
2022 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 6, JUNE 2010

Channel Estimation and Training Design for
Two-Way Relay Networks with Power Allocation
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Abstract—In this paper, we propose a new channel estima-
tion prototype for the amplify-and-forward (AF) two-way relay
network (TWRN). By allowing the relay to first estimate the
channel parameters and then allocate the powers for these
parameters, the final data detection at the source terminals could
be optimized. Specifically, we consider the classical three-node
TWRN where two source terminals exchange their information
via a single relay node in between and adopt the maximum
likelihood (ML) channel estimation at the relay node. Two
different power allocation schemes to the training signals are
then proposed to maximize the average effective signal-to-noise
ratio (AESNR) of the data detection and minimize the mean-
square-error (MSE) of the channel estimation, respectively. The
optimal/sub-optimal training designs for both schemes are found
as well. Simulation results corroborate the advantages of the
proposed technique over the existing ones.

Index Terms—Channel estimation, amplify-and-forward, two-
way relay networks, power allocation, training design.

I. INTRODUCTION

EMPLOYING the relay node to assist the bidirec-
tional communications between two source terminals has

gained increasing attention recently [1]–[3]. In this scheme,
the overall transmission period is divided into two phases.
During phase I, both source terminals transmit and the relay
receives a superposed signal. In phase II, relay directly broad-
casts the overlapped signal to both terminals. From a network
coding-like manner, the source terminals are still capable of
extracting the desired signal. The so derived mechanism is
proved effective in terms of enhancing the system throughput
compared to its unidirectional counterpart [4], [5], and is then
named as two-way relay network (TWRN).

Following this guideline, the capacity analysis and the
achievable rate region for amplify-and-forward (AF) and
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decode-and-forward (DF) based TWRN were studied in [6]–
[13]. In [14] the optimal mapping function at the relay node
that minimizes the transmission bit-error rate (BER) was pro-
posed, whose expression is unfortunately hard to implement
for practical scenarios. For cases when the channel knowledge
is known at the transmitter side, the optimal beamforming
at the multi-antenna relay that maximizes the capacity of
AF-based TWRN was designed in [15] and [16], while the
suboptimal subcarrier sorting and power allocation at the relay
were proposed in [17]. When the channel knowledge is only
available at the receiver side, the space-time coding (STC)
technique that is able to improve the transmission reliability
has been developed in [18].

Since most works [6]–[18] assume perfect channel knowl-
edge, the way to obtain the accurate channel information
becomes crucial. The earliest attempt was recently made in
[19], where two different channel estimation algorithms as
well as the corresponding optimal training sequences were
derived for an AF based three-node TWRN. However, only the
simplest scaling operation at the relay node is assumed in [19]
while the relay function is not optimized. A more practical
consideration is to equip the relay node with advanced signal
processing techniques, which, in fact, has already been used
by many existing works, e.g., beamforming [12], [15], [16],
resource allocation [17], STC design [18] etc.. Therefore, it
is also reasonable to assume that the relay node is capable of
performing the channel estimation itself. Letting the relay node
estimate the channels is also indispensable as is seen from
the following aspects: i) DF based relay network requires the
channel knowledge at the relay node; ii) The advanced relay
operations, e.g., [12], [15]–[17], need the channel knowledge
at the relay node.

In this work, we introduce a new prototype for channel
estimation in TWRN that the relay node first estimates the
channels from the two terminals and then allocates the power
to different channel components during a training-phase, such
that the final data detection or channel estimation at the
terminal nodes can be optimized. This is a unique property for
TWRN and does not exist for unidirectional relay network [4],
[5]. As one of the earliest works on the channel estimation for
TWRN, we will choose the flat fading assumption to present
our main idea, while the extension to the frequency selective
channels can be easily made if the orthogonal frequency
division multiplex (OFDM) modulation is adopted. We will
study the classical three-node TWRN and choose two different
optimization objectives, i.e., maximizing the average effective
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Fig. 1. A typical two-way relay network with two source nodes and one
relay node working under the AF relaying scheme.

signal-to-noise ratio (AESNR) and minimizing the channel
estimation mean-square errors (MSE) at the source termi-
nals. The same principle can be straightforwardly extended
to different objectives, e.g., minimizing the bit error rate
(BER), minimizing the outage probability, etc.. Note that
power allocation will not be used during the data transmission
since the relay node cannot differentiate the signals from two
terminals without multiple access technique.

The rest of the paper is organized as follows. Section II
presents the system model of the TWRN as well as the channel
estimation at the relay node. In Section III and Section IV, we
derive the optimal power allocation as well as the training
design to maximize the detection AESNR and to minimize
the estimation MSE at both source terminals, respectively.
Simulation results are then provided in Section V. Finally,
conclusions are drawn in Section VI.

Notations: Vectors and matrices are boldface small and
capital letters, respectively; the transpose, complex conjugate,
Hermitian, and inverse of A are denoted by A𝑇 , A∗, A𝐻

and A−1, respectively; tr(A) represents the trace of A;
∥a∥ denotes the two-norm of a, and diag{a} is a diagonal
matrix whose diagonal elements are given by the elements of
a; I is the identity matrix, and E{⋅} denotes the statistical
expectation.

II. PROBLEM FORMULATION

A. Data Transmission in TWRN

A classical three-node TWRN with two source terminals
𝕋1, 𝕋2, and one relay node ℝ is shown in Fig. 1. The
baseband channel between 𝕋𝑖, 𝑖 = 1, 2, and ℝ is assumed
as circularly symmetric complex Gaussian and is denoted by
ℎ𝑖 ∈ 𝒞𝒩 (0, 𝜎2𝑖 ). Assuming time division duplex (TDD) mode,
the channel is reciprocal such that the channel from ℝ to 𝕋𝑖

is also described by ℎ𝑖. Since 𝕋𝑖’s are separated from each
other, ℎ1 and ℎ2 are considered independent. Moreover, the
average transmission powers of 𝕋1, 𝕋2, and ℝ are denoted by
𝑃1, 𝑃2, 𝑃𝑟, respectively.

One round of data communication between 𝕋𝑖’s is divided
into two phases. During phase I, 𝕋𝑖 sends out 𝑑𝑖 and ℝ

receives

𝑟 = ℎ1𝑑1 + ℎ2𝑑2 + 𝑛𝑟, (1)

where 𝑛𝑟 is the additive white Gaussian noise with variance
𝜎2𝑛. A typical scaling factor

𝜅𝐷 =

√
𝑃𝑟

𝑃1𝜎21 + 𝑃2𝜎22 + 𝜎
2
𝑛

(2)

is adopted at ℝ to keep the average power of ℝ as 𝑃𝑟. During
phase II, ℝ broadcasts the scaled signal, and 𝕋1 and 𝕋2 receive

𝑦1 = 𝜅𝐷ℎ
2
1𝑑1 + 𝜅𝐷ℎ1ℎ2𝑑2 + 𝜅𝐷ℎ1𝑛𝑟 + 𝑛1, (3)

𝑦2 = 𝜅𝐷ℎ
2
2𝑑2 + 𝜅𝐷ℎ1ℎ2𝑑1 + 𝜅𝐷ℎ2𝑛𝑟 + 𝑛2, (4)

respectively, where 𝑛𝑖, 𝑖 = 1, 2, represents the noise at 𝕋𝑖 and
is assumed to have the same distribution as 𝑛𝑟.

