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Abstract—In this paper, we consider an reconfigurable intelli-
gent surface (RIS)-assisted multiple input single output (MISO)
covert symbiotic radio (SR) communication system. RIS, as a
secondary transmitter (STx), can enhance primary transmission
from the primary transmitter (PTx) to the primary receiver
(PRx). Simultaneously, STx transmits its own information to
the secondary receiver (SRx). In addition, RIS-assisted covert
communications have a broad development prospect, and covert
communication is considered in which Willie eavesdrops passive
signals from RIS (Alice) to SRx (Bob). By jointly optimizing
active beamforming vector at PTx and passive beamforming
matrix at RIS, the achievable rate of PRx is maximized subject
to the covertness constraint and the signal-to-noise ratio (SNR)
constraint for secondary transmission. The optimization problem
is challenging because of the non-convex objective function
and the coupling between variables. Thus, the deep unfolding
algorithm based on gradient descent (DUAGD) is proposed for
the beamforming design. Specifically, we first transform the
optimization problem with constraints into the dual domain.
Then inspired by gradient descent algorithm, deep unfolding
unfolds the original iterative process into a multi-layer network
structure. Results from simulations show that the proposed
algorithm has fast convergence while maintaining performance.

Index Terms—Covert communication, deep unfolding, recon-
figurable intelligent surface, symbiotic radio.

I. INTRODUCTION

Since a large number of private information needs to be
transmitted in both civilian and military fields, the security of
information is a key issue, and conventional security methods
such as physical layer security technology have been devel-
oped to solve this problem [1]. Different from the security of
data transmission of conventional methods, covert communi-
cation, as a new technology, can ensure that the transmission
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behavior is not detected [2]. Although adding artificial noise
interference and cooperating relays can be used to improve the
covertness performance, additional system resources will be
consumed. Fortunately, reconfigurable intelligent surface (RIS)
can be deployed to provide additional links to improve covert
communication performance [3]. As shown in [1], RIS has
brought great benefits to covert communication. In addition,
symbiotic radio (SR) technology developed based on ambi-
ent backscatter communications can solve the challenge of
increasing demand for communication resources [4]. However,
it may be attacked by malicious eavesdroppers because of its
structures. The application of covert communication to the
SR system can ensure spectrum efficiency and information
covertness [5].

However, the resultant expression of minimum detection
error probability contains incomplete gamma functions, which
makes the subsequent optimization challenging. To solve this
problem, several recent works adopted Kullback-Leibler (KL)
divergence to evaluate covertness [2], [6]. In [2], the authors
studied the robust transmission design where the KL diver-
gence was adopted in the covert constraint for the IRS-assisted
covert communication system. And an alternative optimization
(AO) method is proposed to solve this optimization problem.
In addition, the authors in [6] adopted Bernstein-type inequal-
ity to derive the upper bound of KL divergence to rewrite the
covert constraint. The sub-problems of optimization problems
are solved by semi-definite programming and penalty suc-
cessive convex approximation, respectively. The above works
are the RIS-assisted active covert communications and these
algorithms require complicated mathematical deduction, which
is difficult to realize in practice.

Deep learning (DL) inspired by artificial intelligence can
solve this problem [7]. The main idea of data-driven DL
is to find a mapping from the environmental parameters to
the optimal decision by using a deep neural network (DNN),
which the DNN can be trained offline by a large number of
samples, and the network parameters are fixed in the online
testing process to obtain the optimal decision [8]. In the low
complexity test process of beamforming optimization, DNNs
directly output the optimal beamforming after inputting the
channel samples. However, DNN has two main limitations:
it is not suitable for solving optimization problems with
constraints and has poor interpretability. The model-driven
deep unfolding (DU) technique, in contrast to the black-box
model approach, allows the construction of a learning network
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Fig. 1. RIS-assisted downlink MISO covert SR communication system.

that approximating known iterative algorithms using finite
iterations, and the iterative steps of optimization algorithms
are imitated by the learning networks [9]. For example, in
order to solve the computational complexity problem of the
weighted minimum mean square error (WMMSE) algorithm,
the authors of [10] applied the deep unfolding in WMMSE
algorithm. In [11], the authors proposed a DU algorithm based
on gradient descent (GD) to solve a design problem of hybrid
analog-digital transceiver. These algorithms can reduce the
computational complexity while maintaining performance.

