proved to be NP-hard. The branch
and bound (BB) approach is invoked to obtain the ϵ-optimal
power allocation policy, which is proved to converge to a
global optimal solution. To elaborate further, a low complexity
suboptimal approach is developed for striking a good computa-
tional complexity-optimality tradeoff, where matching theory and
successive convex approximation (SCA) techniques are invoked
for tackling the user scheduling and power allocation problems,
respectively. Simulation results reveal that: i) the proposed
low complexity solution achieves a near-optimal performance;
and ii) the proposed mmWave NOMA systems is capable of
outperforming conventional mmWave orthogonal multiple access
(OMA) systems in terms of sum rate and the number of served
users.

Index Terms—Millimeter wave (mmWave), non-orthogonal
multiple access (NOMA), power allocation, user scheduling

I. INTRODUCTION

The unprecedented demand for high data rates imposes
challenges for fifth generation (5G) networks. Millimeter wave
(mmWave) communication has been viewed as a promising
candidate technology to address the challenge of bandwidth
shortage [2], [3], due to the large bandwidths in the mmWave
spectrum. Different from the propagation characteristics in
the sub-6GHz wireless communication, the propagation in the
mmWave band is highly directional with severe propagation
path loss, low penetration coefficients and high signal attenua-
tion [4], [5]. To compensate the large path loss in the mmWave
band, directional beamforming provides an effective solution
to resist the large path loss as well as to provide sufficient
received signal power [6].
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Non-orthogonal multiple access (NOMA) in power domain
provides an superior spectral efficiency and hence has recently
received significant attentions. The key idea of NOMA is to
multiplex multiple users on different power levels for multiple
access within a given resource block (e.g., time/frequency).
Moreover, it particularly invokes successive interference can-
cellation (SIC) techniques at receivers who have better channel
conditions for removing intra-channel interference. Due to
the evolution of device processing capabilities, the feasibility
of the NOMA will become promising [7], [8]. As a result,
NOMA is capable of supporting massive connectivity and
efficiently meeting the users’ diverse quality of service (QoS)
requirements [7].

Sparked by the aforementioned characteristics of mmWave
communication and NOMA, the use of NOMA in mmWave
spectrum is highly desired due to the following advantages:

• The highly directional transmission in mmWave spectrum
implies that the users’ channels can be severely correlat-
ed, which are suitable for applying NOMA technique.

• Directional beams in mmWave communication with
large-scale arrays bring large antenna array gains and
small inter-beam interference, enabling NOMA transmis-
sion over each beam.

• Due to the high cost of the RF chains, one BS only have
less number of RF chains [5]. Thus, applying NOMA
into mmWave communication is suitable for massive
connections with high user-overload scenarios and is able
to highly increase the users’ overload.

• Moreover, it is undesired to allocate equal resource to
each user due to the diversified demands of users from
different 5G typical applications and scenarios. Applying
NOMA into mmWave communication will meet the di-
versified demands of users while enhancing the spectral
efficiency by using SIC techniques.

A. Prior Works
1) Studies on mmWave systems: In contrast to the con-

ventional low frequency multiple-input multiple-output (MI-
MO) systems, the additional radio frequency (RF) hardware
constraints such as high-resolution analog-to-digital convert-
ers (ADCs) exist in mmWave systems. Hence, fully digital
baseband beamforming becomes impossible [9]. Considering
the high power consumption of mixed signal components in
mmWave systems, the hybrid analog and digital beamforming
was proposed as one possible energy efficient solution for
mmWave communications [10], [11]. Since analog beamform-
ing is implemented via analog phase shifters, the modulus
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of the elements in the analog beamforming vectors are con-
strained to a constant. The hybrid analog and digital beam-
forming for mmWave systems was studied in [9], [12], where
the designs of the beamforming matrices are in general based
on perfect channel state information (CSI). Unfortunately, in
practice, accurate channel estimation and CSI feedback to the
base station (BS) are difficult [13], [14], which induce heavy
system overhead particularly in multi-user mmWave downlink
systems. To reduce the feedback overhead, a two-stage hybrid
analog and digital beamforming approach was proposed in
[13], where the analog beamforming designs at the BS and the
users are constructed for maximizing its own desirable signal
based on individual CSI. In addition, random beamforming
provides an effective approach in reducing the CSI feedback
[15]. The performance of random bemforming in conventional
mmWave systems was investigated in [14]. It was shown that
random beamfoming in mmWave channels is indeed capable
of achieving a very good sum rate performance with the aid
of user scheduling and power allocation strategies.

2) Studies on single-input single-output (SISO)-NOMA sys-
tems: Early research contributions have studied the potential
implementation of NOMA in cognitive radio (CR) networks
[16], [17] and simultaneous wireless information and power
transfer (SWIPT) protocol [18]. Furthermore, NOMA for
uplink wireless powered internet-of-Things (IoT) networks
was studied in [19]. It showed that the spectral and energy
efficiency is limited considering the circuit energy consump-
tion. Regarding the resource allocation works in NOMA, in
contrast to the studies in [20], [21], a joint subcarrier and
power allocation algorithm was developed in [22], where a
near optimal solution was developed based on Lagrangian
duality and dynamic programming. In [23], a low-complexity
suboptimal algorithm based on matching theory was developed
to maximize energy efficiency for multi-subcarrier (MC)-
NOMA systems. The authors of [24] proposed an asymp-
totically optimal joint power allocation and user scheduling
algorithm based on matching theory to maximize the sum rate
of MC-NOMA systems. Furthermore, in [25], an effective
power allocation and user scheduling algorithm based on
monotonic optimization theory was proposed for full-duplex
MC-NOMA systems. Driven by the partial CSI feedback, a
power allocation strategy for downlink SISO-NOMA systems
based on the average CSI was developed in [26].

3) Studies on multiple-input multiple-output (MIMO)-
NOMA systems: In [27], the author proposed a beamforming
design approach to minimize transmission power where a
multi-antenna base station (BS) communicates two single-
antenna NOMA users in each beam. In [28], a multi-antenna
BS performs NOMA transmission with K single-antenna users
via designing the beamforming vectors, in which an effective
channel gain constraint was formulated to guarantee users’
fairness. In [29], an opportunistic user scheduling for downlink
MIMO systems to reduce the feedback. Based on these stud-
ies, the authors of [30] proposed an general MIMO-NOMA
designing framework, where users were firstly grouped into
small-size clusters, and then the NOMA principle was em-
ployed for each cluster. Furthermore, in [31], a user clustering
and power allocation scheme was proposed to optimize the

user fairness of MIMO-NOMA systems.

B. Motivation and Contributions
While the aforementioned research contributions have laid

a solid foundation on mmWave and NOMA systems, the
investigations on the applications of NOMA on mmWave
band are still in their fancy. Moreover, whether NOMA
technique is capable of bringing performance enhancement for
mmWave networks are still unknown. In this paper, we study
the mmWave NOMA system, where the BS generates some
separable beams and then NOMA transmission is applied on
each beam. It is worth pointing out that the characteristics
of mmWave propagation makes it impossible that applies the
digital beamforming which was invoked in the convention-
al sub-6GHz MIMO-NOMA works. In order to reduce the
feedback overhead, the work of [32] studied the co-existence
of NOMA and mmWave systems with random beamforming,
which showed that the performance of the mmWave NOMA
systems outperforms conventional mmWave-OMA systems.
The advantage of random beamforming applied in mmWave
NOMA systems is that only equivalent channel gains of all
users are required at the BS. In an effort for improving
the performance of random beamforming, an efficient user
scheduling method is required. Moreover, power allocation
strategies among inter/intra-beams are capable of further en-
hancing the performance of mmWave-NOMA systems. It
should be pointed out that the user scheduling and power
allocation are performed over the orthogonal frequency re-
source in [22], [24] and [25]. Specifically, there does not
exist inter-cluster interference among different subchannels,
and thus the power allocation coefficients among different
subchannels has no effect on the decoding order of NOMA
inside each subchannels. Though the full-duplex interference
will affect the decoding order of NOMA in [25], the power
constraints for the uplink and downlink users are separate,
which are in contrast to the total power constraint of the BS
in this manuscript. Furthermore, the existence of the inter-
beam interference in mmWave NOMA systems, the decoding
order of NOMA supported by the one beam will be changeable
with different power allocation among beams. These features
make the user scheduling and the power allocation coupled
together completely, which result in the formulated problem
more challenging and fundamentally in contrast to the existed
works.

Driven by solving all the aforementioned issues, in this
paper, we investigate the mmWave systems with adopting NO-
MA techniques under partial CSI feedback. More specifically,
the BS first generates a set of random beams, then each user
feedback its scale channel gain to the BS. Though the random
beamforming is not optimal, it avoids the cumbersome system
overhead on the feedback of channel vectors. The designs of
the optimal beamforming are beyond of the scope of this work.
By doing so, the idealized perfect CSI assumption adopted
in aforementioned MIMO-NOMA works [26]–[28], [30] are
relaxed. Based on these channel information, the BS schedules
multiple users on each predefined beam, and then transmits
the superposed signals based on NOMA with allocating ap-
propriate power for each beam as well as users. To the best
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of our knowledge, this is the first work to jointly consider
user scheduling and power allocation strategies in mmWave
NOMA systems. Our main contributions are summarized as
follows.

1) We propose a general downlink mmWave NOMA sys-
tems with the aid of random beamforming, in which the
BS requires the scale channel gains of all users rather
than to obtain all channel vectors of users. Then, we
formulate the sum rate maximization problem subject
to the users’ QoS requirements by designing the user
scheduling and power allocation strategy. We mathe-
matically proved that the formulated problem is non-
deterministic polynomial-time (NP)-hard.

2) We decompose the original non-convex problem into
two subproblems as user scheduling and power alloca-
tion. Furthermore, the subproblem for power allocation
is still non-convex. By leveraging the branch and bound
(BB) approach, we propose a global optimal solution for
the power allocation.

3) We develop a low complexity solution with the aid of
matching theory and successive convex approximation
(SCA). Firstly, based on the concept of stable matching,
we propose a low complexity suboptimal algorithm
to realize user scheduling. Secondly, we propose an
efficient SCA algorithm for providing a high-quality
power allocation solutions. Furthermore, the properties
of the matching and SCA algorithms are analyzed.