Taking 𝕋1 for example, it has been shown in [19] that the
maximum likelihood (ML) data detection only relies on the
parameters 𝑎 ≜ ℎ21 and 𝑏 ≜ ℎ1ℎ2. Moreover, it can be verified
that E{∣𝑎∣2} = 2𝜎41 and E{∣𝑏∣2} = 𝜎21𝜎22 , respectively.

B. Channel Estimation in TWRN

In order to be compatible with the data transmission, it is
preferred that channel estimation is accomplished from a two-
phase training. Denote the training sequence from 𝕋1 and 𝕋2

as t1 and t2, respectively, both with length 𝑁 . The training
signal received at ℝ during phase I is

r = ℎ1t1 + ℎ2t2 + n𝑟 = Th+ n𝑟, (5)

where T = [t1, t2], h = [ℎ1, ℎ2]
𝑇 , and n𝑟 is an 𝑁 × 1 noise

vector. We adopt the ML channel estimator at ℝ,1 and channels
are obtained from [20]

ĥ = (T𝐻T)−1T𝐻r = h+ (T𝐻T)−1T𝐻n𝑟. (6)

We propose that ℝ broadcasts the following training signals
in the second phase:

r̃ = 𝜅𝑇 (
√
𝛼ℎ̂1t1 +

√
𝛽ℎ̂2t2) = 𝜅𝑇TΛĥ, (7)

where 𝛼 and 𝛽 are the weights that control the power allocated
to the estimated channels ℎ̂1 and ℎ̂2, Λ = diag{√𝛼,√𝛽}, and
𝜅𝑇 is the scaling factor to keep the relay power 𝑃𝑟 during the
training. Substituting (6) into (7) gives

r̃ = 𝜅𝑇 (TΛh+ ñ𝑟), (8)

where ñ𝑟 = TΛ(T𝐻T)−1T𝐻n𝑟 is the residual noise.
Remark 1: The signal processing technique in (7) or (8)

is named as denoising, which is known to reduce the ef-
fective noise power. For example, when 𝛼 = 𝛽 = 1, then√
𝛼ℎ̂1t1 +

√
𝛽ℎ̂2t2 reduces to ℎ1t1 + ℎ2t2 + P𝑇n𝑟, where

P𝑇 = T(T𝐻T)−1T𝐻 is the projection matrix of the space
spanned by T. Clearly, the total noise power reduces by a
factor of𝑁/2 after the projection, while the signal components
do not change.

Denote 𝑄𝑖 = t𝐻𝑖 t𝑖 as the power spent for training at 𝕋𝑖 that
is not necessarily the same as 𝑁𝑃𝑖.2 Define the correlation
factor between t1 and t2 as 𝜌 = t𝐻1 t2/

√
𝑄1𝑄2. From the

straightforward computation, the total noise power is obtained
as

E{ñ𝐻𝑟 ñ𝑟} =
𝛼+ 𝛽 − 2∣𝜌∣2√𝛼𝛽

1− ∣𝜌∣2︸ ︷︷ ︸
𝜑(𝛼,𝛽,∣𝜌∣2)

𝜎2𝑛, (9)

1Other estimators can also be applied but only changes the following
mathematical derivation.

2See [21] for optimal power balancing between training and data transmis-
sion.
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where 𝜑(𝛼, 𝛽, ∣𝜌∣2) is defined as the corresponding term. Since
𝛼+𝛽 ≥ 2

√
𝛼𝛽, (9) is a monotonically increasing function of

∣𝜌∣ whose maximum goes to infinity when ∣𝜌∣ = 1. Intuitively,
the training correlation should be chosen as ∣𝜌∣ = 0, i.e.,
orthogonal training, since it minimizes the noise power sent
from ℝ. Nonetheless, we will not make this assumption here,
whereas a more general discussion on 𝜌 will be presented later.

From (8) to (9), 𝜅𝑇 can be explicitly written as

𝜅𝑇 =

√
𝑁𝑃𝑟

𝛼𝑄1𝜎21 + 𝛽𝑄2𝜎22 + 𝜑(𝛼, 𝛽, ∣𝜌∣2)𝜎2𝑛
. (10)

Without loss of generality, we can normalize 𝛼 and 𝛽 as

𝛼+ 𝛽 = 1, 0 ≤ 𝛼 ≤ 1, (11)

and hence only the design over 𝛼 is needed.
In phase II, the received training signal at 𝕋1 is

z1 = r̃ℎ1 + n1, (12)

where n1 is an 𝑁 × 1 noise vector. By substituting (8) into
(12), z1 can be re-expressed as

z1 = 𝜅𝑇
√
𝛼𝑎t1 + 𝜅𝑇

√
𝛽𝑏t2 + ñ = 𝜅𝑇TΛh𝑒 + ñ, (13)

where h𝑒 = [𝑎, 𝑏]𝑇 is the equivalent channel vector, and ñ =
𝜅𝑇ℎ1ñ𝑟 + n1 is the equivalent noise vector with covariance
matrix

Rñ = E{ññ𝐻} = 𝜎2𝑛
(
I𝑁 + 𝜅2𝑇𝜎

2
1TΛ(T𝐻T)−1ΛT𝐻

)
.

(14)

III. LINEAR MAXIMUM SIGNAL-TO-NOISE RATIO

CHANNEL ESTIMATION

In this section, we consider a linear channel estimator that
is able to maximize the AESNR, which is named as linear
maximum signal-to-noise ratio (LMSNR) channel estimator.
The linear estimator is adopted due to its easy implementation.

A. Channel Estimation

Due to symmetry, we only discuss for the terminal 𝕋1.
Suppose that 𝑎 and 𝑏 are obtained from two linear estimators

𝑎̂ = u𝐻z1, (15)

𝑏̂ = v𝐻z1, (16)

respectively. Define Δ𝑎 = 𝑎̂−𝑎 and Δ𝑏 = 𝑏̂−𝑏 as the channel
estimation errors. During the data transmission, the received
signal at 𝕋1 is rewritten as

𝑦1 = 𝜅𝐷𝑎̂𝑑1 + 𝜅𝐷 𝑏̂𝑑2 −𝜅𝐷Δ𝑏𝑑2 − 𝜅𝐷Δ𝑎𝑑1 + 𝜅𝐷ℎ1𝑛𝑟 + 𝑛1︸ ︷︷ ︸
𝑛̃

(17)
where 𝑛̃ is the equivalent noise at 𝕋1. After subtracting the
self-signal component 𝜅𝐷𝑎̂𝑑1, the AESNR of the detection
can be expressed as (18), shown at the top of the next page,
where

R𝑧 = E{z1z𝐻1 } (19)

= 𝜎2𝑛
(
I𝑁 + 𝐶1t1t

𝐻
1 + 𝐶2t2t

𝐻
2 + 𝐶3t1t

𝐻
2 + 𝐶∗

3t2t
𝐻
1

)
,

with

𝐶1 = 𝜅
2
𝑇𝛼

(
𝜎2𝑎
𝜎2𝑛

+
𝜎21

(1− ∣𝜌∣2)𝑄1

)
,

𝐶2 = 𝜅
2
𝑇𝛽

(
𝜎2𝑏
𝜎2𝑛

+
𝜎21

(1− ∣𝜌∣2)𝑄2

)
,

𝐶3 = −𝜅2𝑇
√
𝛼𝛽

𝜌𝜎21
(1− ∣𝜌∣2)√𝑄1𝑄2

.