In this paper, a passive RIS-assisted MISO covert SR
communication system is considered, in which KL divergence
is adopted to measure covertness. In this system, the eaves-
dropper Willie detects the passive signals from RIS (Alice) to
SRx (Bob), which is more covert. We aim to maximize the
achievable rate of PTx by jointly optimizing the active and
passive beamforming under the covertness constraint and the
secondary transmission signal-to-noise ratio (SNR) constraint.
Due to the variable coupling and non-convex objective func-
tion, the optimization problem is challenging. Furthermore,
Willie is not a legitimate user, it is difficult for PTx and
Alice to get his instantaneous channel state information (CSI).
To solve the complex optimization problem, we first take
into account a more realistic application scenario that PTx
and Alice only know the Willie’s statistical CSI and average
over a mini-batch of channel samples to approximate the
expectation in covertness constraint [12]. Moreover, a DU
algorithm based on GD (DUAGD) is proposed to design
beamforming. Specifically, the Lagrangian duality method is
adopted to transform the optimization problem with constraints
into the dual problem. For the design of the network layer,
the GD algorithm is unfolded into a multi-layer network
structure, in which each layer in the DU neural network
consists of four modules for updating active beamforming,
passive beamforming, and Lagrange multipliers.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an RIS-assisted covert SR
communication system consisting of a PTx with L antennas,
an RIS with M reflection units, a PRx with a single-antenna
and a single-antenna SRx.

A. Channel Model

A flat-fading channel model is considered, in which the
coefficients of channel are constant within a block but may
change within different blocks. We denote the complex base-
band equivalent channels from PTx to PRx, from PTx to Bob,
from PTx to RIS, from PTx to Willie, from RIS to PRx,
from RIS to Bob, and from RIS to Willie are htr ∈ C1×L,
htb ∈ C1×L, Gts ∈ CM×L, htw ∈ C1×L, gsr ∈ C1×M ,
gsb ∈ C1×M and gsw ∈ C1×M , respectively. Furthermore,
under the assumption that the transmission signal of PTx in
the n-th channel use is s(n) ∼ CN (0, 1),∀n ∈ {1, 2, · · · , N}.
f ∈ CL×1 is defined as the transmission beamforming vector
of PTx, therefore the transmission signal at PTx is expressed
as fs(n). We define Φ = diag(φ1, φ2, · · · , φM), where
φi = ρie

jθi , i = 1, 2 · · ·M , as the diagonal reflection matrix
of RIS. For the i-th reflection element of RIS, ρi ∈ [0, 1]
represents the reflection amplitude, and θi ∈ (0, 2π] represents
the phase shift. For simplicity, we set ρi = 1, i = 1, 2 · · ·M ,
thus |φi| = 1. c denotes the transmitted symbol at RIS, and
RIS adopts the binary phase shift keying modulation scheme
for incident signal from PTx, i.e, c = {0, 1}. When c = 1,
RIS sends the symbol ‘1’ by reflecting the signals from PTx,
otherwise RIS sends the symbol ‘0’ which means that RIS does
not reflect the signals. We assume that each symbol period of
c contains N symbol periods of s(n) [13]. Then the reflection
signal from PTx is written as ΦGtsfs(n)c.

B. Signal Model

1) Received Signal at PRx: The received signal of PRx in
a secondary symbol period is written as

yr(n) = htrfs(n) + gsrΦGtsfs(n)c+ ur(n), (1)

where ur(n) ∼ CN (0, σ2
r) represents the complex Gaussian

noise at PRx. When decoding s(n), the backscattering link
can be considered as a multi-path component since the symbol
period of c is significantly larger than the symbol period of
s(n) [13]. Therefore, the signal-plus-noise covariance can be
expressed as

Γr =
|(htr + cgsrΦGts)f |2

σ2
r

. (2)

