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angle. The other two (also, rotation one of the other by 180�) minimize
the MSE of the elevation angle.

V. CONCLUSION

Using elements from Bayesian estimation theory, we propose CRB-
based antenna array DOA estimation performance criteria that take into
account the availability of some prior information about the source
(azimuth) angle. We define array geometry optimization problems in
order to achieve improvement w.r.t. the commonly used UCA, and
solve them by exhaustive search. Optimal arrays are obtained that min-
imize the normalized ECRB following two alternative strategies: (i)
the two DOA parameters (azimuth and elevation) are declared of equal
importance and the same reduction is required for both or, instead,
(ii) emphasis is put on one of the angles. The constraint (i) leads to
(large-sized) arrays that reduce the ECRB by 36% compared to simi-
larly sized and spaced UCA, and so regardless of the available DOA
prior information. By relaxing this constraint, approach (ii) leads to ar-
rays with much lower normalized ECRB for one of the DOA angles.
In all circumstances, optimal antenna arrays obtained here significantly
outperform arrays in [10] and outperform UCAs even further, from the
MSE point-of-view. The attractiveness of this analysis is further in-
creased by the fact that optimal performance can be closely approached
by V shaped arrays whose shape, orientation and performance are given
analytically.
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Wideband Spectrum Sensing With Sub-Nyquist
Sampling in Cognitive Radios
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Abstract—Multi-rate asynchronous sub-Nyquist sampling (MASS)
is proposed for wideband spectrum sensing. Corresponding spectral
recovery conditions are derived and the probability of successful recovery
is given. Compared to previous approaches, MASS offers lower sampling
rate, and is an attractive approach for cognitive radio networks.

Index Terms—Cognitive radio, fading, spectral recovery, spectrum
sensing, wideband spectrum sensing.

I. INTRODUCTION

The radio frequency (RF) spectrum is a limited natural resource,
which is currently regulated by government agencies. The primary user
(PU) of a particular spectral band has the exclusive right to use that
band. Nowadays, on the one hand, the demands for the RF spectrum are
constantly increasing due to the growth of wireless applications, but on
the other hand, it has been reported that the spectrum utilization effi-
ciency is extremely low. Cognitive radio (CR) is one of the promising
solutions for addressing this spectral under-utilization problem [1]. An
essential requirement of CRs is that they must rapidly fill in spec-
trum holes (i.e., portions of the licensed but unused spectrum) without
causing harmful interference to PUs. This task is enabled by spectrum
sensing, which is defined as a technique for achieving awareness about
the spectral opportunities and existence of PUs in a given geographical
area [2]–[4].
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Fig. 1. Diagram of CS-based spectrum sensing when using the spectral domain
energy detection approach.

CR with a “broader” spectral awareness could potentially exploit
more spectral opportunities and achieve greater capacity [5]. Wide-
band spectrum sensing techniques therefore have attracted much at-
tention in the research on CR networks. In [6], a wavelet-based ap-
proach was studied for performing wideband spectrum sensing. It pro-
vides an advantage of flexibility in adapting to a dynamic wideband
spectrum. Quan et al. [7], [8] proposed a multiband joint detection
(MJD) approach for detecting the primary signal over multiple fre-
quency bands. It has been shown that MJD performs well under prac-
tical conditions. In [9], a filter-bank method was presented for sensing
the wideband spectrum in a multicarrier communication system. The
filter-bank system has been shown to have a higher spectral dynamic
range than other traditional power spectrum estimation methods. Fur-
thermore, compressive sensing (CS) [10], [11] technologies were intro-
duced to implement wideband spectrum sensing in [12]–[17]. Notably,
these techniques take advantage of using sub-Nyquist sampling rates
for signal acquisition, instead of the Nyquist rate, leading to reduced
computational burden and memory requirements.