Remark 2: Since the effective noise in (17) is non-Gaussian
and is correlated with the signal component, maximizing
AESNR does not strictly corresponds to maximizing the data
throughput but corresponds to maximizing a lower bound
of the data throughput.3 Note that this is a typical way of
incorporating the channel estimation errors into the system
performance [21].

Following the same approach in [19] where the simple op-
timization is applied [22], the optimal u and v that maximize
𝛾 can be derived as

u = 𝜅𝑇
√
𝛼𝜎2𝑎R

−1
𝑧 t1, (20)

v = 𝜂𝜅𝑇
√
𝛽𝜎2𝑏R

−1
𝑧 t2, (21)

where

𝜂 =
𝐹0 − 𝜓1(𝛼, 𝛽, ∣𝜌∣)
𝜓2(𝛼, 𝛽, ∣𝜌∣) , (22)

with

𝐹0 = 𝑃1𝜎
2
𝑎 + 𝑃2𝜎

2
𝑏 + 𝜎

2
1𝜎

2
𝑛 + 𝜎

2
𝑛/𝜅

2
𝐷,

𝜓1(𝛼, 𝛽, ∣𝜌∣) = 𝑃1𝜎
4
𝑎𝜅

2
𝑇𝛼t

𝐻
1 R−1

𝑧 t1,

𝜓2(𝛼, 𝛽, ∣𝜌∣) = 𝑃2𝜎
4
𝑏𝜅

2
𝑇𝛽t

𝐻
2 R−1

𝑧 t2.

The corresponding AESNR can then be reexpressed as

𝛾 =
𝜂

𝜂 − 1
, (23)

and channel estimation MSEs are

𝑒𝑎 = E{∣𝑎− 𝑎̂∣2} = 𝜎2𝑎 − 𝜅2𝑇𝛼𝜎4𝑎t𝐻1 R−1
𝑧 t1, (24)

𝑒𝑏 = E{∣𝑏− 𝑏̂∣2} = 𝜎2𝑏 −
(
2𝜂 − 𝜂2)𝜅2𝑇𝛽𝜎4𝑏 t𝐻2 R−1

𝑧 t2. (25)

B. Optimal Training Design

The optimal training sequences that maximize 𝛾 are char-
acterized by the following proposition.

Proposition 1: If the received SNR at the relay dur-
ing the training is greater than or equal to -3 dB, i.e.,
10 log

(
𝑄𝑖𝜎

2
𝑖 /𝜎

2
𝑛

) ≥ −3, 𝑖 = 1, 2, then the optimal training
sequences t1 and t2 should be orthogonal, i.e., 𝜌 = 0.

Proof: See Appendix I.
With the orthogonal training, R−1

𝑧 t𝑖 reduces to t𝑖/𝜎
2
𝑛(1 +

𝐶𝑖𝑄𝑖), 𝑖 = 1, 2, and the corresponding channel estimations
can be expressed as

𝑎̂ =
𝜅𝑇

√
𝛼𝜎2𝑎

(𝜅2𝑇𝛼𝜎
2
1 + 1)𝜎2𝑛 + 𝜅

2
𝑇𝛼𝜎

2
𝑎𝑄1

t𝐻1 z1, (26)

𝑏̂ =
𝜂𝜅𝑇

√
𝛽𝜎2𝑏

(𝜅2𝑇𝛽𝜎
2
1 + 1)𝜎2𝑛 + 𝜅

2
𝑇𝛽𝜎

2
𝑏𝑄2

t𝐻2 z1. (27)

3When we assume that the noise component is Gaussian and is independent
from the signal, the data throughput obtained from log(1+AESNR) is a lower
bound of its true value. Then maximizing AESNR could optimize this lower
bound.
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𝛾 =
𝜅2𝐷E{∣𝑏̂∣2}𝑃2

E{∣𝑛̃∣2} =
𝜅2𝐷𝑃2v

𝐻R𝑧v

𝜅2𝐷E{∣u𝐻z1 − 𝑎∣2}𝑃1 + 𝜅2𝐷E{∣v𝐻z1 − 𝑏∣2}𝑃2 + 𝜅2𝐷𝜎
2
1𝜎

2
𝑛 + 𝜎

2
𝑛

(18)

In practical communication systems, the condition that the
received SNR is greater than −3dB is normally satisfied.
Therefore, the optimal training sequences from 𝕋𝑖’s should
be orthogonal to each other, which is a consistent result as
that in [19].

C. Optimal Power Allocation

The next step is to find the optimal power allocation factor
𝛼 when 𝜌 = 0. After some tedious calculation, we obtain

𝜓1(𝛼, 𝛽, 0) =
𝐹3𝛼

𝐹1𝜎2𝑛 + 𝐹2𝛼
, (28)

𝜓2(𝛼, 𝛽, 0) =
𝐹6𝛽

𝐹4𝜎2𝑛 + 𝐹5𝛽
, (29)

where

𝐹1 = 𝑄2𝜎
2
2 + 𝜎

2
𝑛, 𝐹3 = 𝑁𝑃𝑟𝑃1𝑄1𝜎

4
𝑎,

𝐹4 = 𝑄1𝜎
2
1 + 𝜎

2
𝑛, 𝐹6 = 𝑁𝑃𝑟𝑃2𝑄2𝜎

4
𝑏 ,

𝐹2 = 𝑁𝑃𝑟𝑄1𝜎
2
𝑎 +

(
𝑁𝑃𝑟𝜎

2
1 +𝑄1𝜎

2
1 −𝑄2𝜎

2
2

)
𝜎2𝑛,

𝐹5 = 𝑁𝑃𝑟𝑄2𝜎
2
𝑏 +

(
𝑁𝑃𝑟𝜎

2
1 +𝑄2𝜎

2
2 −𝑄1𝜎

2
1

)
𝜎2𝑛.

Observing that 𝛾 is a function of a single variable 𝛼, the
maximum must be obtained at one root of its first order
derivative or at 𝛼 = 0 or 𝛼 = 1, regardless of whether 𝛾
is concave or not. One can immediately remove the choices
of 𝛼 = 0 and 𝛼 = 1, which fail either the channel estimate of
𝑎 or 𝑏. The derivative of 𝛾 with respect to 𝛼 is given by (30),
which is shown on the top of the next page, where

𝜔2 = 1− 𝐹4

(
𝐹0𝐹

2
2 − 𝐹2𝐹3

)
𝐹1𝐹3𝐹5

,

𝜔1 = −2− 2𝐹0𝐹2𝐹4

𝐹3𝐹5
𝜎2𝑛,

𝜔0 = 1 +
𝐹4

𝐹5
𝜎2𝑛 − 𝐹0𝐹1𝐹4

𝐹3𝐹5
𝜎4𝑛.