It can be seen that Γr depends on c, which changes faster than
the channel variation. The achievable rate of PTx is established
based on the expectation over c [14], which is represented as

Rr = Ec [log2(1 + Γr)] . (3)

2) Received Signal at SRx (Bob): In a secondary symbol
period, Bob receives the direct link signal from PTx and the
backscattering link signal from RIS. As such, the received
signal at Bob, yb(n) for n = 1, 2, · · · , N , can be written as

yb(n) = htbfs(n) + gsbΦGtsfs(n)c+ ub(n), (4)

where ub(n) ∼ CN (0, σ2
b ) represents the complex Gaussian

noise at Bob. Bob first decodes s(n) and obtains an estimate of
the primary signal ŝ(n). Then the primary signal component
htbf ŝ(n) is subtracted from the received signal yb(n), and the
primary signal is assumed to be completely removed. Thus,
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the SNR of decoding c is given in detail in Appendix A, which
is approximately written as

γb =
N |gsbΦGtsfs (n)|2

σ2
b

. (5)

3) Received Signal at Willie: In a secondary symbol period,
Willie receives the signals from PTx and RIS can be given by

yw(n) = htwfs(n) + gswΦGtrfcs(n) + uw(n), (6)

where uw(n) ∼ CN (0, σ2
w) represents the complex Gaussian

noise at Willie. The following two hypotheses are distin-
guished by Willie to detect whether Alice is transmitting
signals. We study a worst-case covert communication in this
paper. Willie, as an eavesdropper, is detecting to the passive
information of RIS. However, Willie’s received signal of the
direct link from PTx is much stronger than its received signal
of the reflected link from RIS. This will result in a significant
increase in the error probability of Willie’s detection. For
Willie, we assume that it first adopts interference cancellation
to remove the signal htwfs(n) which acts as interference to
the received signal [13]. Then the two hypotheses can be
represented as

ỹw(n) =

{
nw(n), H0,

gswΦGtsfcs(n) + nw(n), H1,
(7)

where H0 denotes null hypothesis, which means that Alice
does not transmit information, while H1 denotes alterna-
tive hypothesis, which means that Alice has messages to
send to SRx. Following (7), the false alarm rate is denoted
as Pr{R1|H0} and the miss detection rate is denoted as
Pr{R0|H1}, where R0 and R1 are the binary decisions
of whether Alice transmits information. Then Willie’s total
detection error probability is given by

ξ = π0 Pr{R1|H0}+ π1 Pr{R0|H1}, (8)

where π0 and π1 are the prior probability of hypothesis. We
assume π0 = π1 = 1/2, and this assumption of equal prior
probability is widely adopted in the literature of covert com-
munication [3], [15]. According to Neyman-Pearson criterion,
the likelihood ratio test is exploited by Willie to detect passive
transmission which is the optimal test that minimizes its error
probability [3], and it is given by

P1
∆
=

N∏
n=1

f(ỹw(n)|H1)

P0
∆
=

N∏
n=1

f(ỹw(n)|H0)

R0

>

<
R1

1, (9)

where the likelihood functions of Willie’s observation vector
under H0 and H1 are P0 and P1, respectively. The likelihood
functions for ỹw[n] in H0 and H1 are f(ỹw(n)|H0) =
CN (0, σ2

w) and f(ỹw(n)|H1) = CN (0, Rw + σ2
w), respec-

tively, where Rw = |gswΦGtsf |2. The minimum detection
error rate Pe at Willie can be obtained according to (9) [16].
Thus, Pe > 1− ε can be used as the covertness constraint for
a given ε.

C. Problem Formulation
The objective of this paper is to jointly optimize the active

and the passive beamforming to maximize the achievable rate
of PRx, subject to the constraint of SNR, the covertness

constraint, the power constraint at PTx and the unit-modulus
constraint of RIS reflection coefficients. Therefore, the prob-
lem can be formulated as

(P1) : max
f ,Φ

Ec [log2(1 + Γr)] (10)

s.t.
N |gsbΦGtsfs (n)|2

σ2
b

≥ γo, (10a)

Pe > 1− ε, (10b)

‖f‖2 ≤ Ps, (10c)
|φi| = 1,∀i = 1, 2, · · · ,M, (10d)

where γo denotes the SNR required by secondary transmission,
and Ps is the maximum transmitting power. In addition, (10a)
is the SNR of secondary transmission and (10b) is the covert-
ness constraint. Constraint (10c) represents the maximum
transmitted power satisfied by PTx. (10d) is the unit-modulus
constraint on phase shift of RIS reflection elements.