In this paper, we develop a multi-rate asynchronous sub-Nyquist
sampling (MASS) system to perform wideband spectrum sensing.
As the spectral occupancy is low, spectral aliasing (generated by
sub-Nyquist sampling) is induced in each sampling branch to wrap the
sparse spectrum occupancy map onto itself. The sensing requirements
are therefore significantly reduced, i.e., the proposed MASS system
has superior compression capability compared with the Nyquist
sampling system. Considering the sub-Nyquist sampling in MASS, we
then determine the recovery conditions under which the full wideband
spectrum can be successfully reconstructed by using CS analysis.
Compared with existing wideband spectrum sensing approaches,
MASS has lower implementation complexity, higher energy effi-
ciency, better data compression capability, and is more applicable to
CR networks.

The rest of the paper is organized as follows. We briefly introduce
the CS-based sensing scheme in Section II. We then propose the MASS
system in Section III. Simulation results are presented in Section IV,
followed by conclusions in Section V.

II. PROBLEM STATEMENT

In this paper, we assume that all CRs keep quiet during the spec-
trum sensing interval as enforced by protocols, e.g., at the medium ac-
cess control (MAC) layer [7]. Therefore, the observed signal at a CR
arises only from PUs and background noise. Suppose that the contin-
uous-time signal ����� is received at a CR, and the frequency range of
����� is � � � ����. If the signal ����� is sampled at the sampling rate
�� ���� for an observation time � , the sampled signal can be denoted
by ���� � ���

�

�
�, � � �� 	� 
 
 
 � � � 	, (in vector form 	� � ���),

where� ��� is assumed to be an integer. The discrete Fourier trans-
form (DFT) spectrum of 	� can be calculated by 	
 � �	�, where� de-
notes an� -by-� DFT matrix���� �� � in which 
 �

��	.
The difficulty arises when we consider the Shannon-Nyquist sampling
theorem, which requires the sampling rate to be at least twice the band-
width of the signal, i.e., �� � �� . On the one hand, we would like to

realize “broader” spectral awareness at CRs (i.e., larger � ), but on the
other hand, the higher sampling rate will result in excessive memory
requirements and prohibitive energy costs. This dilemma has moti-
vated researchers to look for technologies to reduce the sampling rate
�� while retaining � by using CS theory [10], [11].

CS theory indicates that if the signal is sparse in a suitable basis, it
can be exactly recovered from partial measurements. By “sparse” we
mean that the signal can be represented using a few coefficients in some
basis. Based on the fact of spectral sparseness [13], it is reasonable to
sample the signal ����� at a sub-Nyquist rate, reconstruct the spectrum
	
 from partial measurements, and perform spectrum sensing using
the reconstructed spectrum �
 . A typical spectrum sensing approach
is spectral domain energy detection [18]. As depicted in Fig. 1, this ap-
proach extracts the reconstructed spectrum in the frequency range of
interest, e.g., 
� , and then calculates the signal energy in the spec-
tral domain. The output energy is compared with a detection threshold
(denoted by �) to decide whether the corresponding frequency band
is occupied or not, i.e., choosing between hypotheses �� (presence
of PUs) and �� (absence of PUs). It is clear that the performance
of sub-Nyquist-based spectrum sensing will highly depend on the re-
covery quality of the spectrum. In this paper, we will present a novel
system, i.e., MASS, to sample the signal using sub-Nyquist sampling
techniques, while enabling the spectrum 	
 successfully recovered.

III. MULTI-RATE ASYNCHRONOUS SUB-NYQUIST SAMPLING

A. System and Signal Model

Suppose that a CR has � sub-Nyquist sampling branches as shown in
Fig. 2. The wideband filter prior to the samplers removes frequencies
outside the spectrum of interest, and is set to have bandwidth� . At the
�-th branch, the low-rate sampler samples the received signal at the sub-
Nyquist rate �� ����. In the observation time � (second), the numbers
of samples in these � sampling branches are������ 
 
 
 ��� , respec-
tively, where �� � ��� ��� � �	� ���. In addition, ������ 
 
 
 ���

are chosen to be different prime numbers that are of the order of
�
� ,

i.e., �� � ��
�
��, by controlling the sampling rate �� ��� � �	� ���.

The DFT spectrum of the sampled signal is then computed by applying
the fast Fourier transform (FFT) to the samples in each branch. After
that, these DFT spectra are used to reconstruct the wideband spectrum.
We will employ an energy detection approach, and so we are inter-
ested in reconstructing only the magnitude of the spectrum, i.e., 	 	
	,
resulting in the spectral magnitude estimate 	 �
	.