4) We demonstrate that the proposed mmWave NOMA
framework outperforms the conventional mmWave O-
MA framework with the aid of both of the proposed
algorithms. Moreover, the proposed low complexity so-
lution are capable of achieving a near-optimal perfor-
mance.

C. Organization

The rest of the paper is organized as follows. In Section
II, the system model for studying mmWave NOMA and the
random beamforming scheme are presented. The joint user
scheduling and power allocation problem are formulated in
Section III. In Section IV, a global optimal solution based
on BB is provided and a low complexity power allocation
and user scheduling algorithm are developed in Section V.
Simulation results are presented in Section VI, which is
followed by conclusions in Section VII.

II. SYSTEM MODEL

A. Signal Model

Consider an mmWave-NOMA downlink scenario composed
of one BS with NRF transmit antennas and K single antenna
users. Assuming that the BS performs MIMO transmission
with M beams, K ≥ 2M 1. Denote by M = {1, · · · ,M} and

1Note that if one increases the number of antennas, the generated beams
become narrow and highly directional, which facilitates the utilization of
NOMA [32]. However, this manuscript focuses on the overloaded system
where the number of users is greater than that of the RF chains in the mmWave
system. The results are easy to expand to the mmWave scenario with large
number of transmit antennas.
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Fig. 1. System model for mmWave-NOMA transmission in downlink MISO
scenarios.

K = {1, · · · ,K} be the beam set and the user set, respectively.
The m-th transmit beamforming vector is denoted as wm ∈
CNRF×1. We assume that the multiuser scheduler schedules qm
users denoted by Cm on the m-th beam to perform NOMA
and C =

∪
m∈M Cm is the set of the total scheduled users.

We further assume that each user is scheduled by a single
beam at most; thus, Cm

∩
Cn = ∅, n ̸= m. Let cmk indicate

the indicators for user k on the m-th beam, cmk ∈ {0, 1}.
If cmk = 1, it indicates user k is scheduled on beam m and
cmk = 0 if otherwise. Let sk denote the data symbol transmitted
for user k and βm

k be the transmission power assigned for
user k on the m-th beam. We define Mt = |C| to denote the
total number of the scheduled users. The total transmission
power satisfies

∑M
m=1

∑K
k=1 c

m
k βm

k ≤ Ptot, where Ptot is the
maximum transmission power of the BS.

In the proposed mmWave-NOMA system, the BS chooses
Mt users among the K users in the cell and broadcasts M
independent superposed data streams to the Mt selected users
with beamforming matrix W = {w1, · · · ,wM}. Assuming
user k is scheduled at the m-th beam, the received signal at
user k is

ym
k =

hmH
k wmcmk

√
βm
k sk︸ ︷︷ ︸

Desired signal
+

hmH
k wm

∑
j ̸=k c

m
j

√
βm
j sj︸ ︷︷ ︸

Intra-beam interference

+

∑
n̸=m

∑
i∈K hmH

k wnc
n
i

√
βn
i si︸ ︷︷ ︸

Inter-beam interference
+

νk︸︷︷︸
Noise

,

(1)

with j, k ∈ K and m,n ∈ M, where hm
k ∈ CNRF×1 be

the mmWave channel between the BS and user k and νk ∼
CN (0, σ2) is the additive white Gaussian noise for user k. It
is assumed that all users have the same noise power in this
paper.

B. Channel Model
Different from the conventional low frequency channel, the

mmWave channel in general has limited scattering due to the
high free-space path loss. Thus, we consider the geometric
channel model which can embody the low rank and spatial
correlation characteristics of mmWave communications [9],
[13]. Using this model the channel from the BS to user k
can be modelled as

hk =
√

Mρk

L∑
l=1

ak,laBS(θk,l), (2)
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where ρk denotes the average path-loss between the BS and
user k. In a mmWave propagation model, ρk is given by
ρk = ηd−α

k , where η =
(

c
4πfc

)2 is the frequency independent
constant with c = 3 × 108m/s and the carrier frequency fc.
Thus, the valuses of η are different for different mmWave fre-
quencies. dk is the distance between the BS and user k and α
is the path loss exponent depending on the line-of-sight (LoS)
and non-line-of-sight (NLoS) links, i.e., α = αLoS for LoS
link and α = αNLoS for NLoS link. In this paper, we assume
that l = 1 is the LoS link. Furthermore, ak,l is the complex
gain of the l-th path with ak,l ∼ CN (0, 1). θk,l denotes the l-th
path’s normalized direction to the physical angle of departure
ϕk,l with ϕk,l ∈ [0, 2π] and θk,l =

2d sin(ϕk,l)
λ , where λ is

the signal wavelength, and d is the distance between antenna
elements. At last, aHBS(θk,l) is the antenna array response
vectors of the BS. In this paper, we consider a uniform linear
array (ULA), where aHBS(θk,l) can be defined as

aBS(ϕk,l) =
1√
M

[
1, ejπθk,l , · · · , ej(M−1)πθk,l

]T
. (3)

C. Analog Beamforming
Due to the high cost and power consumption for hardware

constraints, a low-complexity analog beamforming is adopted
in this paper. Specifically, we consider the random beam-
forming scheme to reduce the feedback overhead, where the
direction of each analog beamforming vector is predefined.
Suppose that the BS will form M orthogonal beams for NO-
MA transmission. These beams are predefined and are known
to the BS and the users prior to transmission. Following [14],
these M orthogonal beamforming vectors can be constructed
by

wm = a
(
ζ +

2(m− 1)

M

)
, (4)

where ζ denotes a random variable following a uniform
distribution with ζ ∈ [−1, 1].

Assuming each user computes M equivalent channel gain
and feedbacks the magnitudes {gmk = |hH

k wm|2, m ∈ M}
and the corresponding beam indices to the BS 2. With this
information, the BS performs user scheduling and power allo-
cation, which will be discussed in the following sections. Note
that the proposed user scheduling and power allocation scheme
is to manipulate the user’s channel gain after beamforming
designs, and thus it is applicable even if the beamforming
designing strategy in contrast to the one used in this paper is
adopted. The use of more sophisticated design strategies can
be developed for further enhancing the attainable performance
of the systems considered, but this is beyond the scope of this
paper.

III. PROBLEM FORMULATION

Since multiple users are supported on each beam, based on
the principle of NOMA, each user tries to employ SIC in a
successive order to remove the intra-beam interference. Hence
the decoding order is an essential issue for the mmWave-
NOMA systems. Let πm(k) be the decoding order for user
k on beam m, namely, if πm(k) = i, then user k scheduled
on beam m is the i-th signal to be decoded. For any two users
j and k scheduled on beam m satisfying πm(j) ≤ πm(k),

2To avoid the case that the user with being not covered by any beam are
scheduled, we assume that the total number of users far larger than the number
of scheduled users.

the signal-to-interference-plus-noise ratio (SINR) of user k to
decode user j is given by

SINRm
j→k =

cmj gmk βm
j

gmk
∑

πm(i)>πm(j)

cmi βm
i +

∑
n̸=m

gnkβ
n + σ2

, (5)

with i, j, k ∈ Cm and m ∈ M, where βn =
∑K

i=1 c
n
i β

n
i is the

transmission power on beam n. The corresponding decoding
rate is Rm

j→k = log2(1+SINRm
j→k). The achievable SINR for

user j on beam m can be expressed as

SINRm
j→j =

cmj gmj βm
j

gmj
∑

πm(i)>πm(j)

cmi βm
i +

∑
n̸=m

gnj β
n + σ2

, (6)

with i, j ∈ Cm and m ∈ M. The corresponding rate is
Rm

j→j = log2(1+SINRm
j→j). Under the assumption of a given

decoding order, to guarantee SIC performed successfully, the
condition Rm

j→k ≥ Rm
j→j for πm(k) ≥ πm(j), j, k ∈ Cm

should be kept. For example, we assume that two users on
beam m. Given the decoding πm(j) = j, j = 1, 2, the SIC
decoding condition at user 2 can be expressed as

Rm
1→2 ≥ Rm

1→1. (7)
When three users are allowed on beam m, the SIC decoding
condition at user 2 and user 3 under decoding order πm(j) =
j, j = 1, 2, 3 can be given by

Rm
1→2 ≥ Rm

1→1, Rm
1→3 ≥ Rm

1→1, Rm
2→3 ≥ Rm

2→2. (8)

It is easy to know that there will be 2qm−1−1 =
∑qm−1

k=1

(
k
2

)
constraints when qm users are multiplexed on a single beam.
Note that the decoding order of NOMA depends on not only
the downlink user channel gains, but also the power allocation.
In mmWave-NOMA system, one beam can support multiple
users, the inter-beam interference is difficult to removed clear-
ly. Furthermore, the power allocation optimization can reduce
the inter-beam interference and thus enhance the system sum
rate. Therefore, considering the impact of the power allocation
on the decoding order is more practical.

The goal of the paper is to maximize the sum rate subject
to the total power constraint, the QoS constraints for each
scheduled user and the optimal decoding order by scheduling
Mt users from the K users. It can be formulated as follows.

max
c,β,π

M∑
m=1

K∑
j=1

Rm
j→j (9a)

s.t. Rm
j→k ≥ Rm

j→j , πm(k) > πm(j), (9b)
M∑

m=1

∑
j∈Cm

βm
j ≤ Ptot, (9c)

Rm
j→j ≥ R̄j , (9d)
K∑

k=1

cmk = qm, (9e)

M∑
m=1

cmk ≤ 1 (9f)

πm ∈ Π, j, k ∈ K, m ∈ M. (9g)

where c = {cmk |k ∈ K,m ∈ M}, β = {βm
k |k ∈ K,m ∈ M}

and π = {πm(k), k ∈ K,m ∈ M} denote the optimization
variable sets of the users, the power allocation coefficients
and the decoding order, respectively. Furthermore, Π denotes
the set of all possible SIC decoding orders. Constraint (9b)
guarantees the optimal decoding order which ensure that the
SIC can be performed successfully [16] and constraint (9c)
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is the total transmission power constraint. Constraint (9d)
guarantees the QoS for user πm(j). Due to the constraint on
the detection complexity of SIC receiver, we assume that each
beam can be shared by qm users, qm ≥ 2, in constraint (9e).
Note that qm = 1,∀m ∈ M, the optimization problem (9) will
regress to traditional OMA systems. Constraint (9f) indicates
that each user can occupy one beam at maximum.

Theorem 1. Problem (9) is a NP hard problem. More specif-
ically, problem (9) is NP hard even only consider the power
allocation or user scheduling.

