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Abstract—This letter presents an adaptive spectrum sensing
algorithm that detects wideband spectrum using sub-Nyquist
sampling rates. By taking advantage of compressed sensing (CS),
the proposed algorithm reconstructs the wideband spectrum
from compressed samples. Furthermore, an �2 norm validation
approach is proposed that enables cognitive radios (CRs) to
automatically terminate the signal acquisition once the current
spectral recovery is satisfactory, leading to enhanced CR through-
put. Numerical results show that the proposed algorithm can not
only shorten the spectrum sensing interval, but also improve the
throughput of wideband CRs.

Index Terms—Cognitive radio, spectrum sensing, compressed
sensing, enhanced throughput.

I. INTRODUCTION

RECENTLY, cognitive radio (CR) has attracted much
attention due to its capability of exploiting spectral holes

and improving spectral utilization efficiency [1], [2]. This
capability is fulfilled by spectrum sensing which is defined
as a technique for achieving awareness about the spectral
usage and existence of primary users (PUs). With a “wider”
spectral awareness, CR could exploit more spectral opportu-
nities and achieve greater capacity. Thus, spectrum sensing
over wideband spectrum becomes increasingly important for
wideband CRs.

To implement wideband spectrum sensing, CRs need some
essential components, i.e., wideband antenna, wideband radio
frequency (RF) front-end, and high speed analog-to-digital
converter (ADC). The wideband antenna and the wideband
filter were well-developed as evidenced by [3] and [4]. By
contrast, the development of ADC technology is relatively
behind: the achievable sampling rate of the state-of-the-art
ADC is only 3.6 Gsps [5]. To deal with this bottleneck, in
the classic paper [6], Tian and Giannakis firstly applied com-
pressed sensing (CS) [7] theory to CRs for acquiring wideband
signals using sub-Nyquist sampling rates. Consequently, fewer
compressed samples are required than predicted on the basis
of Nyquist sampling theory. Furthermore, Wang et al. [8]
proposed a two-step CS scheme for minimizing the sampling
rate, where the actual sparsity was firstly estimated in the
first time slot and the compressed measurements were then
adjusted in the second slot. Additionally, Malioutov et al. [9]
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Fig. 1. Frequency and time frame in wideband CRs: (a) frequency frame,
and (b) time frame. CR employs orthogonal frequency-division multiplexing
techniques that divide the wideband spectrum into J subchannels.

studied a sequential CS approach where each compressed
measurement was acquired in sequence.

Against this background, the novel contribution of this letter
is that an adaptive spectrum sensing algorithm is presented
that utilizes CS theory to sense wideband spectrum by using
an appropriate number of measurements. Different from the
sparsity estimation scheme in [8], the proposed algorithm can
adaptively adjust compressed measurements without any spar-
sity estimation efforts. Instead of the sequential measurement
setup in [9], we acquire the wideband signals block-by-block
from multiple mini-time slots, and gradually reconstruct the
wideband spectrum using compressed samples until the spec-
tral recovery is satisfactory. The remaining spectrum sensing
time slots are utilized for data transmission, thereby enhancing
the throughput of wideband CRs. Even with an unknown
sparsity level, the proposed algorithm could still automatically
terminate signal acquisition at the right time, leading to a
robust spectral recovery as well as enhanced CR throughput.

The rest of the letter is organized as follows. Section II
introduces the system model. Section III proposes an adaptive
spectrum sensing algorithm. Simulation results are presented
in Section IV, with conclusions given in Section V.

II. SYSTEM MODEL

Suppose that CRs aim to exploit spectral holes within
frequency band 0∼W (Hz), as depicted by Fig. 1(a). Periodic
spectrum sensing time frame is adopted as shown in Fig. 1(b)
where 0 ∼ τ (second) is used for performing spectrum
sensing and τ ∼ T (second) is reserved for transmitting
data. During the spectrum sensing interval, all CRs keep quiet
as enforced by protocols, e.g., at the media access control
layer. Thus, the continuous signal received at the RF front-
end of CR, i.e., xc(t), is composed of only PUs’ signals
and background noise. By using sampling rate fN over the
observation time τ , we could obtain a discrete time sequence
x[n] = xc(

n
fN

), n = 0, 1, · · · , N − 1, in a vector form
�x ∈ CN×1. Here, N = τfN is chosen to be a natural number.
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After spectrum sensing, CRs adopt orthogonal frequency-
division multiplexing (OFDM) techniques that decompose the
wideband spectrum into J orthogonal subchannels, each of
which has bandwidth Bj = W