Suppose that the received signal ����� is of finite support and ab-
solutely summable. Using the sub-Nyquist rate �� � �� , we obtain
the sampled signal ����� � ���

�

�
� � ���

��

�
�, � � �� 
 
 
 ��� � 	.

The DFT spectrum of 	�� is then calculated by 	�� � �		��, where �	
denotes the ��-by-�� DFT matrix. The DFT spectrum of 	�� is related
to the continuous-time Fourier transform of ����� by [19]

����� � ��

�


���


��� � ���� (1)

where 
���� �
�

��
������

����
��� is the Fourier transform of
�����. In other words, the DFT spectrum of the sampled data is a sum
of the shifted Fourier transform spectrum of the continuous-time data.

Furthermore, if ����� is sampled at or above the Nyquist rate,
i.e., �� � �

�
� �� , the sampled signal can be written as

���� � ���
�

�
� � ���

��

�
�� � � �� 	� 
 
 
 � � � 	. The spectrum

of 	� will be related to the continuous-time Fourier transform of �����
by 
��� � ��

�


���

��� � ����. As the signal ����� is band-lim-

ited to � and the sampling rate �� � �� , there will be no spectral
aliasing phenomena in 
���; thus, we can rewrite this relationship
by 
��� � ��
����, �� � ��

�
� �
�

. Because 
��� has all
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Fig. 2. Schematic illustration of the multi-rate asynchronous sub-Nyquist sampling system in one CR node. The wideband filter has bandwidth� .

information in ���
�
� �

�
�, we assume that ���� is zero everywhere

except � � ��
�
� �

�
. Substituting ���� � ������� into (1), we

can obtain

����� �
��

��

�

����

��� � ����� � � ��� � ��

�
�
�

�
(2)

which has the discrete form of

����� �
��

	

�

����

���� ����� �� ��� � � 	

�
�
	

�
(3)

�
��

	

� �

���� �

��
�

�

����

��
 � ��� ������

� � � ��

�
�
��

�
(4)

where ��� is the floor function that gives the largest integer not greater
than �, and ��
� denotes the Dirac delta function that is zero everywhere
except at the origin, where it is one. In matrix form, we write


�� �
��

	
��


� (5)

where the elements of ���� � � �� ��� � 	� can be represented by

���� �� �

�
� 	� 
� �

�
� 	 � �

���� � 
 � �� � ���� .
It can be seen that in each column of ����, there is only one non-zero
element and this has the value of one. In each row of ����, the number
of non-zero elements is at most � �

�
� (the ceiling function gives the

smallest integer not less than �
�

), which is the undersampling factor.

B. Multi-Rate Sub-Nyquist Sampling

Due to the sub-Nyquist sampling in each sampling branch, we should
consider the effects of spectral aliasing. However, when the spectral
sparsity � � 	 and the sampling rate satisfies �� � 	�



	�, the

probability of signal overlap is very small. The reader is referred to
Appendix A for the proof. In such a scenario, we concentrate on con-
sidering two cases: no signal at a particular value � and one signal at
�. If there is no signal overlap, the following equation holds by using
(5):

�
��� � ��

	
����


� �
��

	
����� 
�� (6)

where the last equation holds because the elements of ���� are either
zeros or ones, while each frequency bin of 
�� has no signal overlap
from 
� .

Furthermore, since all samplers observe the same spectral magni-
tude, i.e., � 
��, a concatenated equation relating � 
�� to the partial mea-
surements can be formed by using (6), i.e.,


�

�
�

�
���
�
�

�
���
...

�
�

�
�� �

�

����

����

...
����

� 
�� ���� 
�� (7)

where ���������� 
 
 
 ����� are disjoint submatrices of
��� � � � ��� .