Proof: See Appendix A.

Since problem (9) is NP hard, which results in solving
problem (9) directly becomes intractable. In the following
sections, we will develop a optimal solutions based on BB
techniques; then, a low complexity algorithm based on match-
ing theory and SCA technique will be proposed by exploiting
the properties of the optimization problem itself.

IV. GLOBAL OPTIMAL SOLUTIONS

In this section, we try to solve problem (9) optimally to
obtain a global solution as a baseline. However, optimization
problem (9) contains three multi-dimensional variables: two
combinational variables-c and π and one continuous variable-
β. Considering the user scheduling and the decoding order
are combinational integer variables, exhaustive search is a
straightforward and basic method to find the optimal solution
of integer programming problems [33]. Then for given the
scheduled users and the corresponding decoding order, we
develop an optimal power allocation strategy based on BB
techniques [34], [35] in the following.

Specifically, for given a set of c and π, the sum rate
maximization problem in (9) can be simplifies as follows. For
notation simplicity, let jm denote the j-th decoded user index
scheduled on beam m in the following.

max
β

M∑
m=1

qm∑
jm=1

Rm
jm→jm (10a)

s.t. Rm
jm→km

≥ Rm
jm→jm , (10b)

M∑
m=1

qm∑
jm=1

βm
jm ≤ Ptot, (10c)

Rm
jm→jm ≥ R̄jm , (10d)

k > j, jm, km ∈ Cm, m ∈ M, (10e)

which is a subproblem of the original optimization problem in
(9), since the optimization of problem (10) only relates with
the power allocation coefficients. Note that the objective and
the constraint (10d) contains a difference of concave functions
in β. These features make problem (10) is still NP-hard based
on Theorem 1.

Due to the total transmission power constraint and the QoS
constraints for the scheduled users, problem (10) may not be
always feasible for example when the channel condition of
the scheduled user is extremely poor, its QoS can not be
guaranteed even to be allocated by the total power. Before
solve problem (10), we check the feasibility of problem (10)
first.

Proposition 1. The feasibility of optimization problem (10)
can be checked by solving the following convex problem:

P ′ = min
β

M∑
m=1

∑
jm∈Cm

βm
jm

s.t. (10b) & (10d) & (10e).

(11)

The detailed proof of Proposition 1 can be referred as
[36]. Note that problem (11) is a power minimization problem,
which can be solved directly via a standard optimization tool.

For given c and π, if optimization problem (11) is infeasible
or the optimal objective value P ′ > Ptot, then the given c and
π can not be optimal. It implies we can not find a set of feasible
power allocation coefficients under given c and π satisfying
the optimal decoding order. Hence, the given c and π is can
not be optimal.

A. Problem Transformations for BB Algorithms

Though the sum rate maximization problem in (10) is
nonconvex, it is possible to find a optimal solution based on
a BB technique [37]. The basic idea using BB is to optimize
the objective function over a multi-dimensional rectangle.

To elaborate further, we introduce a variable set
{Γm

jm→jm
, jm ∈ Cm}, where Γm

jm→jm
denotes the achievable

SINR for user jm under given decoding order π. Similar to
(6), it can be written as

Γm
jm→jm =

gmjmβm
jm

gmjm
∑qm

im=jm+1 β
m
im

+
∑

n̸=m gnjmβn + σ2
, (12)

with im, jm ∈ Cm, m ∈ M.
Furthermore, to give some useful sights, we rearrange

constraint (10b) as∑
n̸=m

(
gmkm

gnjm − gmjmgnkm

)
βn +

(
gmkm

− gmjm
)
σ2 ≥ 0, (13)

which is equivalent expression for (9b).
Now problem (10) can be reformulated as a standard form

for BB, which is given by

min
β̃,Γ

−
M∑

m=1

qm∑
jm=1

log2

(
1 + Γm

jm→jm

)
(14a)

s.t.Γm
jm→jm ≤

gmjmβm
jm

gmjm
∑qm

im=jm+1 β
m
im

+
∑

n̸=m gnjmβn + σ2
,

(14b)
(10c) & (10d) & (10e) & (13). (14c)

Proposition 2. Problem (14) is equivalent to problem (10),
hence the optimal solution to problem (14) is also optimal for
problem (10).

Proof: With the introduce variable set {Γm
jm→jm

, jm ∈
Cm, m ∈ M}, the objective in (10) can be expressed as
minimizing the following function

−
M∑

m=1

qm∑
jm=1

log2

(
1 + Γm

jm→jm

)
, (15)

with constraints (14b) and (14c). We relax the equalities in
(12) as

Γm
jm→jm ≤

gmjmβm
jm

gmjm
∑qm

im=jm+1 β
m
im

+
∑

n̸=m gnjmβn + σ2
. (16)

Based on monotonic increasing feature of log(·) function,
(16) will be strict equality at optimum, which implies (14) and
(10) have the same optimal solution.



1536-1276 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2017.2779504, IEEE
Transactions on Wireless Communications

6

B. Preliminaries for BB Algorithms

In this subsection, we introduce the preliminary steps for
BB algorithm. We start by transforming the constraint sets
into a multi-dimensional box set. Then, we construct the
bound function for each multi-dimensional box set. Finally,
we propose a more effective algorithm to find the values of
the bound functions.

1) Constructing box constraint sets: We first define the
objective function in (14) and the feasible set for Γ as U(Γ)
and G, respectively.

U(Γ) =−
M∑

m=1

qm∑
jm=1

log2

(
1 + Γm

jm→jm

)
, (17)

G =
{
Γ|(14b) & (14c)

}
. (18)

Note that it is true that the objective function U(Γ) < 0.
Therefore, the optimization problem in (14) can be equivalent-
ly expressed as

min
Γ

U(Γ) s.t. Γ ∈ G. (19)

Now the optimal objective value can be written as p⋆ =
infΓ∈G U(Γ). To formulate a standard form for BB algorithm,
let us define a new function as

Ũ(Γ) =

{
U(Γ) if Γ ∈ G
0 otherwise,

(20)

and note that for any set S ⊆ RMt , we have
inf
Γ∈S

Ũ(Γ) = inf
Γ∈G

U(Γ) = p⋆, (21)

if G ⊆ S. The first equality follows the fact that U(Γ) is
a lower bound of Ũ(Γ) for Γ ∈ S . Therefore, based on
the feasible set in (18), we can construct a Mt-dimensional
rectangle D0 as

D0 =
{
Γ|γ̄m

jm ≤ Γm
jm→jm ≤ Γ

m
jm→jm , jm ∈ Cm, m ∈ M

}
,

(22)

which satisfies G ⊆ D0. Here γ̄m
jm

= 2R̄jm −1 and Γ
m

jm→jm is
the upper bound of Γm

jm→jm
. It is easy to know that for each

Γm
jm→jm

, it is upper bounded by

Γm,m
jm→jm

≤
gmjmPtot

σ2
. (23)

Note that for any Mt-dimensional rectangle D =
{Γ|Γm

jm→jm ≤ Γm
jm→jm

≤ Γ
m

jm→jm , jm ∈ Cm, m ∈ M}
such that D ⊆ D0. Based on the observation, we define a
function g(Γ) as

g(Γ|D) = inf
Γ∈D

Ũ(Γ). (24)

By combining (21) and (24), one can obtain that
g(Γ|D0) = inf

Γ∈D0

Ũ(Γ) = p⋆. (25)

Through the above discussions, problem (14) has been
converted into a minimization of the non-convex function
U(Γ) over the a box constraint set D. With BB algorithms,
searching is organised by using a binary tree, where the
initial box constraint set (18) will be subdivided iteratively
into smaller subsets for searching. At each leaf node, we can
obtain a lower bound and an upper bound for (14) by a bound
function. Hence, construction of the bound functions will be
discussed in the following.

2) Construct upper bound and lower bound function:
Based on the fact that Ũ in (20) is a non-decreasing function,
similar to [37], [38], the lower bound function g and the upper

bound function g can be constructed as

g(Γ) =

{
U(Γ), Γ ∈ G
0, otherwise,

(26)

and

g(Γ) =

{
U(Γ), Γ ∈ G
0, otherwise,

(27)

Note that to calculate g(Γ) and g(Γ), the key step if to
check if the condition Γ ∈ G is guaranteed.

Let {Γm
jm→jm} be a specified set of SINR values. Testing

if these values are achievable is equivalent to solving the
following feasibility problem

Find β̃ s.t. Γ ∈ G. (28)

Though problem (28) is a convex problem and can be solved
directly, to further improve the computational efficiency, we
develop a more efficient algorithm to check Γ ∈ G by
exploiting the features of problem (28).

3) Solution for problem (28): We first consider
constraint (14b) for all k ∈ K. Let Γ =
[Γ1

11→11 , · · · ,Γ
1
q1→q1 , · · · ,Γ

M
1M→1M , · · · ,ΓM

qM→qM ]T and
β = [β1

1 , · · · , β1
q1 , · · · , β

M
1M , · · · , βM

qM ]T where Γ ∈ RMt×1

and β ∈ RMt×1. By rearranging (14b) as

βm
jm−Γm

jm→jm

qm∑
im=jm+1

βm
im −

Γm
jm→jm

gmjm

∑
n̸=m

gnjmβn

≥
Γm
jm→jm

gmjm
σ2,

(29)

Based on the transformation, (14b) can be expressed as a
compact form:(

IMt − (Λ+DG)
)
β ≽ σ2D1Mt , (30)

where ≽ or ≻ denotes the componentwise inequality between
real matrix and vectors and
Λ = diag [Λ1, · · · ,ΛM ] ,

D = diag

[
Γ1
11→11

g111
, · · · ,

Γ1
q1→q1
g1q1

, · · · ,
ΓM
1M→1M

gM1M

, · · · ,
ΓM
qM→qM

gMqM

]
,

G =

[
G−1, · · · ,G−1︸ ︷︷ ︸

q1
, · · · ,

G−M , · · · ,G−M︸ ︷︷ ︸
qM

]T

,

G−m =
[
g11m1T

q1 , · · · , g
m−1
1m

1T
qm−1

,0T
qm , · · · , gM1m1T

qM

]
,

where Λm is a upper triangular matrix with the (jm, km)-th
entry is Γm

jm→jm
for km > jm and G ∈Mt×Mt .

Lemma 1. Let Λ, D and G be given in (31), the following
is satisfied:

Λ+DG ≽ 0, (31)

which implies that Λ + DG is an irreducible nonnegative
matrix.