Assume RIS sends the symbol ‘0’ and symbol ‘1’ with
equal probability. Thus, in (P1), the expectation of objective
function over c can be given by

Rr =
1

2
log2(1 +

|(htr + gsrΦGts)f |2

σ2
r

) +
1

2
log2(1 +

|(htrf |2

σ2
r

).

(11)
Since the resultant expression of Pe involves incomplete
gamma function, the subsequent design of constraint (10b)
is difficult, as such we adopt the lower bound of Pe to solve
this issue [3], which is given by

Pe ≥ 1−
√

1

2
D(P0 ‖ P1), (12)

where D(P0 ‖ P1) = N
[
ln(

Rw+σ2
w

σ2
w

)− Rw

Rw+σ2
w

]
is the KL

divergence from P0 to P1.

In the constraint (10b), the level of covertness is determined
by a small value ε. As per (12), D(P0 ‖ P1) ≤ 2ε2 relative to
Pe ≥ 1−ε is a much stringent constraint. As such, the covert-
ness constraint is reformulated as D(P0 ‖ P1) ≤ 2ε2 [15]. In
addition, Willie is not a legitimate user, Willie’s CSI may not
always be accessible to PTx and Alice. We consider a more
practical application scenario that PTx and Alice only know
the statistical CSI of gsw, while its instantaneous realizations
are unknown. Therefore, the expectation of D(P0 ‖ P1) serves
as the measure of covertness, which can be represented as
Egsw [D(P0 ‖ P1)] that has no closed-form expression. In
addition, not only the objective function is non-convex, but
also there is coupling between variables. As such, it is a
challenging task to design an optimization algorithm to solve
this problem.

For the complex optimization problem, we transform the
problem with constraints into Lagrangian dual domain. Two
Lagrange multipliers λ1 and λ2 are associated with (10a) and
(10b), respectively. The Lagrangian of (10) can be written as

L =−Rr + λ1(γo −
N |(gsbΦGts) f |2

σ2
b

)

+ λ2(Egsw [D(P0 ‖ P1)]− 2ε2).

(13)

Under the definition of Lagrangian, we denote the dual func-
tion D(λ1, λ2) as the minimum Lagrangian value for all f and
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Φ, which can be given by
D(λ1, λ2) := min

f ,Φ
L (14)

s.t. (10c), (10d).

For any choice of λ1 ≥ 0 and λ2 ≥ 0, it can be easily verified
that D(λ1, λ2) ≤ P1

∗. In the dual problem, we search the
Lagrange multipliers that make D(λ1, λ2) as large as possible

D∗ := max
λ1,λ2≥0

D(λ1, λ2) (15)

s.t. (10c), (10d).

When (14) is used as a proxy for (10), the best approximation
of (P1) is the dual optimal D∗. As such, (P1) is expressed
as

(P2) : max
λ1,λ2≥0

min
f ,Φ

L (16)

s.t. (10c), (10d).

However, (P2) is a NP-hard problem due to the constraint
(10d), its solution procedure is still challenging. Owing to the
strong performance in function approximation, DNN can be
explored to solve (P2).

III. DEEP UNFOLDING ALGORITHM BASED ON
LAGRANGIAN DUALITY

In this section, we first realize the joint design of active and
passive beamforming by using GD algorithm. On the basis of
GD, the DUAGD is proposed to solve (P2) by jointly design
the beamforming.