Remark 1: The proposed system does not require exact synchroniza-
tion between sub-Nyquist samplers. We merely require that the time
offsets between sampling branches are sufficiently small so that the ob-
served spectral magnitudes are quasi-stationary. This is because, after
the signal sampling and the spectral recovery, we employ the energy
detection approach for performing spectrum sensing, and the use of en-
ergy detection only requires the spectral magnitude information. Due
to this advantage, MASS can be applied to cooperative CR networks
in which each CR requires one sub-Nyquist sampler and the spectral
environments of different CRs are similar. In such scenarios, cooper-
ative CRs are required to send the compressed magnitude information
�
���� 
 
 
 � �
��� to a fusion center for spectral recovery by using (7).

To reconstruct the spectral magnitude (i.e., � 
��) using (7), we should
carefully choose the measurement matrix ���. We employ the mutual
coherence [10] to evaluate the suitability of ���.

Definition 1: Let ��� be expressed as ��� � �
��

�� � � � 
�� �, where 
��

denotes the �-th column of the matrix ���. Then the mutual coherence
of the matrix ��� is given by

� � ��

� ��	���
�	

�
���� ��	�� (8)

where ��� �
��

� �� �
denotes the �� normalized column.

The aim is to keep� to a minimum that allows the spectrum to be suc-
cessfully recovered. When the conditions in the following proposition
are satisfied, the mutual coherence of ��� in MASS can be determined
by the number of sampling branches �.

Proposition 1: Let � samplers observe the spectral magnitude in
the same observation time � and generate � measurement vectors, i.e.,
�
���� �
���� 
 
 
 � �
���. If the lengths of the measurement vectors are dif-
ferent primes, ������ 
 
 
 ��� , that satisfy ���	 � 	� ��� � �
�	� ��� � �� �, then the mutual coherence of the measurement matrix ���

is given by

� � ��

���	

�
���� ��	�� � 	

�
� (9)

The proof of Proposition 1 is given in Appendix B.
Remark 2: Donoho and Elad [20] have proven that when the mu-

tual coherence of the measurement matrix satisfies � � �
�
��

, the
�-sparse signal can be successfully recovered. Thus, we know that if
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Fig. 3. (a) Influence of the sparsity level and the compression ratio on the detection performance of MASS, when the signals from PUs suffer AWGN channels
with average ��� � �� ��. (b) Comparison between the proposed system and the existing approaches when the compression ratio varies.

� � �
�
� �

����
, i.e., � � ����, the spectral magnitude � ��� can be ex-

actly reconstructed. Proposition 1 illustrates that the number of samples
in each sampler (or CR) is of the order of

�
� . When 	� � ��

�
��,

at least �� sampling branches are required to recover the spectral mag-
nitude. To summarize, MASS needs the total number of measurements
to be �

���	� � ���
�
��.

Proposition 1 requires that the number of sampling branches � �

��� � in order to reconstruct the spectrum. Actually, if the number of
sampling branches � is less than ��, we could still reconstruct the spec-
trum with high probability. Next, we will investigate the probability of
successful spectral reconstruction when we have an insufficient number
of sampling branches, i.e., � � ��.

Proposition 2: Let � samplers observe the spectral magnitude in
the same observation time 
 and generate � measurement vectors,
i.e., ������ ������ � � � � �����. If the lengths of the measurement vectors are
different primes and satisfy 	�	� � �� �
� � � ��� ��� 
 �� �,
then the probability of successful spectral reconstruction is at least
� � ����

�

�

���
�
�

.
The proof of Proposition 2 is given in Appendix C.
Remark 3: Proposition 2 shows that the probability of suc-

cessful spectral reconstruction increases as either the number of
sampling branches or the sub-Nyquist sampling rates increase. When
� � �� � �, the probability of successful spectral reconstruc-
tion is at least � � �

���
�
�

. Further, as 	� � ��
�
�� where

� � ��
 � ��
 , we know that, with “broader” bandwidth � , we
could achieve higher probability of successful spectral reconstruction.

IV. SIMULATION RESULTS

In simulations, we consider that there are � sub-Nyquist sampling
branches, each of which is equipped with a single low-rate sampler. In
the �-th sampling branch, the received signal �����, as defined below,
is sampled at a sub-Nyquist rate �� over an observation time 
 .