Proof: Note that Λ, D and G are nonnegative matrices
and Λ is a diagonal matrix with positive entries. Thus, Λ+DG
is irreducible nonnegative [39] and Lemma 1 is proved.

Based on Lemma 1, the following theorem helps us to check
if Γ ∈ G, where ρ(Λ + DG) denotes the Perron-Frobenius
eigenvalue of matrix Λ+DG.

Theorem 2. When problem (11) is feasible, for any Γ ≥ γ̄,
γ̄ = {γ̄m

jm
,∀j, ∀m}, we check if Γ ∈ G by the following

conditions:
1) ρ(Λ+DG) ≥ 1 ⇒ Γ ̸∈ G;
2) ρ(Λ+DG) < 1 ⇒ β =

(
IMt − (Λ+DG)

)−1
σ2D1Mt .
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If
∑M

m=1

∑qm
jm=1 β

m
jm

> Ptot, Γ ̸∈ G;
3) When ρ(Λ +DG) < 1 and

∑M
m=1

∑qm
jm=1 β

m
jm

≤ Ptot,
if β satisfies the constraints in (10b) for all k, j and m,
β is the corresponding optimal solution; otherwise, the
corresponding optimal power allocation coefficients can
be obtained by solving problem (28).

Proof: See Appendix B.
Based on Theorem 2, we conclude the procedure of check-

ing Γ ∈ G in Algorithm 1.

Algorithm 1 Checking the condition for Γ ∈ G
1: Construct matrices Λ, D and G as in (31)
2: If ρ(Λ+DG) ≥ 1, Γ ̸∈ G and STOP
3: If ρ(Λ+DG) < 1, β =

(
IMt − (Λ+DG)

)−1
σ2D1Mt .

4: if
∑M

m=1

∑qm
jm=1 β

m
jm > Ptot then

5: Γ ̸∈ G and STOP.
6: else
7: Solve problem (28) using standard convex tool.
8: If (28) is feasible, then Γ ∈ G; Otherwise, Γ ̸∈ G. STOP.
9: end if

C. Proposed Optimal User Scheduling and Power Allocation
Algorithms

Based on the above discussions, the procedures of the pro-
posed BB algorithm for optimal power allocation is described
as follows. Let Dt = {A1

1(t), · · · , · · · AM
qM (t)} denote the

set of box subsets Am
jm

(t) = {Γm
jm→jm

(t) ≤ Γm
jm→jm

≤
Γ
m

jm→jm(t)} for all jm and m at the t-th iteration. D(0) is
the initial rectangular constraint set, which is defined in (22)
on the root node of the binary tree. At the t-th iteration, we
spilt Dt into two subsets BI and BII along one of its longest
edges, removing D(t) and adding the two new subsets to R(t).
Next, we solve (28) based on Algorithm 1 over each subset
Bl, l ∈ {I, II}. A lower bound and a upper bound can be
obtained. Then, we choose the minimum over all upper bounds
as U(t) and choose the minimum over all lower bounds as
L(t), i.e., taking the minimum over all the upper and lower
bounds at each leaf node across all the levels in the binary
tree. Removing the leaf node D such that g(D) ≥ U(t),
which will not affect the optimality of the BB tree. Repeat
the above procedures until it satisfies the accuracy ϵ which is
the difference between the global upper bound and the global
lower bound. In the procedure of generating the BB tree, a
sequence of subsets will be generated from D(0). The details
are given in Algorithm 2 that captures the global optimal
solution of (9).

Remark 1. To ensure the global optimality, an exhaustive
procedure is required. For ease of implementation, we select
the bisection method to implement the subdivision of D(t)
[33].

For the set D(t), let v = 1
2

(
Γi + Γj

)
denote the midpoint

of the longest edge of the set D(t) and Γi and Γj correspond
to the vertexes of the longest of the edge. Specifically, its sub-
divisions BI and BII produced by bisection can be obtained
by replacing Γi and Γj by v in BI and BII .

Algorithm 2 The optimal power allocation algorithm based
on BB

1: Initialization for BB:
1) Compute D(0) where Γ̂m

π(j)→π(j) =
gmkm

Ptot

σ2 .
2) Compute U(1) = g (D0), L(1) = g (D0) by solving problem
(28).
3) Set {R(1) = D0}, optimal lower bound U∗ = U(1),
tolerance ϵ > 0 and t = 1.

2: while U(t)− L(t) > ϵ do
3: Pick D ∈ R(t) for which g(D) = L(t) and set D(t) = D.
4: Subdivide D(t) along one of its longest edges into BI and

BII .
5: Compute g

(
BI

)
, g

(
BII

)
by solving problem (28).

6: Update the upper bound U(t) and the lower bound L(t) as
follows:

L(t) = min
D∈R(t+1)

g(D);

U(t) = min g(D)
D∈R(t+1)

;

update U∗ = min(U∗, U(t)).
7: Update R(t+1) by removing all Bt for which g(D) ≥ U(t+

1).
8: t := t+ 1.
9: end while

10: Output the absolute value |U∗| and the optimal power allocation
β.

Proposition 3. Algorithm 2 converges to the global optimal
solution of problem (10b).

Proof: The convergence and the optimality can be proved
by the following conditions:

1) According to the characteristics of BB, at each iteration t,
the function g(Γ|D(t)) is bounded by the lower and upper
bound functions: g(Γ|D(t)) ≤ g(Γ|D(t)) ≤ g(Γ|D(t)).

2) The subdivision procedure is exhaustive since
limt→∞ V (D(t)) = 0, where V (D(t)) denotes the
size of D(t). Hence, the sequence of the global upper
bound U∗ obtained by any infinite subdivisions with
bisection is exhaustive.

3) By step 6, the minimization operations are performed
on the lower and upper bounds. Hence, the global up-
per bound U∗(t + 1) ≤ U∗(t), which is a decreasing
sequence.

Based on the above facts, Algorithm 2 searches every possible
points in the feasible set D and thus is a global solution
according to [33].

Remark 2. At the t-th iteration of Algorithm 2, U(t) and
L(t) are the minimums over all the upper bounds and lower
bounds at each leaf nodes in the BB tree, respectively, which
give a global upper bound and lower bound on the optimal
value of (10). The stopping criterion for Algorithm 2 can
be U(t) − L(t) ≤ ϵ for given a small ϵ, which means that
U∗ − ϵ ≤ Uopt.

Remark 3. The overall complexity of Algorithm 2 is deter-
mined by the complexity of at each iteration and the number
of iterations required for achieving the desired tolerance. In
general, the worst case computational complexity of Algorith-
m 2 is exponential in the number of variables, which can be
approximated as O(2L), where L is the number of layers for
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the BB tree. L is related with the number of the beam M
and the number scheduled users Mt. The exact computational
complexity of the BB algorithm is out of the scope of this
paper.

In summary, the proposed joint user scheduling and power
allocation algorithm based on BB technique is summarised in
Algorithm 3. In Algorithm 3, let Θ be the all possible user
scheduling combinations with all possible decoding order. For
each search, the optimal power allocation is attained by BB
algorithm.

Algorithm 3 Joint user scheduling and power allocation
algorithm

1: Construct the set Θ contains all possible user scheduling combi-
nations and all possible decoding order. Set n = 1.

2: while Θ is not empty set do
3: Check the feasibility of the given c and π by solving problem

(11).
4: Using Algorithm 2 to solve problem (10).
5: end while
6: U(n) = |U∗| and n := n+ 1.
7: Output the optimal objective value U∗ = max(U).

Remark 4. The computational complexity of Algorithm 3 is
determined by the search space of Θ and the complexity at
each search. Specifically, the computational complexity of the
exhaust search includes two looped operations: combination
procedures and permutation procedures, both of which corre-
spond the complexity of KMtMt!. Combining Remark 3, the
computational complexity of Algorithm 3 can be denoted as
O(2LKMtMt!

).

V. LOW COMPLEXITY SOLUTIONS

The computation is cumbersome to the global solution,
specially when the size of the problem becomes large. In
order to reduce the computational complexity, our goal in this
section is to propose a low complexity algorithm that obtains
a suboptimal solution of problem (9) 3.

A. SCA-based Suboptimal Power Allocation Algorithms

To begin with, we consider the power allocation in (10)
for the given the scheduled users and decoding order. In this
subsection, we develop a low complexity power allocation
algorithm based on first-order approximations and SCA.

To handle the nonconvex objective function in (10), we
approximate the the nonconvex objective by the following
lower bound [40]:

µ ln(τ) + ν ≤ ln(1 + τ), (32)
where

µ =
τ̃

1 + τ̃
, ν = log(1 + τ̃)− z̃

1 + τ̃
. (33)

3

Due to the combinational features of the user scheduling and the SIC
decoding, this paper propose a two-step suboptimal algorithm to reduce the
computational complexity. A sophisticated joint designing strategies may be
considered in future.

The approximation in (32) is tight at a chosen value τ̃ when
the constants {µ, ν} are chosen as (33). Thus, given a set of
fixed {µ, ν}, problem (10) can be approximated as follows.

max
β

M∑
m=1

qm∑
jm=1

1

ln2

(
µm
jm ln(SINRm

jm→jm) + νm
jm

)
(34a)

s.t.
∑
n̸=m

(
gmkm

gnjm − gmjmgnkm

)
βn +

(
gmkm

− gmjm
)
σ2 ≥ 0,

(34b)
M∑

m=1

qm∑
jm=1

βm
jm ≤ Ptot, (34c)

µm
jm ln(SINRm

jm→km
) + νm

jm ≥ ln2 R̄jm , (34d)
km > jm, jm, km ∈ Cm, m ∈ M. (34e)

However, (34) is still non-convex, since the objective func-
tion and constraint (34d) is not concave in β. To proceed fur-
ther, a variable transformation xm

jm
= ln(βm

jm
) is introduced.