Note that, the existence of two roots indicates that 𝛾 is neither
a concave or a convex function if we do not restrict 𝛼 in the
region [0, 1]. Therefore, the optimal 𝛼 is the root of

𝜔2𝛼
2 + 𝜔1𝛼+ 𝜔0 = 0, (31)

which is one of

𝛼opt =
−𝜔1 ±

√
𝜔2
1 − 4𝜔0𝜔2

2𝜔2
, (32)

that gives the larger value of 𝛾 and at the same time belongs
to [0, 1]. Due to the complicated structure of the roots, we
cannot theoretically prove whether both roots reside in [0, 1],
neither could we know which one gives a larger 𝛾. Nonetheless
in practical applications, one can simply check these two
candidates and choose the one that yields the highest AESNR.
We also find via numerous simulations that 𝛾 is a concave
function of 𝛼 ∈ [0, 1] and some examples will be presented
in the simulation section.

Interestingly, when the transmit SNRs at both the two source
terminals are high, there are

lim
𝜎2
𝑛→0+

𝜔2 = 1− 𝜏2, lim
𝜎2
𝑛→0+

𝜔1 = −2, lim
𝜎2
𝑛→0+

𝜔0 = 1.

In this case, we derive the suboptimal power allocation factor

𝛼sub−opt = lim
𝜎2
𝑛→0+

𝛼opt =
1

1 + 𝜏
∈ [0, 1], (33)

where 𝜏 = 𝑄1𝜎1

√
𝑃2

𝑄2𝜎2

√
𝑃1

is defined as the effective ratio controller
(ERC). This suboptimal power allocation factor is easy to
implement, and it demonstrates good performance even at
relatively lower SNR region, as will be seen in the later
simulation part.

Some insights can be gained from the suboptimal power
allocation factor 𝛼sub−opt:

∙ If the two channel links are well balanced in terms
of 𝑄1𝜎1√

𝑃1
= 𝑄2𝜎2√

𝑃2
, then 𝛼sub−opt = 0.5, i.e., equal

power allocation. Obviously, whether the link is balanced
depends on three different factors, i.e., training power,
data power, as well as the channel quality. For example
in the recently announced LTE-Advanced specifications
[23], the relay is adopted between base stations (BS) and
mobile stations (MS). Naturally, it is expected powers of
BS and MS are not the same. Depending on the positions
of relay and MS (especially when the latter is moving),
the channel links are also expected to be different. All
these facts corroborates the necessity of the proposed
study.

∙ Through the simulations, we find that the optimal power
allocation almost simultaneously maximize the AESNR
at 𝕋1 and 𝕋2, especially when SNR is high. This can be
explained using sub-optimal power allocation that is near
optimal at high SNR region. Let 𝛼′

sub−opt and 𝛽′sub−opt

be the suboptimal power allocation to t1 and t2 such
that the AESNR at 𝕋2 is maximized. By switching the
variables in the derivation of (33), we can easily obtain

𝛽′sub−opt =
1

1 + 1
𝜏

=
𝜏

1 + 𝜏
, (34)

which is the same as 𝛽sub−opt used to maximize AESNR
at 𝕋1.

IV. LINEAR MINIMUM MEAN-SQUARE-ERROR CHANNEL

ESTIMATION

In this section, we study another popular type of channel
estimator, i.e., linear minimum mean-square-error (LMMSE)
channel estimator, as well as its corresponding power alloca-
tion.

A. Channel Estimation

From (13), the linear MMSE estimation of h𝑒 and the
resultant MSE can be immediately derived from the standard
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∂𝛾

∂𝛼
=

𝐹1𝐹3𝐹5𝐹6𝜎
2
𝑛

(
𝜔2𝛼

2 + 𝜔1𝛼+ 𝜔0

)
((𝐹0 − 𝜓1(𝛼, 𝛽, 0)− 𝜓2(𝛼, 𝛽, 0)) (𝐹1𝜎2𝑛 + 𝐹2𝛼) (𝐹4𝜎2𝑛 + 𝐹5𝛽))

2 (30)

approach [24] as:

ĥ𝑒 = 𝜅𝑇Rh𝑒ΛT𝐻
(
𝜅2𝑇TΛRh𝑒ΛT𝐻 +Rñ

)−1

z1, (35)

and

𝜎2
ĥ𝑒

= tr

{(
R−1

h𝑒
+ 𝜅2𝑇ΛT𝐻R−1

ñ TΛ
)−1

}
, (36)

where Rh𝑒 = E{h𝑒h𝐻𝑒 } is the covariance matrices of
h𝑒. Since E{𝑎𝑏∗} = 0, it can be computed that Rh𝑒 =
diag{𝜎2𝑎, 𝜎2𝑏}.

From (14) and the matrix inversion lemma, 𝜎2
ĥ𝑒

can be re-
expressed as

𝜎2
ĥ𝑒

= 𝜎2𝑛tr
{(
𝜎2𝑛R

−1
h𝑒

+D−1
)−1
}
, (37)

where D is a 2× 2 matrix given by

D = 𝜅−2
𝑇

(
ΛT𝐻TΛ

)−1

+ 𝜎21
(
T𝐻T

)−1
. (38)

The (𝑖, 𝑗)-th entries of D, i.e., 𝑑𝑖,𝑗 , can be expressed as

𝑑11 =

(
𝐴3 + 𝛼𝜎

2
1

)
𝑥+𝐴4

𝛼𝑄1𝑥2
, (39)

𝑑22 =

(
𝐴3 + 𝛽𝜎

2
1

)
𝑥+𝐴4

𝛽𝑄2𝑥2
, (40)

𝑑12 = 𝑑
∗
21 =

𝜌
(
(𝐴3 +

√
𝛼𝛽𝜎21)𝑥+𝐴4

)
√
𝛼𝛽𝑄1𝑄2𝑥2

, (41)

where 𝑥 ≜ 1− ∣𝜌∣2, and the explicit forms of 𝐴3 and 𝐴4 are
defined in Appendix I.

For notation simplicity, we define 𝛾𝑎 = 𝜎2𝑎/𝜎
2
𝑛, 𝛾𝑏 =

𝜎2𝑏/𝜎
2
𝑛. Then, (37) can be explicitly written as in (42), shown

at the top of the next page.

B. Training Design

Define 𝜇𝑖 = 𝑄𝑖/𝑁𝑃𝑟, and define the following two sets:

𝒜1 =

{
[𝛼0, 1] , if 𝜇1 ≥ 1

8 ;
[𝛼0, 𝛼1] , otherwise,

(43)

𝒜2 =

{
[0, 1− 𝛽0] , if 𝜇2 ≥ 1

8 ;
[1− 𝛽1, 1− 𝛽0] , otherwise,

(44)

where

𝛼0 =
1

𝜇21 + 4𝜇1 + 5
, 𝛼1 =

9− 4𝜇1 −√
1− 8𝜇1

2 (𝜇21 − 4𝜇1 + 5)
,

𝛽0 =
1

𝜇22 + 4𝜇2 + 5
, 𝛽1 =

9− 4𝜇2 −
√
1− 8𝜇2

2 (𝜇22 − 4𝜇2 + 5)
.