����� �

�

���

�
���� 		
��������
��	��	��������
�������� (10)

where sinc ��� � �����		
�	

, 
 denotes a random time offset between
sampling branches, and ���� is unit additive white Gaussian noise
(AWGN). For the fading case, we generate � different received powers
�� according to the fading environment, and regenerate them for the

next observation time. The received powers �� do not change within

 , but vary randomly from branch to branch subject to the channel
fading. The wideband signal ����� consists of �
 � �� non-overlap-
ping subbands, whose bandwidths �� � ��� � � ���, with carrier
frequencies �� � � � �� ���. Since the signal has a bandwidth of
� � �����, if it were sampled at the Nyquist rate for 
 � � �	, the
number of Nyquist samples would be� � ��
 � ������. However,
in MASS we use � � �� sampling branches to sample the wideband
signal with different sub-Nyquist rates, where 	� � ��

�
��. Specif-

ically, we select the first prime 	� 
 �
�
� �� � �� and its � � �

neighboring and consecutive primes. The spectral magnitude � ��� is
reconstructed by applying the compressive sampling matching pursuit
(CoSaMP) algorithm [21] to (7). The spectral occupancy status is then
decided by using the energy detection algorithm on the reconstructed
spectrum.

Fig. 3(a) depicts the influence of the sparsity level � and the com-

pression ratio �

�
	

�

�
on the detection performance

of MASS. It illustrates that the lower the sparsity level, the better the
detection performance. In addition, a higher compression ratio will
lead to a lower probability of false alarm and a higher probability of de-
tection. In Fig. 3(b), we can see that the proposed system enables us to
perform wideband spectrum sensing using fewer measurements (thus
lower sampling rate). This is because, for the compression ratio below
0.2, the proposed system can achieve smaller reconstruction mean
square error (MSE) when compared with both the CS-based approach
and the finite rate of innovation approach. Fig. 4(a) shows the effect
of imperfect synchronization between sampling branches. Compared
with a reference clock, the asynchronous sampling branches have time
offsets in the range of � � ��� �	, while the total observation time is
� �	. It is evident that the detection performance of the asynchronous
samplers is roughly the same as that of the synchronous samplers.
Fig. 4(a) also illustrates that with more sampling branches, better
spectrum sensing performance can be achieved. This is because with
more sampling branches, a higher probability of successful spectrum
recovery can be obtained.

In view of Remark 1 and the MASS’s robustness against the imper-
fect synchronization in Fig. 4(a), the proposed system could also be ap-
plied to CR networks in which each CR only has one sampling branch.
In such a scenario, different branches could face independent and iden-
tically distributed (i.i.d.) fading channels. In Fig. 4(b), we analyze the
detection performance of MASS over AWGN, Rayleigh, and shadow
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Fig. 4. (a) Comparison of spectrum recovery performance for synchronous samplers and asynchronous samplers, with � � �� and � � �� over AWGN
channels with average ��� � �� 	
. (b) Performance of MASS over AWGN, Rayleigh, and shadow fading channels, with the number of sub-bands � � ��,
the compression ratio of 49.36%, and the standard deviation of shadow fading 5 dB.

fading channels. When the signal-to-noise ratio (SNR) is zero deci-
bels (dB), the performance of MASS over fading channels is roughly
the same as that over non-fading AWGN channels. This is because the
strength of the signal is mostly masked by the noise. By contrast, the
detection performance of MASS over AWGN channels exceeds that
over fading channels when ��� � � ��. In addition, it is found that
the performance of MASS over shadow fading channels is the poorest,
in comparison to the case of AWGN and Rayleigh fading channels.
Nonetheless, even over shadow fading channels, MASS has a proba-
bility of nearly 80% of detecting the presence of PUs when the prob-
ability of false alarm is 10, with the compression ratio �

�
� �	�
��.

On the contrary, Nyquist sampling systems, e.g., wavelet detection and
multiband joint detection, must use at least � measurements.