As a result, for any jm ∈ Cm and km ∈ Cm with km ≥ jm,
we have

ln(SINRm
jm→km

) = ln(gmkm
) + xm

jm−

ln
( qm∑

im=jm+1

gmkm
ex

m
im +

∑
n̸=m

gnkm
ex

n

+ σ2
)
,

(35)

Now, we consider the constraint in (34b), it becomes∑
n̸=m

gmjmgnkm
ex

n

−
(
gmkm

− gmjm
)
σ2 ≤

∑
n̸=m

gmkm
gnjmex

n

, (36)

which is non-convex. However it can be approximated by
applying the first-order Taylor approximation when giving a
point x̃n. Let F (xn) =

∑
n ̸=m gmkm

gnjmex
n

.
F (xn) = F (x̃n) +∇xnF (x̃n)(xn − x̃n)

= F (x̃n) +
∑
n̸=m

gmkm
gnjm

qn∑
in=1

(xn
in − x̃n

in).
(37)

Substituting (36) and (37) into problem (34), we can obtain
the following approximation of problem (34):

max
β

M∑
m=1

qm∑
jm=1

1

ln2

(
µm
jm ln(SINRm

jm→jm) + νm
jm

)
(38a)

s.t.
gmjmgnkm

βn −
(
gmkm

− gmjm
)
σ2 ≤ F (x̃n)+∑

n̸=m gmkm
gnjm

∑qn
in=1(x

n
in

− x̃n
in
)
, (38b)

M∑
m=1

qm∑
jm=1

βm
jm ≤ Ptot, (38c)

µm
jm ln(SINRm

jm→jm) + νm
jm ≥ ln2 R̄jm , (38d)

km > jm, jm, km ∈ Cm, m ∈ M, (38e)

Problem (38) is a convex optimization problem. It can be
solved by a standard convex tool such as cvx [41].

Remark 5. Problem (38) is a lower bound approximation of
problem (10) because of the relaxation in (32) and the first-
order approximation in (37).

Since problem (38) is obtained by approximating problem
(10) at a feasible point set {x̃n

in
}. The approximation can

be further improved by successively approximating problem
(10) based on the optimal solution {x̃n

in
} obtained by solving

problem (38) in the previous approximation. Therefore, the
proposed successive approximation approach can be described
in the following.

Remark 6. In each iteration of Algorithm 4, the sum rate
will be improved successively. However, due to the total power
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Algorithm 4 SCA algorithm for solving (10)
1: Initialize a set of feasible power allocation coefficient β.
2: Compute the objective value in (38), denoted as Φ[0]. Set t = 1.
3: while |Φ[t]−Φ[t−1]|

Φ[t−1]
≤ ϵ′, where ϵ′ is a given stopping criterion.

do
4: t := t+1.
5: Solve problem (38), to obtain the optimal solution {ϕm

j [t], j ∈
K} and β[t].

6: end while
7: Output the optimal {ϕm

j [t], j ∈ C} and β

constraint, the generated sum rate sequence is bounded, which
implies the convergence of Algorithm 4.

Remark 7. Since the approximations in (32) and (37) are
lower bound approximations for problem (10), the solution
generated by Algorithm 4 is suboptimal.

B. Many-to-One Matching Algorithm for User Scheduling
To avoid combinatorial complexity in exhausting search, in

this section, we propose a low complexity user scheduling
algorithm based on matching theory [42], [43]. Given the user
power allocation coefficients, the optimization problem (9) can
be transformed into

max
c

H =

M∑
m=1

qm∑
j=1

Rm
πm(j)→πm(j)

s.t. (9e) − (9g)

(39)

which can be formulated as a many to one bipartite matching
problem with externalities among users [43]. Based on the
concept of stable matching, we will develop a low complexity
matching algorithm in the following 4.

1) Preliminaries of matching theory in user scheduling:
Based on the definitions of M and K in Section II-A, one
can know that M and K are disjoint sets. In NOMA, each
beam can support multiple users simultaneously, but each user
is allowed to access for at most one beam. Thus, in matching,
there exists a positive quota qm which indicates the number
of users a beam has to support. The quota for each beam
may be different. This problem is to match the users to the
beams. This is a many-to one matching problem. These types
of problems have a long history in economics, such as the
marriage problem (qm = 1) [42] and workers/firms problem
[43] or hospitals/residents problem [44] with qm > 1.

Definition 1. A many-to-one matching φ is a function from
the set M

∪
K into the set of unordered families of elements

of M
∪
K
∪
{0} such that

1) |φ(k)| ≤ 1 for every user k ∈ K;
2) |φ(m)| = qm for every beam m ∈ M;
3) φ(k) ∈ M if and only if k ∈ φ(M);
4) k ∈ φ(m) ⇔ φ(k) = m.

The notation φ has different meanings depending on the
parameter. If the parameter is a user k, then φ(k) maps to the
matched beam. If the parameter is a beam m, then φ(m) gives
the set of matched users.

4Note that we assume that the power allocation coefficients are given, the
decoding order obtained by the proposed matching algorithm is suboptimal.

Proposition 4. The user paring problem can be formulated
as a many-to-one matching problem with externalities among
users.

Proof: From Definition V-B1, one can easy obtain that
the user paring problem in (39) is a many to one matching
problem. Due to the inter-beam interference and the intra-beam
interference existed for each user’s achievable rate, each beam’
preferences depend not only on users whom it support, but also
on users whom the other beams support. Similarly, each user’s
preferences is not related with the only beam it matched but
all of the beams. Based on these features, one can conclude
that this problem is a a many-to-one matching problem with
with externalities [43]–[45].

To model the externalities, we define the preference value
for the user k on beam m as the achievable rate:

Hm
k = log2

(
1 + Γm

k

)
. (40)

Then we define the preference value of beam m as

Hm =
∑

k∈φ(m)

log2

(
1 + Γm

k

)
. (41)

Thus, in this matching model, each beam m has a strict pref-
erence ordering ≻m over K. Each user also has a preference
relation ≻k over the set M

∪
{0}, where {0} denotes the user

is unmatched. Specifically, for a given user k, any two beam
m and m′ with m,m′ ∈ M, any two matchings φ and φ′ is
defined as

(m,φ) ≻k (m′, φ′) ⇔ Hm
k (φ) > Hm

k (φ′), (42)
which indicates that user k prefers beam m in φ to beam m′

in φ′ only if user k can achieve a higher rate on beam m than
beam m′. Similarly, for any beam m, its preference ≻m over
the user set can be describe as follows. For any two subsets
of users C and C ′ with C ̸= C ′ and any two matchings φ
and φ′, C = φ(m), C ′ = φ′(m):

(C,φ) ≻m (C′, φ′) ⇔ Hm(φ) > Hm(φ′), (43)

which denotes that beam m prefers the set of users C to C ′

only when beam m can get a higher rate from C.
Since externalities exist in the formulated matching prob-

lem, it is not straightforward to define a stability concept
because a stablility of a matching depends on how a deviating
pair expects the reaction of the other agents [43]. To tackle
the externalities, the two-sided exchange stability has been
introduce in [45]. Based on the concept of two-sided exchange-
stable matchings, we propose a matching algorithm for the
user paring problem in the next subsection.

2) Designs of many-to-one matching algorithm: To define
exchange stability, it is convenient to first define a swap
matching φj

k in which user k and user j switch beams while
keeping other users’ assignments the same. We define a swap
operation among the users to exchange their matched beams. A
swap matching between user j and user k is define as follows.
Furthermore, to approve a swap operation, we also introduce
the concept of swap-blocking pair.

Definition 2. A swap matching is defined as φj
k = {φ \

{(k,m), (j, n)}
∪
{(j,m), (k, n)}}, where φ(k) = m and

φ(j) = n.

Definition 3. Given a matching function φ and a pair of users
(k, j), if there exist m = φ(k) and n = φ(j) such that

1) ∀x ∈ {k, j,m, n}, Um(φj
k) ≥ Um(φ);
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2) ∃x ∈ {k, j,m, n}, such that Um(φj
k) > Um(φ),

then the swap matching φj
k is approved, and (k, j) is called

a swap-blocking pair in φ.

The features of the swap-blocking pair ensure that if a swap
matching is approved, then the achievable rates of any user
involved will not decrease, and at least one user’s achievable
rate will increase.

Based on the above discussions, we can describe the users’
behaviours in the many-to-one matching with externalities as
bellow. Every two users can be arranged by the BS to form a
candidate swap blocking pair. The BS checks whether they can
benefit each other by exchanging their matches without hurting
the interests of corresponding beams. Through a series of swap
operations, the matching can reach a stable status, also known
as a two-sided exchange stable matching defined as below.

Definition 4. A matching φ is two-sided exchange-stable
(2ES) if and only if there does not exist a swap-blocking pair.

From Definition 4, the “2ES status” implies that a swap
matching in which all agents involved are indifferent is 2ES.
This avoids looping between equivalent matchings. Note that
in a “2ES status”, if two users want to switch between two
beam (or a single user wants to “switch” with a hole), the
beams involved must “approve” the swap or if two beams
want to switch two users, the users involved must agree to the
swap (a hole will always be indifferent).

Note that not all 2ES matching are local optimal. The reason
can be given by a simple example: In a 2ES status, there
exists possibility that user k on beam m refuses a swap as
its utility would decrease, but user j on beam n involved will
benefit a lot from this swap operation and the utility of beam
m and beam n will increase. In this case, a forced swap will
further increase the total utility compared to an approved swap
matching. With the definition of 2ES matching, we conclude
the proposed user scheduling algorithm in Algorithm 5.

Algorithm 5 User scheduling based on Matching Theory
1: Initialize the candidate user set A by Algorithm 6.
2: repeat
3: For any user k ∈ A, it searches for another user j ∈ A \

A(φ(k)).
4: if k, j is a swap-blocking pair then
5: φ = φj

k
6: else
7: Keep the current matching state
8: end if
9: until No swap-blocking pair is found

10: The stable matching φ

Remark 8. The initialization algorithm is a deferred accep-
tance algorithm [42], the complexity mainly lies in the number
of the user proposing. In the worst case, the proposing number
is KM . In addition, the maximum number of swap operations
in Algorithm 5 is M2q2m.

Remark 9. All local maxima of the utility H corresponds to
the 2ES matching.

We assume that the matching φ corresponds to a local

Algorithm 6 Initialization Algorithm
Initialization:

1: Initialize the preference lists for all users and beams based on
the scalar channel gain |hkwm′ |2, k ∈ K and m′ ∈ M.

2: Set the user set of accepted by beam m A0(m) = ∅ , the set
of rejected users W0(m) = ∅ and the set of rejected beams
W0(k) = ∅. Set t = 0.

3: repeat
4: t := t+ 1
5: All users not yet assigned k ∈ K\

∪
m∈M At−1 propose to

their current best beam that has not reject user k, i.e. m =
argmaxm′∈M\W(k)t−1 |hkwm′ |2.