J (∀ j ∈ [1, J ]), as shown in
Fig. 1(a). The subchannel index is denoted by j ∈ [1, J ] and
PUs may present at any subchannels. For simplicity, let Ω
denote the set of subchannel indices where PUs present. How-
ever, based on the Nyquist sampling theory, the sampling rate
is required to exceed 2W samples per second, i.e., fN > 2W ;
for a wideband CR, it leads to excessive memory requirement
and prohibitive energy cost. This dilemma motivates us to
employ CS technologies to reduce the sampling rate while
retaining the spectrum sensing bandwidth W .

CS theory indicates that, if a signal is sparse in some basis,
it can be acquired by using a sub-Nyquist sampling rate; thus,
fewer compressed samples are obtained than predicted using
the Nyquist sampling theory. Mathematically, by using sub-
Nyquist sampling rate fS (fS < 2W ), the compressed samples
�y (�y ∈ CM×1, M = τfS � N ) can be written as

�y = Φ�x (1)

where Φ denotes an M × N measurement matrix. Notably,
Tropp et al. [10] cleverly implemented a CS system in which
the measurement matrix is known and adjustable by changing
pseudo-random sequences. For a comprehensive understand-
ing of CS implementation, the reader is referred to [10].

In a CS-based spectrum sensing system, the goal is to recon-
struct �x or its discrete Fourier transform (DFT) spectrum �X =
F�x (F denotes a DFT matrix) from �y. Then the traditional
spectrum sensing algorithm, e.g., energy detection [11], can
be used to perform spectrum sensing using the reconstructed
signal. For a robust signal recovery, the vector �x is required
to be sparse in some basis. Due to low spectral occupancy, it
is believed that the received signal at CRs is sparse in the
Fourier domain [6]. Thus, �x is often assumed to k-sparse
(k < M � N ) in the Fourier domain, which means that the
DFT spectrum �X consists of k significant components which
are not negligible. If this spectral sparsity level k is known,
we can choose the number of measurements M to secure
the quality of spectral recovery, e.g., M = C0k log(N/k)
for a Gaussian measurement matrix, where C0 denotes a
constant [7]. Nevertheless, in a practical CR system, the
spectral sparsity level is often unknown or difficult to estimate
due to the dynamic activities of PUs. Furthermore, to avoid
incorrect spectral recovery, traditional CS approaches tend to
pessimistically choose C0. Both phenomena can lead to more
number of measurements and higher energy consumption,
therefore, losing the advantage of using CS technologies.

III. ADAPTIVE SPECTRUM SENSING

In this section, we study an adaptive spectrum sensing
algorithm for wideband CRs.

A. System Description

Consider that a CS system, e.g., random demodulator [10],
is employed for implementing wideband signal acquisition
as the discussions in Section II. Rather than sampling the
wideband signal for the whole spectrum sensing interval in

TABLE I
ADAPTIVE SPECTRUM SENSING ALGORITHM.

Initialize: Divide the spectrum sensing interval τ into L mini time slots
and set the mini time slot index l = 1 and accuracy ε.

While the halting criterion is false and l ≤ L, do
a). Acquire the compressed samples till the mini time slot l,

resulting in the set of compressed samples �yl.
b). Decompose the compressed samples �yl into

the training subset �Rl and the testing subset �Vl .
c). Estimate the wideband spectrum by applying a certain recovery

algorithm to (4), leading to a spectral estimate X̂l.
d). Calculate ρl by using �Vl and (5).
e). If the halting criterion is true

1). Terminate the signal acquisition.
2). Perform spectrum sensing using X̂l.
3). Choose frequency bands and start data transmission.

Else: l = l + 1.
EndIf

Halting criterion:
∣
∣ρl/vl − 2δ2

∣
∣ ≤ ε.

the traditional CS system, we propose to acquire the wideband
signal step by step. The proposed algorithm aims to terminate
the signal acquisition once the spectral recovery is satisfactory,
and use the remaining spectrum sensing time interval for data
transmission. The detailed algorithm is given in Table I.