The following proposition provides illumination for our next
discussion.

Proposition 2: The optimal t1 and t2 which minimized 𝜎2
ĥ𝑒

should be orthogonal, if

𝛼 ∈ 𝒜1

∩
𝒜2 . (45)

Proof: See Appendix II.

If both 𝜇1 and 𝜇2 are greater than 1
8 , then the condition

in Proposition 2 reduces to 𝛼 ∈ [𝛼0, 1− 𝛽0]. For example, if
𝜇1 = 𝜇2 = 1 which is the case when relay has the same power
as the terminal and when the training power is the same as the
data transmission power, then the condition is 𝛼 ∈ [0.1, 0.9].
When 𝜇𝑖, 𝑖 = 1, 2 become larger, the range of 𝛼 corresponding
to the optimal 𝜌 = 0 also becomes larger.

C. Power Allocation

Unfortunately, Proposition 2 still cannot guarantee that
𝜌 = 0 is the optimal correlation factor for all the range of
𝛼. Therefore in this paper, we will restrict ourselves to a
suboptimal power allocation under 𝜌 = 0. Nonetheless, we
will numerically see in the simulations that 𝜌 = 0 is a good
correlation factor for all the range of 𝛼.

For 𝜌 = 0, 𝜎2
ĥ𝑒

can be simplified to

𝜎2
ĥ𝑒

=

(
𝛾𝑎𝑑11
𝛾𝑎 + 𝑑11

+
𝛾𝑏𝑑22
𝛾𝑏 + 𝑑22

)
𝜎2𝑛. (46)

Observing that 𝜎2
ĥ𝑒

is a function of a single variable 𝛼,
the minimum must be obtained at one root of its first order
derivative or at 𝛼 = 0 or 𝛼 = 1, regardless of whether 𝜎2

ĥ𝑒
is

convex or not. With the same reason as in Section III.C, one
can immediately remove the choices of 𝛼 = 0 and 𝛼 = 1. The
derivative of 𝜎2

ĥ𝑒
with respect to 𝛼 is given by (47), which is

shown at the top of the next page, where 𝐹𝑖’s are the same
as those defined in the previous section. Thus, the optimal
𝛼 is one of (48), shown at the top of the next page, that
belongs to [0, 1]. When the transmit SNRs at both the two
source terminals are high, we obtain the suboptimal solution
of 𝛼 as

𝛼sub−opt = lim
𝜎2
𝑛→0+

𝛼opt =
1

1 + 𝜚
, (49)

where 𝜚 = 𝑄1𝜎1

𝑄2𝜎2
.

Similar discussions as those in Section III.C can be made
here, which will be omitted for brevity. Once again, the
optimal 𝛼 depends on the balancedness of the two link, which
depends on two different factors, i.e., training power and
channel quality. Different from the scenario of maximizing
the AESNR, the balancedness for minimizing the MSE is
not related with the data power 𝑃𝑖, which is quite reasonable
because data power is not involved into the LMMSE channel
estimation.

V. SIMULATION RESULTS

In this section, we numerically study the performance of
our proposed channel estimation algorithms and the training
designs under various scenarios. The channel variances are set
as 𝜎21 = 𝜎

2
2 = 1. For all examples, we fix 𝑃1 = 𝑃2 = 𝑃𝑟, and

the SNR is defined as 𝑃1/𝜎
2
𝑛. The parameter 𝑁 is set to be 4

and the phase of 𝜌 is randomly taken. The training power𝑄2 is
set to be 𝑁𝑃2, while 𝑄1/𝑄2 is taken as 6.3 (8dB in log-unit)
for most examples unless otherwise mentioned. Hence, the
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𝜎2
ĥ𝑒

=
(𝛾𝑎 + 𝛾𝑏)𝑑11𝑑22 + 𝛾𝑎𝛾𝑏𝑑11 + 𝛾𝑎𝛾𝑏𝑑22 − (𝛾𝑎 + 𝛾𝑏)∣𝑑12∣2

𝛾𝑎𝛾𝑏 + 𝑑11𝑑22 + 𝛾𝑏𝑑11 + 𝛾𝑎𝑑22 − ∣𝑑12∣2 𝜎2𝑛 (42)

∂𝜎2
ĥ𝑒

∂𝛼
=

(
𝑄2𝜎

2
𝑏𝐹4

(
𝐹1𝜎

2
𝑛 + 𝐹2𝛼

)2 −𝑄1𝜎
2
𝑎𝐹1

(
𝐹4𝜎

2
𝑛 + 𝐹5𝛽

)2)
𝑁𝑃𝑟𝜎

2
𝑛

(𝐹1𝜎2𝑛 + 𝐹2𝛼)
2(𝐹4𝜎2𝑛 + 𝐹5𝛽)

2 (47)

𝛼opt=
𝑄1𝜎

4
𝑎𝐹1𝐹

2
5 +

(
𝑄1𝜎

4
𝑎𝐹5 +𝑄2𝜎

4
𝑏𝐹2

)
𝐹1𝐹4𝜎

2
𝑛 ±√

𝑄1𝑄2𝐹1𝐹4𝜎
2
𝑎𝜎

2
𝑏

(
𝐹2𝐹5 +𝐹1𝐹5𝜎

2
𝑛 +𝐹2𝐹4𝜎

2
𝑛

)
𝑄1𝜎4𝑎𝐹1𝐹 2

5 −𝑄2𝜎4𝑏𝐹4𝐹 2
2

(48)
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Fig. 2. AESNR versus SNR for ∣𝜌∣ = 0, 0.9, 0.99 and 𝛼 = 0.1, 0.5, 0.9.
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Fig. 3. AESNR versus 𝛼 for SNR= 4, 12, 16 dB at ∣𝜌∣ = 0.

parameters 𝜏 (defined as 𝑄1𝜎1

√
𝑃2

𝑄2𝜎2

√
𝑃1

) and 𝜚 (defined as 𝑄1𝜎1

𝑄2𝜎2
)

are 6.3, and it is expected that 𝛼sub−opt is 0.137 for both
LMSNR and LMMSE channel estimators. Unless otherwise
mentioned, the simulations results are made for terminal 𝕋1

only.

A. LMSNR Channel Estimation

1) Optimality of ∣𝜌∣: In the first example, we numerically
verify the optimal choice of ∣𝜌∣ by taking ∣𝜌∣ = 0, ∣𝜌∣ = 0.9,
and ∣𝜌∣ = 0.99, while for each ∣𝜌∣ we take three different
power allocation factors 𝛼 = 0.1, 𝛼 = 0.5 and 𝛼 = 0.9,
respectively. The performance AESNRs versus the SNR are
shown in Fig. 2. Note that we do not demonstrate for ∣𝜌∣
between 0 and 0.9 because the resultant lines are close to that
of ∣𝜌∣ = 0, which make the figure illegible. Performance on
different 𝛼 will be given in the next example. One important
observation from Fig. 2 is that, for any value of 𝛼, ∣𝜌∣ = 0
always yields the best performance, which numerically verifies
our previous claim in Proposition 1.