6: Denote the users who propose to beam m as k̃m
1 , · · · , k̃m

s′ .
7: Beam m accepts the first qm best ranked users from S =

{km
1 , · · · , km

s } = At−1(m)
∪
{k̃m

1 , · · · , k̃m
s′ } and update

At(m) = {km
1 , · · · , km

qm}, where s is the total number
propose to the beam m. .

8: Update the set of rejected users Wt−1(m) =
{km

qm+1, · · · , km
s } and the set of rejected beams

Wt−1(k) = {m ∈ M : k ∈ Wt−1(m)}.
9: until All beams are achieved its maximum number of users or

each remained user has been rejected by all beams.
10: Output φ and A = {At(m), m = 1, · · · ,M}.

maxima H. If φ is not a 2ES matching, then each approved
swap pair will result in a strict increase in the objective value,
which conflicts the definition of a local maxima. This implies
that φ is 2ES.

Note that the users can swap only from their current match-
ing states. Since the sum rate of the system monotonically
increases, a better matching state corresponds to higher sum
rate. The initialization algorithm will generate a higher sum
rate, which results in less swapping operations to the stable
status. It is worth pointing out that the proposed low com-
plexity approach is a heuristic algorithm, the investigation of
the optimal properties of the heuristic algorithm is capable of
finding a good initial point, but this is beyond the scope of this
paper. In this paper, one feasible initial approach is provided
as follows. In the user scheduling, one can obtain an feasible
point through selecting the power allocation coefficients for
beam m,m ∈ M as follow. β̃m

1 ≥ β̃m
2 ≥ · · · ≥ β̃m

qm where
the decoding order satisfies πm(1) ≤ πm(2) ≤ · · · ≤ πm(qm).
Then in the SCA algorithm, a feasible point can be obtained
by x̃m = ln(β̃m) for any m ∈ M.

VI. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the
proposed algorithms. We consider the channel model described
in (2), with a number of paths L = 3. The AoDs are assumed
to take continuous values, and are uniformly distributed in
[0, 2π]. The BS randomly generated M orthogonal beam. The
mmWave system is assumed to operated at 28 GHz carrier
frequency. The bandwidth of the system is assumed 100 MHz
and with path-loss exponent cLoS = 2 and cNLoS = 3. In the
following simulations, we assume that the users are uniformly
distributed in a single cell with radius Rc and the SNR in
the plots is defined as SNR = Pη

σ2M [13]. In addition, the
stopping criteria ϵ = 0.1 and ϵ′ = 0.05. In addition, we assume
q1 = · · · = qM = q, which indicates that each beam can be
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occupied by q users simultaneously. All users have the same
QoS constraint is they are scheduled, i.e., R̄j = Rth, j ∈ C.

We first evaluate convergence of the proposed BB algorithm
and the SCA algorithm solving problem (10) in Fig. 2 for
different SNRs. As can be observed from Fig. 2, both of the
proposed BB and SCA algorithms are converged for different
SNRs. In the proposed BB algorithm, the upper bound and the
lower bound become tighter as the number of iterations grows.
In addition, though some performance loss has been caused by
the proposed SCA algorithm, the convergence speed of SCA
is much faster than the proposed BB algorithm. The reason is
that the BB algorithm performs a bisection division process
for each dimension, which approaches to the exhaustive search
in a small scale of ϵ.

In Fig. 3, we investigate the sum rate versus the SNR both
in mmWave NOMA systems and mmWave OMA systems
with different algorithms. As can be observed from Fig. 3,
the sum rate of all algorithms increases monotonically with
the SNR. This is because the sum rate can be improved by
optimizing user scheduling and power allocation via solving
the problem in (9). However, the multiuser mmWave system
is interference limited due to the inter-beam interference exist,
the sum rate will not be improved with increasing the SNR. In
particular, three different algorithms solving problem (9) are
plotted in Fig. 3: the global optimal algorithm-Exhaust+BB,
the moderate complexity algorithm- Matching+BB and the
low complexity algorithm - Matching+SCA. As shown, the
sum rate of Exhaust+BB grows faster than Matching+BB
and Matching+SCA at the cost of the high complexity. Be-
sides, compared with Exhaust+BB and Matching+BB, Match-
ing+SCA achieves a good sum rate performance. Particularly,
a same sum rate can be obtained with Matching+BB in the
SNR regions of 0 ∼ 10 dB which indicates that the proposed
suboptimal power allocation algorithm is efficient to solving
problem (10). In addition, it can be observed from Fig. 3, the
sum rate of the mmWave NOMA system outperforms that in
the conventional mmWave OMA systems. This reveals that the
application of NOMA into mmWave can further improve the
spectral efficiency.

Due to the high free-space path loss, there are different
β values on different mmWave frequencies. We examine the
effects on the sum rate with different mmWave frequencies
in Fig. 4. Fig. 4 illustrates the sum rate versus the SNR at
different mmWave frequency with K = 100, M = 3 and
q = 2 for fc = 28 GHz and fc = 60 GHz. We observe that
the proposed mmWave NOMA system can achieve high sum
rate under fc = 28 GHz compared to fc = 60 GHz, due to the
fact that mmWave link at 60 GHz has higher LoS and NLoS
path loss exponents than that at 28 GHz, which leads to lower
signal strength at users. In addition, the gap between mmWave
NOMA and mmWave OMA decreases when the SNR becomes
large. The reason is that at the high SNR regions, the multiuser
mmWave system becomes interference-limited. In this case,
the inter-beam interference becomes the main factor to restrain
the sum rate increases in the mmWave NOMA system the
mmWave OMA system . The impact of the proposed power
allocation algorithm using SCA on the sum rate under different
mmWave frequencies is also plotted in Fig. 4. To validate the

effectiveness, we compare the proposed SCA algorithm with
the fixed power allocation scheme in mmWave-NOMA, called
Match+Fixed NOMA. In Match+Fixed NOMA, we assume
that the total power is distributed uniformly on each beam,
and the power allocation between the users in each beam
is assumed to be β1 and β2 for the users with the better
equivalent channel gain and the poorer equivalent channel
gain, respectively. As can be observed that the proposed SCA
algorithm can enhance the sum rate efficiently compared to
the fixed power allocation scheme.

In Fig. 5, we investigate the sum rate of the mmWave system
versus the total number of users for SNR = 10 dB, M = 3, q =
2. Rth = 0.02. Here, the average number of the selected users
are fixed with Mq for different algorithms. As can be observed
from Fig. 5, the sum rate increases with the total number of
users for the curves of Matching+SCA and Matching+Fixed
Power. The reason is that the inter-beam interference can be
suppressed greatly when the number of users increases by
the proposed matching algorithm. However,the performance
of the random user scheduling algorithm is unsatisfied this
is because the inter-beam interference can not be suppressed
via random user scheduling. In addition, some users with very
poor channel conditions will be scheduled which will decrease
the total sum rate. Therefore, user scheduling is important for
the proposed mmWave NOMA systems. Furthermore, note
that from Fig. 5, this increasing trend becomes slower as
the total number of users becomes larger, since when the
total number of users becomes large enough, the inter-beam
interference will approach to constant.

In Fig. 6, we investigate the total sum rate versus maximum
numbers of users sharing the same beam, q in Matching+SCA.
Different total number of users are considered with K = 100
and K = 200. As can be observed from Fig. 6, the proposed
mmWave NOMA system can achieve the better sum rate when
the SNR increases. Besides, compared to the case of K = 100,
the sum rate can be improved by increasing the number of
users. It can also be observed that the sum rate increases with
increasing q, because more users are accessed to the same
resource. Hence, the mmWave system is capble of obtain more
performance gains by applying NOMA. Furthermore, compare
with the gap between q = 1 and q = 2, the gap becomes
smaller from q = 2 to q = 3 when K = 100, which is
because of the total transmission power constraint at the BS.

VII. CONCLUSIONS

In this paper, the designs of user scheduling and power
allocation algorithms for mmWave NOMA systems with ran-
dom beamforming were considered. Particularly, the formu-
lated problem for the maximization of the sum rate of the
mmWave NOMA system was a mixed integer programming.
The original problem have been into two subproblems and
solved independently: 1) for the integer optimization of the
user scheduling, exhaust search is adopted for a small scale
problem; 2) BB was applied for solving the power allocation
problem optimally. The generated optimal user scheduling
and power allocation solution was served as a benchmark
due to its prohibitive computational complexity. Moreover, a
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Fig. 2. Comparisons of sum rate over iteration numbers between BB and
SCA: NRF = 4, M = 2, q = 2, Rth = 0.1 bits/s/Hz and Rc = 10m.
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Fig. 3. Comparisons of sum rate over different algorithms: M = 3, q = 2,
Rth = 0.1 bits/s/Hz, and Rc = 10m.

low complexity suboptimal algorithm was developed to strike
a trade-off between the performance and complexity, where
user scheduling scheme and power allocation scheme were
designed based on matching theory and SCA approach, respec-
tively. The proposed low complexity suboptimal algorithms a
heuristic algorithm, which converges to a local solution. In-
vestigation of the optimal properties of the heuristic algorithm
is capable of further improving the system performance of the
mmWave-NOMA systems, which is another promising future
research direction. Simulation results have been showed that
the proposed suboptimal algorithm achieved a near optimal
performance with low complexity compared to the global
algorithm. In addition, our results showed that the sum rate
of mmWave NOMA systems outperformed the conventional
mmWave OMA systems.

APPENDIX A: PROOF OF THEOREM 1
Base on the computational complexity theory, to show the

problem (9) is NP-hard, we follows the following three steps:
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Fig. 4. Comparisons of sum rate over different SNR at 28 GHz and 60 GHz:
Rth = 0.1 bits/s/Hz, Rc = 10m. The LoS and NLoS path exponents
are set based on the practical channel measurements [4], [5]: cLoS = 2,
cNLoS = 3 on fc = 28 GHz and cLoS = 2.25, cNLoS = 3.71 on fc = 60
GHz.
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4
and β2 = 3

4
.

1) choose a suitable known NP-complete decision problem
Q; 2) construct a polynomial time transformation from any
instance of Q to an instance of problem (9); 3) prove the two
instances have the same objective value under the transforma-
tion. In this paper, to prove problem (9) is NP-hard, we divide
the proof into two steps: qm = 1 and qm > 1.