In Table I, we can see that, compared with Nyquist sensing tech-
niques, MASS has outstanding compression capability due to multi-
rate sub-Nyquist sampling. A similar system that has compression ca-
pability is the CS-based system. However, the state-of-the-art CS-based
approaches require pseudo-random sequence generators as compres-
sion devices. In order to exploit spatial diversity in CR networks, each
CR node should have a separate compression device, and transmit both
compressed data and its measurement matrix to the fusion center. Even
if measurement matrices are pre-stored, synchronization issues should
still be considered because the un-synchronized measurement matrices
could lead to false spectral recovery. In contrast, no separate device is
required for generating the measurement matrix in MASS while the
synchronization requirements are relaxed as shown in Fig. 4(a). Thus,
compared with the CS-based approaches, MASS has lower implemen-
tation complexity.

V. CONCLUSIONS

In this paper, we have proposed a novel wideband spectrum sensing
system, i.e., MASS. In this scheme, parallel low-rate samplers are used
to sample the wideband signal at different sub-Nyquist rates. We have
derived conditions for recovering the full spectrum by using CS anal-
ysis. The successful recovery probability has also been given. Simula-
tion results have shown that MASS has superior compression capability
compared with Nyquist sampling systems. Unlike other sub-Nyquist
sampling systems, e.g., CS-based systems, MASS has been seen to
be robust against lack of time synchronization and to have excellent

TABLE I
COMPARISONS BETWEEN WIDEBAND SPECTRUM SENSING TECHNIQUES

performance in fading/shadowing scenarios. In summary, the proposed
MASS not only has the benefits of low sampling rate, high energy-ef-
ficiency, and compression capability, but also is more amenable to im-
plementation in CR networks in the presence of fading/shadowing.

APPENDIX A
PROBABILITY OF SIGNAL OVERLAP WHILE SUB-NYQUIST SAMPLING

As the Nyquist spectrum is �-sparse, the probability of bin � be-
longing to the spectral support is � � �

�
. On letting � denote the

number of spectral components overlapped on bin �, the probability
of no signal overlap can be given by using (3)–(5) as


������� 
�������
���� ��

����� �� �
�

� �
�
�

�
� ���� �� ���

� (11)

Substituting � � �

�
into (11) while using 	� �

�
� , we obtain


�������
���
�

�
�

	�

���
�

�
���
�

�
�

���������

��� � (12)

It can be tested that 
��� � �� approaches 1 when � � � . Thus the
probability of signal overlap approaches zero.
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APPENDIX B
PROOF OF PROPOSITION 1

Let ��� and ��� denote the �-th and the �-th �� �� �� normalized
column of the measurement matrix ���, respectively. Using (5), they
will have non-zero elements on the row indices �� � ������ �� � and
�� � ������ �� � in the �-th sub-matrix, i.e., ����. Obviously, �� could
equal �� when ����� is a multiple of��. To avoid this happening again
in another sub-matrix, e.g., ���� , we could let �� and �� be different
primes such that ���� � 	 . This is because, if �� and �� are
different primes and ���� � 	 , ����� cannot be a multiple of both
�� and �� . Thus, the maximum correlation of different columns in���
exists only when �� � �� in a single sub-matrix ����, in which case the
mutual coherence 
 � �

�
.

APPENDIX C
PROOF OF PROPOSITION 2

Based on Doob’s maximal inequality [22], the following inequality
holds:

���
 � �� � �� �	

� ���

������ ����� � � �
����� ����

�

 (13)

Let us define the event �� such that �� equals �� as defined in the
Appendix B, and �� � �

�
to be the undersampling factor in the

�-th sampling branch. The probability of the event �� occurring is

������ �
� �

�
� � � �� ���

������
� ���

� �����
� �

�
, where �	

�

denotes the binomial coefficient. Then the expected value of ���
 � ����
becomes

����� ���� �
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�

���




��


 (14)

Replacing � in (13) by � � �
		��

, the following inequality can be
obtained by using (13)–(14):

�� 
 �



���

���� ���� 
� ���
 � ���� ��
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�
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 (15)

Using the above inequality, we obtain

�� 
 �



�� � 

� 
�

�� � 


�

�

���




��


 (16)

Considering the successful recovery condition in [20], i.e., 
 � �
		��

,
we complete the proof.
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