As shown in Fig. 1(b), the spectrum sensing interval is
divided into L mini time slots where l (l ∈ [1, L]) denotes the
mini time slot index. Let �yl (�yl ∈ CMl×1) denote the set of
compressed samples obtained from the beginning of spectrum
sensing to the end of l-th mini time slot, and Ml denote the to-
tal number of measurements in �yl, thus, 0 < M1 < · · · < ML.
Additionally, the sub-Nyquist sampling rate fS is chosen such
that ML = fSτ = C0kmax log(N/kmax) where kmax denotes
the maximum sparsity that can be estimated by long-term
spectral observations. The set of compressed samples �yl is
then divided into two complementary subsets, i.e., the training
subset �Rl (�Rl ∈ Crl×1) for reconstructing the DFT spectrum,
and the testing subset �Vl (�Vl ∈ C

vl×1) for validating the
spectral recovery, where Ml = rl+vl. According to CS theory,
the training subset and the testing subset can be written as

�Rl = Φl�xl + �n = ΦlF
−1 �Xl + �n (2)

and
�Vl = Ψl�xl + �n = ΨlF

−1 �Xl + �n (3)

respectively, where F−1 is the inverse of DFT matrix, Φl is a
rl×N measurement matrix, Ψl is a vl×N testing matrix, and
�n denotes the measurement noise modeled by circular complex
additive white Gaussian noise (AWGN) with zero mean and
variance δ2, i.e., �n ∼ CN (0, δ2).

By using a recovery algorithm, e.g., Log-barrier ap-
proach [12], we could obtain a spectral estimate X̂l by solving
the following problem:

min ‖X̂l‖1, s.t.: ‖ �Rl −ΦlF
−1X̂l‖2 ≤ ε (4)

where ε is a small recovery error threshold. Repeating this pro-
cedure, a sequence of spectral estimates, i.e., X̂1, X̂2, · · · , X̂l,
will be obtained by increasing the total number of measure-
ments Ml. Obviously, we would like to identify a “best”
spectral estimate X̂l that makes the spectral recovery error
‖ �Xl − X̂l‖2 sufficiently small. If so, we can terminate the
signal acquisition, and improve the throughput of CR system
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by using the remaining spectrum sensing time slots for trans-
mitting data. However, the spectral recovery error ‖ �Xl− X̂l‖2
is typically unknown due to the unknown �Xl when performing
sub-Nyquist sampling. Hence, for a traditional CS system, the
signal acquisition cannot be terminated at the right time.

To identify the best spectral estimate, we propose to use
the testing subset �Vl for verifying the spectral estimate X̂l.
Specifically, we define the following verification parameter:

ρl = ‖�Vl −ΨlF
−1X̂l‖22. (5)

As we will see in the next section, if the verification parameter
ρl is close enough to 2δ2vl, the spectral estimate X̂l is the best
spectral estimate and the signal acquisition can be terminated.

B. Performance Analysis and Comparison

The termination metric in the preceding section is due to
the fact that the best spectral estimate can be identified by
validating the spectral estimate sequence and monitoring ρl.

Theorem 1: Let ε > 0, � ∈ (0, 1), and vl > 0. Given the
sequence of spectral estimates X̂1, · · · , X̂l, the best spectral
estimate exists and is included in the sequence when the
verification parameter ρl satisfies

Pr
[∣∣ρl/vl − 2δ2

∣∣ ≤ ε
]
> 1− � (6)

where � = 2 exp
(
− 3vlε

2

24δ4+2(U2+δ2)ε

)
, in which U denotes the

measurement noise upper bound, i.e., �n ≤ U .
The proof of Theorem 1 is given in the Appendix.
Remark 1: It shows that, if the best spectral estimate exists

within a given sequence of spectral estimates, the verification
parameter should be within a certain small range around
2δ2 with a high probability. This probability exponentially
increases as the size of testing subset increases. In other words,
if we monitor ρl, we have a higher probability of identifying
the best spectral estimate when using more measurements for
validation. However, in another application scenario where
the total number of measurements Ml is fixed, there exists a
trade-off between training and testing. Even though allocating
more measurements for validation (i.e., vl) achieves a higher
probability of identifying the best spectral estimate, it leads to
a degraded probability of successful spectral recovery because
of fewer measurements for training (i.e., a larger vl leads to
a smaller rl = Ml − vl). The investigation of this trade-off is
an interesting issue for future research.