1) We first consider the case qm = 1, (9) becomes a joint
power and user scheduling problem in the conventional
OMA systems. The sum rate maximization problem in
(9) becomes the following form:

max
β,c

M∑
m=1

Rm
j→j

s.t.

M∑
m=1

βm
j ≤ Ptot,

j ∈ K, m ∈ M,

(A.1)

which has been proved to be NP-hard in [46].
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2) When qm > 1, we prove that (9) is NP-hard even known
the power allocation. In the following, we will construct
an instance of problem (9) with known power alloca-
tion coefficients. First, the three-dimensional matching is
known to be NP-hard. We then consider an instance with
qm = 2. Assuming that the users are equally divided
into two disjoint sets K1 and K2 satisfying the size
|K1| = |K2| = K

2 , K1

∪
K2 = K and K1

∩
K2 = ∅.

In addition, we assume that the two users j and k on
beam m are selected such that j ∈ K1 and K ∈ K2,
respectively. Let V be a subset of M×K1 ×K2, where
the element Vl = (ml, k

1
l , k

2
l ) ∈ V . According to (41),

the sum rate of any triple Vl can be denoted as HVl
. Next,

we need to determine if there exist a set V ′ ⊆ V with
the size |V ′| = min{M, K

2 } such that
∑|V ′|

l=1 HV ′
l
≤ λ,

where any V ′
l ∈ V ′ and V ′

n ∈ V ′ do not contain
the same elements. Based on the definition, V ′ ⊆ V
will be a three-dimensional matching when the following
conditions hold: 1) |V ′| = min{M, K

2 }; 2) For any two
distinct triples: (ml, k

1
l , k

2
l ) ∈ V and (m′

l, k
′1
l , k

′2
l ) ∈ V ′,

we have ml ̸= m′
l, k

1
l ̸= k′1l , k

2
l ̸= k′2l . When λ goes to

nonnegative infinity, problem (9) with known power allo-
cation coefficients becomes a three-dimensional matching
problem. Therefore, the decision problem of the con-
structed instance is NP-complete and the corresponding
instance is NP-hard.
Since a special case of problem (9) is NP-hard, the
original problem in (9) is NP-hard.

From the analysis of the above two cases, one can conclude
that problem (9) is NP-hard.

APPENDIX B: PROOF OF THEOREM 2

Theorem 2 is similar to the classical feasibility conditions in
[47]. These conditions are derived based on Perron-Frobenius
theory [39] by assuming the primitiveness of Λ + DG.
Different from the conventional OMA systems, in which only
the total transmission power constraint is considered, here

we give a more general proof for NOMA system with the
constraints of the decoding order.

To begin with, we show that ρ(Λ + DG) < 1 is the
necessary condition for Γ ∈ G. Base on (30), we can construct
the necessary condition for Γ ∈ G: if Γ ∈ G, then ∃β ≽ 0
such that (

IMt − (Λ+DG)
)
β > σ2D1Mt . (B.1)

ignoring the constraints in (10b) and (10c). Since each element
of Γ satisfying Γjm→jm ≥ γ̄jm is strict positive, which
indicates that σ2D1Mt ≻ 0 and β ≻ 0. Based on these results,
we can further refine the above necessary condition as follows:
if Γ ∈ G, then ∃β ≽ 0 such that(

IMt − (Λ+DG)
)
β ≻ 0, (B.2)

neglecting the constraints in (10b) and (10c). Then based on
the properties of the Perron-Frobenius eigenvalue stated in
[39], a positive solution to β that satisfies (B.2) exists is
and only if ρ

(
(Λ +DG)

)
< 1. Consequently, we the above

necessary condition can be equivalently expressed as: if Γ ∈ G,
then ρ

(
(Λ +DG)

)
< 1. By contrast, if ρ

(
(Λ +DG)

)
≥ 1,

then Γ /∈ G.
The second condition 2) follows from Proposition 2, where

the SINR constraint in (14b) are such that equalities, i.e.,(
IMt

−(Λ+DG)
)
β = σ2D1Mt

. Moreover, ρ(Λ+DG)
)
< 1,

consequently, IMt − (Λ + DG) is invertible and its inverse
has nonnegative entries, i.e., IMt − (Λ + DG)−1 ≽ 0 [39].
Thus, β =

(
IMt − (Λ+DG)

)−1
σ2D1Mt ≻ 0.

The second part of 2) is to showing that β∗ =
(
IMt −

(Λ +DG)
)−1

σ2D1Mt is the minimum power vector which
satisfies the SINR constraints in (14b). It is equivalently to
verify that β∗ is the optimal solution of the following linear
vector optimization problem:

min
β

β

s.t.
(
IMt − (Λ+DG)

)
β ≽ σ2D1Mt ,

(B.3)

which is convex [34]. Hence the optimal solution satisfies thee
KKT conditions:

(Λ+DG)λ = I, (B.4a)((
IMt − (Λ+DG)

)
β − σ2D1Mt

)
λ = 0, (B.4b)(

IMt − (Λ+DG)
)
β ≽ σ2D1Mt . (B.4c)

where λ ≻ 0 is the Lagrange multiplier vector. From (B.4a)
and (B.4b), one can obtain that λ = 0. Then from (B.4b)
and (B.4c), it can be derived that

(
IMt − (Λ + DG)

)
β =

σ2D1Mt . Therefore, the optimal solution of (B.3) is give
by β∗ =

(
IMt − (Λ + DG)

)−1
σ2D1Mt . As a result, if∑M

m=1

∑qm
jm=1 β

m
jm

> Ptot, Γ /∈ G.
Finally, we prove the condition 3) in Theorem 2. Since the

constraints of SIC decoding order, some solution attained by
condition 3) may not satisfy the inequalities in (29). If so,
the optimal power allocation can be obtained by solving (14)
directly.

REFERENCES

[1] J. Cui, Y. Liu, Z. Ding, P. Fan, and A. Nallanathan, “User selection
and power allocation for MmWave-NOMA networks,” in IEEE Global
Commun. Conf. (GLOBECOM), Dec. accepted.

[2] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broad-
band systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107, Jun.
2011.

[3] V. W. Wong, R. Schober, D. W. K. Ng, and L.-C. Wang, Key Technolo-
gies for 5G Wireless Systems. Cambridge University Press, 2017.



1536-1276 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2017.2779504, IEEE
Transactions on Wireless Communications

14

[4] S. Deng, M. K. Samimi, and T. S. Rappaport, “28 GHz and 73
GHz millimeter-wave indoor propagation measurements and path loss
models,” in IEEE Int. Conf. Commun. Workshop (ICCW), Jun. 2015, pp.
1244–1250.

[5] T. S. Rappaport, E. Ben-Dor, J. N. Murdock, and Y. Qiao, “38 GHz
and 60 GHz angle-dependent propagation for cellular amp; peer-to-
peer wireless communications,” in IEEE Int. Conf. Commun. (ICC), Jun.
2012, pp. 4568–4573.

[6] A. Alkhateeb, J. Mo, N. Gonzalez-Prelcic, and R. W. Heath, “MIMO
precoding and combining solutions for millimeter-wave systems,” IEEE
Commun. Mag., vol. 52, no. 12, pp. 122–131, Dec. 2014.

[7] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, C. L. I, and H. V.
Poor, “Application of non-orthogonal multiple access in LTE and 5G
networks,” IEEE Commun. Mag., vol. 55, no. 2, pp. 185–191, Feb. 2017.

[8] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo,
“Non-orthogonal multiple access for 5G and beyond,” Proceedings of
the IEEE, accept to appear in 2017.

[9] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE
Tran. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[10] S. Zhang, Q. Wu, S. Xu, and G. Y. Li, “Fundamental green tradeoffs:
Progresses, challenges, and impacts on 5G networks,” IEEE Commun.
Surveys Tuts., vol. 19, no. 1, pp. 33–56, 1st Quart. 2017.

[11] Q. Wu, G. Y. Li, W. Chen, D. W. K. Ng, and R. Schober, “An overview
of sustainable green 5G networks,” IEEE Wireless Commun., vol. 24,
no. 4, pp. 72–80, 2017.

[12] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design
for large-scale antenna arrays,” IEEE J. of Sel. Topics Signal Process.,
vol. 10, no. 3, pp. 501–513, Apr. 2016.

[13] A. Alkhateeb, G. Leus, and R. W. Heath, “Limited feedback hybrid
precoding for multi-user millimeter wave systems,” IEEE Trans. Wireless
Commun., vol. 14, no. 11, pp. 6481–6494, Nov. 2015.

[14] G. Lee, Y. Sung, and M. Kountouris, “On the performance of random
beamforming in sparse millimeter wave channels,” IEEE J. Sel. Topics
Signal Process., vol. 10, no. 3, pp. 560–575, Apr. 2016.

[15] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge university press, 2005.

[16] Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G
nonorthogonal multiple-access downlink transmissions,” IEEE Trans.
Veh. Technl., vol. 65, no. 8, pp. 6010–6023, Aug. 2016.

[17] Y. Liu, Z. Qin, M. Elkashlan, Y. Gao, and L. Hanzo, “Enhancing the
physical layer security of non-orthogonal multiple access in large-scale
networks,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1656–
1672, Mar. 2017.

[18] Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative non-
orthogonal multiple access with simultaneous wireless information and
power transfer,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 938–
953, Apr. 2016.

[19] Q. Wu, W. Chen, D. W. K. Ng, and R. Schober, “Spectral and energy
efficient wireless powered IoT networks: NOMA or TDMA?” IEEE
Trans. Veh. Technol., to be published.

[20] X. Ge, H. Jin, J. Cheng, and V. C. M. Leung, “On fair resource sharing
in downlink coordinated multi-point systems,” IEEE Commun. Lett.,
vol. 20, no. 6, pp. 1235–1238, Jun. 2016.

[21] X. Ge, H. Jin, and V. C. M. Leung, “Cdf-based scheduling algorithm for
proportional throughput fairness,” IEEE Commun. Lett., vol. 20, no. 5,
pp. 1034–1037, May 2016.

[22] L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Power and channel allocation
for non-orthogonal multiple access in 5G systems: Tractability and
computation,” IEEE Trans. Wireless Commun., vol. 15, no. 12, pp. 8580–
8594, Dec. 2016.

[23] F. Fang, H. Zhang, J. Cheng, and V. C. M. Leung, “Energy-efficient re-
source allocation for downlink non-orthogonal multiple access network,”
IEEE Trans. Commun., vol. 64, no. 9, pp. 3722–3732, Sep. 2016.