A. Optimization Algorithm Based on GD

To rewrite the Egsw [D(P0 ‖ P1)] in a deterministic form,
the method of sample average approximation (SAA) is adopted
[17]. The approach of SAA approximates the expected objec-
tive or constraint functions through sample average estimation,
where we generate sample data from the underlying distribu-
tion [18]. In our algorithm, the sample

{
ĝ1
sw, ĝ

2
sw, · · · , ĝNasw

}
is given, where Na is the size of mini-batch. As such, the
Egsw [D(P0 ‖ P1)] is written as

Egsw [D(P0 ‖ P1)] = Egsw

[
N
[
ln(

Rw + σ2
w

σ2
w

)− Rw

Rw + σ2
w

]]
=

1

Na

Na∑
n=1

N
[
log(1 +

Rw

σ2
w

)− 1 +
σ2
w

Rw + σ2
w

]
. (17)

The GD algorithm is a first-order optimization algorithm
widely used in the fields of deep learning. Specifically, the
updated equations of optimization variables in the GD algo-
rithm at the t-th iteration can be written as

f t+1 = f t−µf∇f tL,
Φt+1 = Φt−µΦ∇ΦtL,
λt+1

1 = λt1 + µλ1∇λt1L,
λt+1

2 = λt2 + µλ2
∇λt2L,

(18)

where t ∈ {0, 1, . . .} is iteration index and {µf , µΦ, µλ2
, µλ2
}

are the step sizes selected based on experiments and expe-
rience. The ∇fL, ∇ΦL, ∇λ1L and ∇λ2L are the gradients
of L to variables f , Φ, λ1 and λ2, respectively. Alternately
updating the optimization variables until the L satisfies certain

convergence criterion. In order to meet the maximum trans-
mitted power limitation (10c), the active beamforming f of
PTx needs to be scaled at the end of each GD iteration, which
can be given by

f =

{
f , if ‖f‖2 ≤ Ps,

f
‖f‖
√
Ps, otherwise.

(19)

To implement the unit modulus constraint of RIS (10d), the
passive beamforming Φ of RIS at the end of each iteration
are scaled, which can be expressed as

Φ = diag(ejϕ1 , ejϕ2 , · · · , ejϕM ), (20)

where ϕi is the output of the i-th element of the diagonal
matrix, where i = 1, 2, · · · ,M . Considering the Lagrange
multipliers in (P2) are non-negative, the λ1 and λ2 are
transformed according as follows

λ← [λ]
+
, (21)

where [λ]
+

= max [0, λ].

B. Deep Unfolding Algorithm Based on GD
In the following, we describe the DU neural network

structure induced by the GD algorithm developed above. The
basic idea of DU is to unfold the iteration of the GD algorithm
into the trainable layer of the neural network, where the
number of iterations is fixed according to the complexity of
the algorithm, which is the number of layers [10]. In the k-th
layer of i-th iteration of the DU network, k ∈ {1, . . . ,K},
we introduce trainable parameters {µkf ,i, µkΦ,i, µkλ1,i

, µkλ2,i
} to

replace the step sizes {µf , µΦ, µλ1
, µλ2
} of GD algorithm.

In addition, for the training parameters, in order to increase
their degrees of freedom, we augment the dimensions of
these trainable parameters and introduce the offset parameters{
qkf ,i,q

k
Φ,i,q

k
λ1,i

,qkλ2,i

}
. Therefore, the updated expressions

of the proposed DUAGD are written as
fk+1
i = fki −µkf ,i ◦ ∇fki

L+ qkf ,i, (22)

Φk+1
i = Φk

i−µkΦ,i ◦ ∇Φki
L+ qkΦ,i, (23)

λk+1
1,i = λk1,i + µkλ1,i∇λk1,iL+ qkλ1,i, (24)

λk+1
2,i = λk2,i + µkλ2,i∇λk2,iL+ qkλ2,i, (25)

where
{
µkf ,i,µ

k
Φ,i, µ

k
λ1,i

, µkλ2,i

}
and

{
qkf ,i,q

k
Φ,i, q

k
λ1,i

, qkλ2,i

}
are trainable parameters, which are used to update the op-
timization variables