Suppose that the signal acquisition is terminated at mini
time slot l�, then the remaining time slots l� + 1, · · · , L
could be used for transmitting data. Thus, the aggregate
opportunistic throughput of the proposed CR system can be
given by

C� =
T − τ

L l
�

T

∑
j /∈Ω

(1 − Pf,j) ·Bj · log
(
1 +

Pj |Hj |2
N0Bj

)
(7)

where Pf,j is the probability of false alarm, Pj is the transmit
power of CR transmitter, Hj denotes the magnitude channel
gain between the CR transmitter and the CR receiver at
subchannel j, and N0 denotes the noise spectral density. By
contrast, a traditional CS system, the aggregate opportunistic
throughput of CR system is given by

C =
T − τ

T

∑
j /∈Ω

(1− Pf,j) ·Bj · log
(
1 +

Pj |Hj |2
N0Bj

)
. (8)
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Fig. 2. Examples of: (a) the wideband spectrum �X , and (b) the reconstructed
spectrum X̂ . The signal acquisition is terminated at mini time slot 10, with the
number of compressed samples 2, 500. The SNRs of these 8 active subbands
were set to random natural numbers between 7 dB and 27 dB.

It can be easily seen that the proposed system has superior
performance than the traditional system due to l� ≤ L in (7).

IV. NUMERICAL RESULTS

In simulations, we consider the following wideband signal:

xc(t)=

Nb∑
j=1

√
EjBjsinc(Bj(t−α))cos (2πfj(t−α))+z(t), (9)

where sinc(x) = sin(πx)
πx , α is a random time offset, z(t)

is AWGN with zero mean and unit variance, and Ej is the
received power at CR at subband j. The wideband signal con-
sists of Nb = 8 non-overlapping subbands. The subband j is
in the frequency range [fj−Bj

2 , fj+
Bj

2 ], where the bandwidth
Bj = 10 ∼ 30 MHz and the center frequency fj is randomly
located in [

Bj

2 ,W−Bj

2 ] in which the overall bandwidth W = 2
GHz. The received signal-to-noise ratios (SNRs) of these 8
active subbands are random natural numbers between 7 dB
and 27 dB. One time frame has length T = 10 μs, in which
the spectrum sensing interval is τ = 5 μs. The spectrum
sensing interval is divided into L = 20 mini time slots. Rather
than using the Nyquist sampling rate fN = 2W = 4 GHz,
we adopt the sub-Nyquist sampling rate fS = 1 GHz. The
number of compressed samples in a traditional CS system
is M = fSτ = 5, 000, whereas N = fNτ = 20, 000.
The measurement matrix and the testing matrix follow the
standard normal distribution with zero mean and unit variance.
The measurement noise is assumed to be circular complex
AWGN, i.e., �n ∼ CN (0, δ2). The signal-to-measurement-
noise ratio (SMNR) is set to 50 dB. The energy detection
approach in [11] is employed to detect PUs by using the
reconstructed spectrum. For the data transmission, CRs adopt
the transmit power Pj = 30 ∼ 50 dBm. The channel between
the CR transmitter and the CR receiver is assumed to be block
slow fading channel with the path loss given by the 3GPP
simulation guideline [13]: 127 + 30 log10(D), where D (km)
denotes the distance between the CR transmitter and the CR
receiver.

As we can see from Fig. 2, the wideband signal is composed
of both high SNR subbands and low SNR subbands. Using
the proposed algorithm, we can successfully reconstruct the
wideband spectrum and terminate the signal acquisition at
mini time slot 10, instead of mini time slot L = 20 when
using the traditional CS algorithm. This is because, as shown
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Fig. 3. Comparison of the verification parameter ρl/vl and the predicted
value 2δ2 . The actual spectral recovery error is also shown.
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Fig. 4. Performance comparison of the proposed wideband CR system and
the wideband CR system based on traditional CS when the distance D =
50 m.

in Fig. 3, the verification parameter becomes very close to
2δ2 just when the (unknown) actual spectral recovery error
becomes sufficiently small. Hence, if the result of Theorem 1
is used as the signal acquisition termination metric, the issue
of excessive numbers of measurements can be solved. Fig. 4
shows that the wideband CR using the proposed algorithm
outperforms the CR system using the traditional CS algo-
rithms. The throughput gain improves as the transmit power
increases. The reason is that, even with the same sub-Nyquist
sampling rate, the proposed algorithm utilizes less time slots
for performing spectrum sensing than that of traditional CS
algorithms.