2) Optimality of 𝛼: Fig. 3 shows the AESNR versus the
power allocation 𝛼 for both terminals 𝕋1 and 𝕋2. Three
different SNRs, i.e., 4 dB, 12 dB, and 16 dB are involved.
The parameter 𝜌 is taken as 0 for all SNRs.

We first discuss over the three AESNR curves for 𝕋1.
Numerically, it is observed that the AESNR is a concave
function of 𝛼 within [0, 1], which indicates a unique maximum
point corresponding to the optimal power allocation. The
intersection of 𝛼opt with AESNR is marked by circle, while
the numerically obtained optimal 𝛼 (from one-dimensional
search) is marked by cross. Clearly, our theoretical analysis
matches the numerical results quite well. It needs to be
emphasized that, the value of 𝛼sub−opt is 0.137, which almost
overlaps with 𝛼opt when the SNR is as high as 16 dB.
Although it is away from the 𝛼opt when the SNR is low,
the corresponding performance does not deteriorate much
compared to its optimal value. A more clear demonstration
is shown in the next example.

Now we look at the rest three AESNR curves for 𝕋2. The
optimal 𝛽 is first obtained and then the corresponding 𝛼 is
found from 1−𝛽. It is seen that the optimal power allocation
for 𝕋2 is not the same as that for 𝕋1 at the low SNR region.
However, they are very close at high SNR region as we have
analyzed in the main text part, i.e., both approach to 𝛼sub-opt.
Nonetheless, we also observe that the AESNR curves are quite
flat near the 𝛼sub-opt. So the performance loss by using 𝛼sub-opt

is quite small, and we then claim that using 𝛼sub-opt could
almost maximize AESNR for both terminals simultaneously.

3) Comparison with the existing method: We then compare
our method with the existing one in [19], where an equal
power allocation 𝛼 = 𝛽 = 0.5 is applied. The optimal
correlation factor is 𝜌 = 0 for both methods. The results from
the optimal power allocation 𝛼opt and the sub-optimal power
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Fig. 5. The AESNR gain of the optimal allocation over the equal power
allocation versus 𝜏 for SNR= 4, 12, 16 dB.

allocation 𝛼sub−opt are both displayed. As shown in Fig. 4, the
performance of our proposed method with 𝛼sub−opt attaches
that with 𝛼opt even at lower SNR region, which implies a very
good approximation by using 𝛼sub−opt, only. Moreover, the
proposed method with optimal power allocation outperforms
the method in [19] by 1 dB.

4) Performance for different 𝜏 : From the expression of
𝛼sub−opt, we know that the gain of the proposed technique
over [19] is related to 𝜏 , i.e., the balancedness between the
two channel links. It is then of interest to check how the
performance gain varies with different values of 𝜏 . Define the
AESNR gain as

AESNR gain =
AESNR with optimal power allocation
AESNR with equal power allocation

.

The results are shown in Fig. 5 for three SNRs 4 dB, 12 dB,
and 16 dB, respectively. Clearly, as 𝜏 becomes larger, i.e.,
more unbalanced scenario, the AESNR gain from applying
the optimal power allocation becomes larger.
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Fig. 6. MSE versus SNR for ∣𝜌∣ = 0, 0.9, 0.99 and 𝛼 = 0.1, 0.5, 0.9.
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Fig. 7. MSE versus ∣𝜌∣ for 𝛼 = 0.01, 0.1, 0.2, 0.5, 0.9, 0.99 at SNR= 0dB.

B. LMMSE Channel Estimation

1) Optimality of ∣𝜌∣: The performance of MSEs versus the
SNR are shown in Fig. 6 for three different ∣𝜌∣ as ∣𝜌∣ = 0,
∣𝜌∣ = 0.5, and ∣𝜌∣ = 0.9, while for each ∣𝜌∣ we consider
three different power allocation factor 𝛼 = 0.1, 𝛼 = 0.5 and
𝛼 = 0.9. It is seen that ∣𝜌∣ = 0 provides the optimal values
for all three choice of 𝛼.

To further verify the optimality of ∣𝜌∣ = 0 in a numerical
way, we fix SNR= 0 dB and show the performance of MSEs
versus ∣𝜌∣ in Fig. 7, for a wide range of 𝛼 from 0.01 to
0.99. Obviously, ∣𝜌∣ = 0 still performs the best over different
scenarios. We need to emphasize that the optimality of ∣𝜌∣ = 0
is only numerically examined in this paper.

2) Optimality of 𝛼: In this example, we check the optimality
of 𝛼opt in (48) for the choice ∣𝜌∣ = 0. Three different SNRs
4 dB, 12 dB, and 16 dB are adopted. The performance MSEs
versus 𝛼 are shown in Fig. 8 for both terminal 𝕋1 and 𝕋2.
It is seen that MSE curves are convex functions of 𝛼 within
[0, 1] for all three SNR values. The vertical lines give the
position of 𝛼opt whose intersection with MSE curves are
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marked by circle. The numerically searched optimal 𝛼 on MSE
lines are marked by cross. Clearly, our theoretical analysis
matches the numerical results quite well. Similarly to Fig.
3, the suboptimal 𝛼sub−opt is far from 𝛼opt when the SNR
equals to 4 dB, but the MSE degeneration is not remarkable.
Moreover, the optimal power allocations for 𝕋1 and 𝕋2 are
not the same at the low SNR region but are very close at high
SNR region. Once again, we observe that the MSE curves
are quite flat near 𝛼sub-opt. So the performance loss by using
𝛼sub-opt is quite small.

3) Comparison with the existing method: We then compare
our method with the existing LMMSE channel estimator [19].
Both 𝛼opt and 𝛼sub−opt are examined and the performance
results are shown in Fig. 9. Clearly, the performance of
𝛼sub−opt attaches that from 𝛼opt even at lower SNR region,
which implies a very good approximation of replacing 𝛼opt

by 𝛼sub−opt. Moreover, the proposed method with optimal
power allocation outperforms the existing LMMSE from one
to 3 dB.

4) Performance for different 𝜚: As in the LMSNR estimator,
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Fig. 10. The MSE gain of the optimal allocation over the equal power
allocation versus 𝜚 for SNR= 4, 12, 16 dB.

the gain of the proposed method over the existing one comes
from the unbalanced channel links in the relay networks. We
then demonstrate this effect by changing the parameter 𝜚 in
𝛼sub−opt. Define the MSE gain as

MSE gain =
MSE with equal power allocation

MSE with optimal power allocation
.

The resultant MSEs versus 𝜚 are displayed in Fig. 10 for
SNR = 4, 12, and 16 dB, respectively. Clearly, the larger
the 𝜚 is, i.e., the lager the unbalancedness is, the greater the
MSE gain is observed.