{
fki ,Φ

k
i , λ

k
1,i, λ

k
2,i

}
at the k-th layer of

the i-th iteration. And
{
∇fki

L,∇Φk
i
L,∇λk1,iL,∇λk2,iL

}
are

the gradients of the optimization variables in the k-th layer
to the loss function L. ◦ denote the Hadamard product of
two vectors/matrices. Fig. 2 shows the structure of DU neural
network based on GD. It can be seen that the structure of
the DU algorithm is obtained by unfolding the GD algo-
rithm into a multi-layer structure composed of K succes-
sive layers. The channel sample gain matrix input is H =
{htw,htb,htr,Gts,gsw,gsb,gsr}. Through the enlarged part
in the red dashed rectangle, we can see that each layer of
the DU network has same structure. The operations γf , γΦ,
γλ1

and γλ2
represent (22), (23), (24) and (25), respectively.

For each update, the structure in the black dashed rectangle
illustrates how the trainable parameters are used in the GD up-
date process. In the last layer, the beamforming and Lagrange
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Fig. 2. Deep unfolding algorithm for joint optimization beamforming.

multipliers are conveyed to the loss function which is used to
update network parameters by back propagation. Specifically,
the trainable parameters are updated with the Adam optimizer
by calculating the average gradient of a mini-batch loss
function. Such as µkf ,i+1 = µkf ,i−αi·Adam

(
∇µkf,iL

)
, where αi

is the learning rate. The other trainable parameters are updated
in the same way. As in the GD algorithm, f , Φ, λ1, and λ2 in
each layer are scaled according to (19), (20) and (21) to satisfy
the maximum transmission power constraint, unit modulus
constraint and the non-negativity constraint, respectively. See
Algorithm 1 for the specific process of network training.

Algorithm 1 Deep Unfolding algorithm based on GD
1: Given the samples number J , the layers number K, the max-

imum number of iterations T , the batch size Nb and learning
rates. Initialize trainable parameters and optimization variables{
f00 ,Φ

0
0, λ

0
1,0, λ

0
2,0

}
.

2: for i = 0 : T do
3: for j = 0 : Nb do
4: for k = 0 : K do
5: Calculate the gradient of optimization variables{

fki ,Φ
k
i , λ

k
1,i, λ

k
2,i

}
and update its by (22)-(25).

6: The optimization variables are scaled based on
(19)-(21).

7: end for
8: The loss function is calculated according to (13).
9: end for

10: Average the loss function of Nb channel samples and
calculate the gradient of trainable parameters. Then the
trainable parameters are updated by Adam optimizer.

11: end for
12: output f ,Φ, λ1, λ2

C. Computational Complexity

Firstly, we discuss the network parameters dimension of the
proposed DUAGD algorithm, which is 2

(
L+M2 + 1 + 1

)
in

each layer. As for the OADNN, the computational complex-

ity is O
(Nf∑
l=1

Ff ,lFf ,l+1 +
NΦ∑
l=1

FΦ,lFΦ,l+1 + 2
Nλ∑
l=1

Fλ,lFλ,l+1

)
,

where Nf , NΦ and Nλ represent the number of layers of the
neural network of the active beamforming, the passive beam-
forming and the Lagrangian multipliers, respectively. And Ff ,l,

FΦ,l and Fλ,l are the output sizes of these neural networks
at the l-layer, respectively. The complexity of GD algorithm
in the paper is given by O

(
TJS

(
L+M2

))
, where T is the

number of iterations, J denotes the number of random samples
and the size of the testing data is S. The computational
complexity of the DUAGD is O

(
KJS

(
L+M2

))
, where

K is the number of layers. Since K � T , we can see that
the complexity of DUAGD proposed in this paper is lower
than that of iterative GD algorithm. Moreover, compared with
OADNN, the computational complexity of DUAGD is also
lower.