[24] B. Di, L. Song, and Y. Li, “Sub-channel assignment, power allocation,
and user scheduling for non-orthogonal multiple access networks,” IEEE
Trans. Wireless Commun., vol. 15, no. 11, pp. 7686–7698, Nov. 2016.

[25] Y. Sun, D. W. K. Ng, Z. Ding, and R. Schober, “Optimal joint power and
subcarrier allocation for full-duplex multicarrier non-orthogonal multiple
access systems,” IEEE Trans. Commun., vol. 65, no. 3, pp. 1077–1091,
Mar. 2017.

[26] J. Cui, Z. Ding, and P. Fan, “A novel power allocation scheme under
outage constraints in NOMA systems,” IEEE Signal Process. Letters,
vol. 23, no. 9, pp. 1226–1230, Sep. 2016.

[27] J. Choi, “Minimum power multicast beamforming with superposition
coding for multiresolution broadcast and application to NOMA systems,”
IEEE Trans. Commun., vol. 63, no. 3, pp. 791–800, Mar. 2015.

[28] M. F. Hanif, Z. Ding, T. Ratnarajah, and G. K. Karagiannidis, “A
minorization-maximization method for optimizing sum rate in the down-
link of non-orthogonal multiple access systems,” IEEE Trans. Signal
Process., vol. 64, no. 1, pp. 76–88, Jan. 2016.

[29] X. Ge, H. Jin, and V. C. M. Leung, “Opportunistic downlink scheduling
with resource-based fairness and feedback reduction in distributed
antenna systems,” IEEE Trans. Veh. Technol., vol. 65, no. 7, pp. 5007–
5021, Jul. 2016.

[30] Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO to non-
orthogonal multiple access,” IEEE Trans. Wireless Commun., vol. 15,
no. 1, pp. 537–552, Jan. 2016.

[31] Y. Liu, M. Elkashlan, Z. Ding, and G. K. Karagiannidis, “Fairness of
user clustering in MIMO non-orthogonal multiple access systems,” IEEE
Commun. Lett., vol. 20, no. 7, pp. 1465–1468, Jul. 2016.

[32] Z. Ding, P. Fan, and H. V. Poor, “Random beamforming in millimeter-
wave NOMA networks,” IEEE Access, vol. PP, no. 99, pp. 1–1, 2017.

[33] R. Horst and H. Tuy, Global optimization: Deterministic approaches.
Springer Science & Business Media, 2013.

[34] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[35] Z. Wei, D. W. K. Ng, J. Yuan, and H. M. Wang, “Optimal resource
allocation for power-efficient mc-noma with imperfect channel state
information,” IEEE Trans. Commun. Technol., vol. 65, no. 9, pp. 3944–
3961, Sep. 2017.

[36] G. Zheng, K. K. Wong, and T. S. Ng, “Energy-efficient multiuser SIMO:
achieving probabilistic robustness with gaussian channel uncertainty,”
IEEE Trans. Commun., vol. 57, no. 6, pp. 1866–1878, Jun. 2009.

[37] P. C. Weeraddana, M. Codreanu, M. Latva-aho, and A. Ephremides,
“Weighted sum-rate maximization for a set of interfering links via
branch and bound,” IEEE Trans. Signal Process., vol. 59, no. 8, pp.
3977–3996, Aug. 2011.

[38] V. Balakrishnan, S. Boyd, and S. Balemi, “Branch and bound algorithm
for computing the minimum stability degree of parameter-dependent
linear systems,” International Journal of Robust and Nonlinear Control,
vol. 1, no. 4, pp. 295–317, 1991.

[39] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 2012.

[40] J. Papandriopoulos and J. S. Evans, “Low-complexity distributed algo-
rithms for spectrum balancing in multi-user DSL networks,” in IEEE
Int. Conf. Commun. (ICC), vol. 7, Jun. 2006, pp. 3270–3275.

[41] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[42] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[43] K. Bando, “Many-to-one matching markets with externalities among
firms,” Journal of Mathematical Economics, vol. 48, no. 1, pp. 14–20,
2012.

[44] H. Sasaki and M. Toda, “Two-sided matching problems with externali-
ties,” Journal of Economic Theory, vol. 70, no. 1, pp. 93–108, 1996.

[45] E. Bodine-Baron, C. Lee, A. Chong, B. Hassibi, and A. Wierman, “Peer
effects and stability in matching markets,” in International Symposium
on Algorithmic Game Theory. Springer, 2011, pp. 117–129.

[46] Z. Q. Luo and S. Zhang, “Dynamic spectrum management: Complexity
and duality,” IEEE J. Sel. Topics Signal Process., vol. 2, no. 1, pp. 57–
73, Feb. 2008.

[47] P. Viswanath and D. Tse, “Sum capacity of the vector gaussian broadcast
channel and uplink-downlink duality,” IEEE Trans. Inf. Theory, vol. 49,
no. 8, pp. 1912–1921, 2003.

Jingjing Cui (S14) received the B.S. degrees in
communication engineering from Tibet university,
Lhasa, China, 2012. She is currently pursuing the
Ph.D. degree in the Institute of Mobile Communica-
tions, Southwest Jiaotong University, Chengdu, Chi-
na. She was a Visiting Ph.D. Student at the School
of Computing and Communications, Lancaster U-
niversity, U.K., from November 2016 to November
2017. Her research interests include Non-orthogonal
Multiple Access for 5G networks, machine learning
for 5G networks, convex optimization.



1536-1276 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2017.2779504, IEEE
Transactions on Wireless Communications

15

Yuanwei Liu (S’13, M’16) received the Ph.D. de-
gree in Electrical Engineering from the Queen Mary
University of London, U.K., in 2016. Before that, He
received the B.S. and M.S. degrees from the Beijing
University of Posts and Telecommunications in 2011
and 2014, respectively. He has been a Lecturer
(Assistant Professor) with the School of Electronic
Engineering and Computer Science, Queen Mary
University of London, since 2017. He was with the
Department of Informatics, King’s College London,
from 2016 to 2017, where he was a Post-Doctoral

Research Fellow.
His research interests include 5G wireless networks, Internet of Things, s-

tochastic geometry, and matching theory. He received the Exemplary Reviewer
Certificate of the IEEE WIRELESS COMMUNICATION LETTERS in 2015 and
the IEEE TRANSACTIONS ON COMMUNICATIONS in 2017. He has served as
a TPC Member for many IEEE conferences, such as GLOBECOM and ICC.
He currently serves as an Editor of the IEEE COMMUNICATIONS LETTERS
and the IEEE ACCESS.

Zhiguo Ding (S’03-M’05) received his B.Eng in
Electrical Engineering from the Beijing University
of Posts and Telecommunications in 2000, and the
Ph.D degree in Electrical Engineering from Imperial
College London in 2005. From Jul. 2005 to Aug.
2014, he was working in Queen’s University Belfast,
Imperial College and Newcastle University. Since
Sept. 2014, he has been with Lancaster University
as a Chair Professor. From Oct. 2012 to Sept. 2019,
he has also been an academic visitor in Princeton
University.

Dr Ding’ research interests are 5G networks, game theory, cooperative and
energy harvesting networks and statistical signal processing. He is serving as
an Editor for IEEE Transactions on Communications, IEEE Transactions on
Vehicular Technology, and Journal of Wireless Communications and Mobile
Computing, and was an Editor for IEEE Wireless Communication Letters,
IEEE Communication Letters from 2013 to 2016. He received the best paper
award in IET Comm. Conf. on Wireless, Mobile and Computing, 2009, IEEE
Communication Letter Exemplary Reviewer 2012, and the EU Marie Curie
Fellowship 2012-2014.

Pingzhi Fan (M93-SM99-F15) received his Ph.D.
degree in Electronic Engineering from the Hull
University, UK. He is currently a professor and
director of the institute of mobile communications,
Southwest Jiaotong University, China. He is a recip-
ient of the UK ORS Award, the NSFC Outstanding
Young Scientist Award, and the chief scientist of a
national 973 research project. He served as general
chair or TPC chair of a number of international
conferences, and is the guest editor-in-chief, guest
editor or editorial member of several international

journals. He is the founding chair of IEEE VTS BJ Chapter and ComSoc
CD Chapter, the founding chair of IEEE Chengdu Section. He also served
as a board member of IEEE Region 10, IET(IEE) Council and IET Asia-
Pacific Region. He has over 200 research papers published in various academic
English journals (IEEE/IEE/IEICE, etc), and 8 books, and is the inventor
of 20 granted patents. His research interests include high mobility wireless
communications, 5G technologies, wireless networks for big data, signal
design and coding, etc. He is an IEEE VTS Distinguished Lecturer (2015-
2017), and a fellow of IEEE, IET, CIE and CIC.

Arumugam Nallanathan (S’97-M’00-SM’05-F’17)
is Professor of Wireless Communications and Head
of the Communication Systems Research (CSR)
group in the School of Electronic Engineering and
Computer Science at Queen Mary University of
London since September 2017. He was with the
Department of Informatics at King’s College London
from December 2007 to August 2017, where he was
Professor of Wireless Communications from April
2013 to August 2017 and a Visiting Professor from
September 2017. He was an Assistant Professor in

the Department of Electrical and Computer Engineering, National University
of Singapore from August 2000 to December 2007. His research interests
include 5G Wireless Networks, Internet of Things (IoT) and Molecular
Communications. He published more than 350 technical papers in scientific
journals and international conferences. He is a co-recipient of the Best Paper
Award presented at the IEEE International Conference on Communications
2016 (ICC2016) and IEEE International Conference on Ultra-Wideband 2007
(ICUWB 2007). He is an IEEE Distinguished Lecturer. He has been selected
as a Web of Science (ISI) Highly Cited Researcher in 2016.

He is an Editor for IEEE Transactions on Communications. He was an
Editor for IEEE Transactions on Wireless Communications (2006-2011), IEEE
Transactions on Vehicular Technology (2006-2017), IEEE Wireless Communi-
cations Letters and IEEE Signal Processing Letters. He served as the Chair for
the Signal Processing and Communication Electronics Technical Committee
of IEEE Communications Society and Technical Program Chair and member
of Technical Program Committees in numerous IEEE conferences. He received
the IEEE Communications Society SPCE outstanding service award 2012 and
IEEE Communications Society RCC outstanding service award 2014.