VI. CONCLUSIONS

In this paper, we introduced a new principle to implement
channel estimation for AF based TWRN by letting the re-
lay node estimate the channels first and then allocate the
power to optimize for certain criterions. We considered two
linear estimators, i.e., LMSNR and LMMSE, and studied
the corresponding training design and the optimal/suboptimal
power allocations. Nonetheless, the proposed principle can be
readily extended to different channel estimators with different
optimizing criterions. For unbalanced channel links, where the
definition of unbalancedness varies for different scenarios, the
proposed method outperforms the existing techniques that triv-
ially apply equal power allocation at the relay node. Finally,
numerous simulation results were provided to corroborate the
proposed studies.

APPENDIX I
PROOF OF PROPOSITION 1

In order to maximize the AESNR, we first need to obtain
the values R−1

𝑧 t𝑖 and t𝐻𝑖 R−1
𝑧 t𝑖, 𝑖 = 1, 2.

Lemma 1: If an invertible 𝑁 ×𝑁 matrix Θ has the form

Θ = I+
𝑀∑
𝑖=1

𝑀∑
𝑗=1

[A]𝑖𝑗x𝑖x
𝐻
𝑗 , (50)
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where x𝑖’s are 𝑁 × 1 column vectors and A is an 𝑀 ×𝑀
matrix, then the inverse of Θ is

Θ−1 = I−
𝑀∑
𝑖=1

𝑀∑
𝑗=1

[B]𝑖𝑗x𝑖x
𝐻
𝑗 , (51)

where B is an 𝑀 ×𝑀 matrix with the form

B = (I+AΩ)−1A, (52)

and Ω is an 𝑀 ×𝑀 matrix with [Ω]𝑖𝑗 = x𝐻𝑖 x𝑗 . Furthermore,
we have

Θ−1x𝑞 = x𝑞 −
𝑀∑
𝑖=1

[
(I+AΩ)−1AΩ

]
𝑖𝑞
x𝑖, (53)

and
x𝐻𝑝 Θ−1x𝑞 =

[
Ω(I+AΩ)−1

]
𝑝𝑞
. (54)

Proof: The product of the right hand sides (RHSs) of (50)
and (51), denoted as G, can be expressed as

G=I+

𝑀∑
𝑖=1

𝑀∑
𝑗=1

(
[A]𝑖𝑗−[B]𝑖𝑗−

𝑀∑
𝑝=1

𝑀∑
𝑞=1

[A]𝑖𝑝[Ω]𝑝𝑞[B]𝑞𝑗

)
x𝑖x

𝐻
𝑗 ,

(55)

=I+

𝑀∑
𝑖=1

𝑀∑
𝑗=1

(
[A−B−AΩB]𝑖𝑗

)
x𝑖x

𝐻
𝑗 . (56)

Substituting (52) into (56) yields G = I. Thus, the RHS of
(51) is the inverse of Θ.

From (51), Θ−1x𝑞 and x𝐻𝑝 Θ−1x𝑞 can be respectively
expressed as

Θ−1x𝑞 = x𝑞 −
𝑀∑
𝑖=1

𝑀∑
𝑗=1

[B]𝑖𝑗 [Ω]𝑗𝑞x𝑖 = x𝑞 −
𝑀∑
𝑖=1

[BΩ]𝑖𝑞x𝑖,

(57)

x𝐻𝑝 Θ−1x𝑞 = [Ω]𝑝𝑞 −
𝑀∑
𝑖=1

[Ω]𝑝𝑖[BΩ]𝑖𝑞 = [Ω−ΩBΩ]𝑝𝑞.

(58)

Substituting (52) into (57) and (58) yields (53) and (54),
respectively. This completes the proof of Lemma 1.

For the parameters used in Lemma 1, let x𝑖 = t𝑖, Θ =
R𝑧/𝜎

2
𝑛, and A be a 2 × 2 matrix with [A]11 = 𝐶1, [A]22 =

𝐶2, and [A]12 = [A]∗21 = 𝐶3, then t𝑖R
−1
𝑧 t𝑖, 𝑖 = 1, 2, can be

computed as (59) and (60), which are shown on the top of the
next page.

Define 𝑥 = 1 − ∣𝜌∣2. Then after tedious re-organization,
𝜓1(𝛼, 𝛽, ∣𝜌∣) becomes

𝜓1(𝑥) ≜ 𝜓1(𝛼, 𝛽,
√
1− 𝑥2) = 𝐴0

𝜍3𝑥
3 + 𝜍2𝑥

2 + 𝜍1𝑥

𝜉3𝑥3 + 𝜉2𝑥2 + 𝜉1𝑥+ 𝜉0
,

(61)
where

𝜍3 = 𝛽𝐴2, 𝜍2 = 𝛽𝜎
2
1 +𝐴3, 𝜍1 = 𝐴4,

𝜉3 = 𝛼𝛽𝐴1𝐴2, 𝜉0 = 𝐴4𝐴5𝜎
2
1 +𝐴

2
4,

𝜉2 = (𝐴1 +𝐴2 + 𝜎
2
1)𝛼𝛽𝜎

2
1 + (𝛼𝐴1 + 𝛽𝐴2 + 2

√
𝛼𝛽𝜎21)𝐴3 +𝐴

2
3,

𝜉1 = (𝛼𝐴1 + 𝛽𝐴2 + 2
√
𝛼𝛽𝜎21)𝐴4 +𝐴3𝐴5𝜎

2
ℎ + 2𝐴3𝐴4,

and

𝐴0 =
𝑃1𝜎

4
𝑎𝑄1𝛼

𝜎2𝑛
, 𝐴1 =

𝑄1𝜎
2
𝑎

𝜎2𝑛
, 𝐴2 =

𝑄2𝜎
2
𝑏

𝜎2𝑛
, 𝐴4 =

𝐴5𝜎
2
𝑛

𝑁𝑃𝑟
,

𝐴3 =
𝛼𝑄1𝜎

2
1 + 𝛽𝑄2𝜎

2
2 + 2

√
𝛼𝛽𝜎2𝑛

𝑁𝑃𝑟
, 𝐴5 = (

√
𝛼−

√
𝛽)2.

From the quotient rule in calculus [25], the first order
derivative of 𝜓1(𝑥) can be expressed as (62), shown on the
top of the next page.

To see the sign of (62), we only need to consider its
numerator. Obviously, the coefficients of 𝑥 and the constant
term are nonnegative. Furthermore, we can verify that

𝜍3𝜉2 − 𝜍2𝜉3
= 𝛽𝐴2

(
(𝐴2 + 𝜎

2
1)𝛼𝛽𝜎

2
1 + (𝛽𝐴2 + 2

√
𝛼𝛽𝜎21)𝐴3 +𝐴

2
3

)
≥ 0,

𝜍3𝜉1 − 𝜍1𝜉3
= 𝛽𝐴2

(
(𝛽𝐴2 + 2

√
𝛼𝛽𝜎21)𝐴4 + 𝜎

2
1𝐴3𝐴5 + 2𝐴3𝐴4

)
≥ 0.