IV. NUMERICAL RESULTS

In this section, the performance of DUAGD is verified by
numerical results. PTx is considered to be equipped with 4
antennas ( L = 4 ). Considering a two-dimensional coordinate
system where PTx, PRx, SRx (Bob), RIS (Alice), and Willie
are located at (0, 0) m, (80, 10) m, (90, 10) m, (100, 0) m,
and (100, 20) m, respectively. The simulation are implemented
averages over 1000 independent channel implementations.
There are two parts for each channel response, where large-
scale fading is related to distance and which is represented
as χij = β0(

dij
d0

)−αij , where ij ∈ {tw, ts, tr, tb, sw, sr, sb}
represents different channels. d is the distance between nodes
i and j. When the reference distance is 1 m, the channel
power gain β0 is set to −30 dB. αij is the path loss index,
where we set αts = 2.2, αtw = 4.2, αtb = 4.2, αtr = 4.2,
αsw = 3, αsb = 3 and αsr = 3, respectively. We set the
number of layers as K = 8, the batch size as Nb = 20 and
the maximum number of iterations T = 50. The remaining
system parameters are: N = 50, σ2

r = −90 dBm, σ2
b = −90

dBm and σ2
w = −90 dBm [3]. In addition, a small-scale fading

component using the Rician fading channel model, which is
written as h = L1

(√
ε
ε+1hLoS +

√
1
ε+1hNLoS

)
, where h ∈

H = {htw,htb,htr,Gts,gsw,gsb,gsr}. L1 denotes the path
loss and ε is the Rician factor. hLoS is the line-of-sight (LoS)
component and hNLoS ∼ CN (0, 1) is the non-line-of-sight
(NLoS) component.

To show the performance of the DUAGD, we compare the
results with the following schemes. i) Optimization algorithm
based on DNN (OADNN): By using DNN to approximate
input and output mapping, the optimal beamforming are
obtained by training DNN. ii) Random beamforming policy:
We randomly select the reflection coefficients of RIS without
updating them.

In Fig. 3, we plot the convergence behavior of all algo-
rithms. We fixed the transmission power Ps = 10 dBm and
the number of reflection units of RIS M = 40. The maximum
rate of the DUAGD is higher than that of the OADNN and
the random beamforming policy. This shows that RIS passive
beamforming optimization is effective. In addition, the number
of iterations of DUAGD is less than that of OADNN.

Fig. 4 plots the relationship between the maximum rate and
the maximum transmitted power Ps for DUAGD and random
beamforming policy in DUAGD. Firstly, we observe that the
maximum rate of two schemes increases with Ps. Secondly,
the maximum rate of the RIS optimization scheme increases
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significantly with the increase of Ps. And the performance
of DUAGD is better than the random beamforming policy
scheme. Thus, it is a promising method to deploy RIS to im-
prove the security of wireless communication system. Thirdly,
the performance of two schemes increase as M increases.
The performance of DUAGD is better than that of random
beamforming policy, and their performance gap increases with
the increase of M . This is because the designing of joint active
and passive beamforming has become more flexible with the
more reflected elements.

V. CONCLUSION

In this paper, we have proposed an RIS-assisted MISO
covert SR system, which the eavesdropper Willie detects the
passive signals from RIS (Alice) to SRx (Bob). To maximize
the achievable rate of PTx, the Lagrangian duality method first
was adopted to transform optimization problem with constraint
into the dual problem, and the DUAGD have been considered
to solve the Lagrangian dual problem. The simulation results
showed that the performance of the DUAGD is better com-
pared with that of OADNN and random beamforming policy.

APPENDIX A

In order to make the communication more reliable, we
assume that SRx has strong computing power, and adopt
the maximum likelihood (ML) detection method to jointly
decode s (l) and c in (3). In (3), SRx receives the direct link
signal from PTx and the reflected link signal from RIS. When
decoding s (l) and c, the signal from RIS is regarded as a
multi-path component. Assuming that c can be completely
decoded, the covariance matrix of the signal and noise is
written by

Γb = |htbf + gsbΦGtsfc|2. (26)

The achievable rate of SRx is expressed as
Rb = Ec [log2 (1 + Γb)] . (27)

As the N symbol periods of s (l) are covered within the
symbol period of c, we can get the SNR of decoded c by
using maximum ratio combining, which is expressed as

γb =

N∑
n=1
|gsbΦGtsfs (n)|2

σ2
b

(a)
≈ N |gsbΦGtsfs (n)|2

σ2
b

, (28)

where (a) holds, because if N � 1, the arithmetic mean and
the statistical expected value are approximately equal.
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