Therefore, the coefficients of 𝑥4 and 𝑥3 are also nonnegative.
After some algebraic operations, the coefficient of 𝑥2 can be
expressed as

𝜍2𝜉1 − 𝜍1𝜉2 + 3𝜍3𝜉0

= 𝐵0 +𝐵1

(
𝐴2(2𝛼− 6

√
𝛼𝛽 + 5𝛽)− (𝛼− 4

√
𝛼𝛽)

)
,

(63)

where 𝐴2 =
𝑄2𝜎

2
2

𝜎2
𝑛

is the received SNR from 𝕋2 at ℝ during
the training, while 𝐵0 and 𝐵1 are positive coefficients whose
explicit forms are omitted for brevity. Bearing in mind that
𝛼+ 𝛽 = 1, we obtain{

𝛼− 4
√
𝛼𝛽 < 0, 1

17 < 𝛽 ≤ 1;
2𝛼−6

√
𝛼𝛽+5𝛽

𝛼−4
√
𝛼𝛽

≥ 2, 0 ≤ 𝛽 < 1
17 .

(64)

From (64), we see that if 𝐴2 ≥ 1
2 , then the coefficient

(𝜍2𝜉1− 𝜍1𝜉2+3𝜍3𝜉0) is no less than zero. Hence ∂𝜓1

∂𝑥 ≥ 0 and
𝜓1(𝛼, 𝛽, ∣𝜌∣) is a monotonically increasing function of 𝑥 and
is, hence, a monotonically decreasing function of ∣𝜌∣.

Similarly, we know that if 𝐴1 =
𝑄1𝜎

2
1

𝜎2
𝑛

≥ 1
2 , then

∂𝜓2(𝛼,𝛽,
√
1−𝑥2)

∂𝑥 ≥ 0 and 𝜓2(𝛼, 𝛽, ∣𝜌∣) is a monotonically
decreasing function of ∣𝜌∣.

Combined with (22) and (23), we know that 𝛾 is a monoton-
ically decreasing function of ∣𝜌∣ whose maximum is attained
when ∣𝜌∣ = 0. This completes the proof of Proposition 1.

APPENDIX II
PROOF OF PROPOSITION 2

Define

𝑔1 =
𝑑11

detD
, 𝑔2 =

𝑑22
detD

, 𝑔3 =
∣𝑑12∣2
detD

, (65)

where detD = 𝑑11𝑑22 − ∣𝑑12∣2 is the determinant of D. Since
detD is positive, 𝑔𝑖, 𝑖 = 1, 2, 3 are positive numbers. Then,
(37) can be alternatively written as

𝜎2
ĥ𝑒

=
𝛾−1
𝑎 + 𝛾−1

𝑏 + 𝑔1 + 𝑔2

(𝛾−1
𝑎 + 𝑔2)(𝛾

−1
𝑏 + 𝑔1)− 𝑔3

𝜎2𝑛. (66)



JIANG et al.: CHANNEL ESTIMATION AND TRAINING DESIGN FOR TWO-WAY RELAY NETWORKS WITH POWER ALLOCATION 2031

t𝐻1 R−1
𝑧 t1=

𝑄1(1 + 𝐶2𝑄2(1− ∣𝜌∣2))(
1 + 𝐶1𝑄1 + 𝐶2𝑄2 + 2ℜ(𝐶3𝜌∗)

√
𝑄1𝑄2 + (𝐶1𝐶2 − ∣𝐶3∣2)(1 − ∣𝜌∣2)𝑄1𝑄2

)
𝜎2𝑛
, (59)

t𝐻2 R−1
𝑧 t2=

𝑄2(1 + 𝐶1𝑄1(1− ∣𝜌∣2))(
1 + 𝐶1𝑄1 + 𝐶2𝑄2 + 2ℜ(𝐶3𝜌∗)

√
𝑄1𝑄2 + (𝐶1𝐶2 − ∣𝐶3∣2)(1 − ∣𝜌∣2)𝑄1𝑄2

)
𝜎2𝑛

(60)

∂𝜓1

∂𝑥
= 𝐴0

(𝜍3𝜉2 − 𝜍2𝜉3)𝑥4 + 2(𝜍3𝜉1 − 𝜍1𝜉3)𝑥3 + (𝜍2𝜉1 − 𝜍1𝜉2 + 3𝜍3𝜉0)𝑥
2 + 2𝜍2𝜉0𝑥+ 𝜍1𝜉0

(𝜉3𝑥3 + 𝜉2𝑥2 + 𝜉1𝑥+ 𝜉0)
2 (62)

The derivatives of 𝜎2
ĥ𝑒

with respect to 𝑔1, 𝑔2, and 𝑔3 are given
by

∂𝜎2
ĥ𝑒

∂𝑔1
= −

(
𝛾−1
𝑎 + 𝑔2

)2
+ 𝑔3((

𝛾−1
𝑎 + 𝑔2

) (
𝛾−1
𝑏 + 𝑔1

)− 𝑔3)2𝜎2𝑛 < 0 , (67)

∂𝜎2
ĥ𝑒

∂𝑔2
= −

(
𝛾−1
𝑏 + 𝑔1

)2
+ 𝑔3((

𝛾−1
𝑎 + 𝑔2

) (
𝛾−1
𝑏 + 𝑔1

)− 𝑔3)2𝜎2𝑛 < 0 , (68)

∂𝜎2
ĥ𝑒

∂𝑔3
=

𝛾−1
𝑎 + 𝛾−1

𝑏 + 𝑔1 + 𝑔2((
𝛾−1
𝑎 + 𝑔2

) (
𝛾−1
𝑏 + 𝑔1

)− 𝑔3)2𝜎2𝑛 > 0 , (69)

respectively. From (67)–(69), we know that 𝜎2
ĥ𝑒

is monoton-
ically decreasing with 𝑔1 and 𝑔2, whereas is monotonically
increasing with 𝑔3.

With some tedious manipulations and re-organizations, the
derivatives of 𝑔1 and 𝑔2 with respect to 𝑥 can be expressed as

∂𝑔1
∂𝑥

= 𝐵1,1 +𝐵1,2

((
𝐴3 + 𝛼𝜎

2
1

)2 − (𝛼−
√
𝛼𝛽
)2
𝜎41

)
,

(70)

∂𝑔2
∂𝑥

= 𝐵2,1 +𝐵2,2

((
𝐴3 + 𝛽𝜎

2
1

)2 − (𝛽 −
√
𝛼𝛽
)2
𝜎41

)
,

(71)

where 𝐵𝑖,𝑗’s are all positive coefficients whose explicit forms
are omitted for brevity. From the fact that 𝐴3 > 𝜇1𝜎

2
1 , we can

verify that (70) and (71) are positive if 𝛼 ∈ 𝒜1. Therefore,
𝑔𝑖, 𝑖 = 1, 2 are monotonically increasing function of 𝑥,
whose maximums are achieved simultaneously when 𝑥 = 1.
Meanwhile, 𝑔3 achieves its minimum when 𝑥 = 1. Hence,
the channel estimation MSE 𝜎2

ĥ𝑒
at 𝕋1 achieves its minimum

when 𝑥 = 1; namely, 𝜌 = 0.
Similarly, we can prove that if 𝛼 ∈ 𝒜2, then the channel

estimation MSE at 𝕋2 achieves its minimum when 𝜌 = 0.
This completes the proof of Proposition 2.
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