V. CONCLUSIONS

In this letter, we have proposed an adaptive spectrum sens-
ing algorithm for improving the throughput of wideband CRs
using CS technologies. It has been shown that the proposed
algorithm can successfully reconstruct the wideband spectrum
by using a few sub-Nyquist samples. Additionally, the wide-
band signal acquisition can be automatically terminated even if
the actual spectral recovery error is unknown, thanks to the �2
norm validation approach. Furthermore, it has been proved that
the proposed CR system can provide greater throughput than
the CR system using traditional CS technologies. Simulation
results have shown that the proposed algorithm can not only
adaptively reconstruct the wideband spectrum by using an
appropriate number of measurements, but also offer enhanced
throughput for wideband CRs.

APPENDIX

PROOF OF THEOREM 1

Due to the parameter setting in Section III-A, the best
spectral estimate (with zero or sufficiently small ‖ �Xl − X̂l‖2)

should exist and be included in the sequence X̂1, X̂2, · · · , X̂L.
Assuming X̂l(l ∈ [1, L]) is the best spectral estimate, the

verification parameter ρl can be written as

ρl = ‖�Vl −ΨlF
−1X̂l‖22 = ‖ΨlF

−1( �Xl − X̂l) + �n‖22
≈ ‖�n‖22 =

vl∑
i=1

(n2
R,i + n2

I,i) (10)

where nR,i and nI,i denote the real and imaginary parts of
the measurement noise, respectively. As nR,i and nI,i are
normally distributed with zero mean and variance δ2, we
obtain E(n2

R,i) = E(n2
I,i) = δ2, and Var(n2

R,i) = E(n2
R,i−

δ2)2 = Var(n2
I,i) = E(n2

I,i−δ2)2 = 2δ4. Additionally, we find
|n2

R,i − δ2| ≤ |nR,i|2 + δ2 ≤ U2 + δ2.
Applying the Bernstein’s inequality [14], we can obtain

Pr

[∣∣∣∣∣
vl∑
i=1

(n2
R,i+n2

I,i)−2δ2vl

∣∣∣∣∣>ξ

]
=Pr

[∣∣∣∣∣
vl∑
i=1

(n2
R,i−δ2+n2

I,i−δ2)

∣∣∣∣∣>ξ

]

≤2 exp

(
− ξ2/2∑

E(n2
R,i−δ2)2+

∑
E(n2

I,i−δ2)2+(U2+δ2)ξ/3

)

≤2 exp

(
− 3ξ2

24δ4vl + 2(U2 + δ2)ξ

)
. (11)

Considering both (10) and (11), we obtain

Pr
[∣∣ρl − 2δ2vl

∣∣ ≤ ξ
]
> 1−2 exp

(
− 3ξ2

24δ4vl + 2(U2 + δ2)ξ

)
. (12)

Replacing ξ by εvl in (12), we complete the proof.

REFERENCES

[1] R. Zhang and Y.-C. Liang, “Investigation on multiuser diversity in
spectrum sharing based cognitive radio networks,” IEEE Commun. Lett.,
vol. 14, no. 2, pp. 133–135, Feb. 2010.

[2] R. Zhang, Y.-C. Liang, and S. Cui, “Dynamic resource allocation in
cognitive radio networks,” IEEE Signal Process. Mag., vol. 27, no. 3,
pp. 102–114, May 2010.

[3] M.-H. Yoon, Y. Shin, H.-K. Ryu, and J.-M. Woo, “Ultra-wideband loop
antenna,” Electron. Lett., vol. 46, no. 18, pp. 1249–1251, Sep. 2010.

[4] Z.-C. Hao and J.-S. Hong, “Highly selective ultra wideband bandpass
filters with quasi-elliptic function response,” IET Microwaves, Antennas
Propag., vol. 5, no. 9, pp. 1103–1108, 2011.

[5] Available: http://www.ti.com/product/ADC12D1800
[6] Z. Tian and G. B. Giannakis, “Compressed sensing for wideband

cognitive radios,” in Proc. 2007 IEEE ICASSP, pp. 1357–1360.
[7] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,

no. 4, pp. 1289–1306, Apr. 2006.
[8] Y. Wang, Z. Tian, and C. Feng, “A two-step compressed spectrum

sensing scheme for wideband cognitive radios,” in Proc. 2010 IEEE
Globecom, pp. 1–5.

[9] D. Malioutov, S. Sanghavi, and A. Willsky, “Compressed sensing with
sequential observations,” in Proc. 2008 IEEE ICASSP, pp. 3357–3360.

[10] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. Baraniuk,
“Beyond Nyquist: efficient sampling of sparse bandlimited signals,”
IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 520–544, Jan. 2010.

[11] H. Sun, D. Laurenson, and C.-X. Wang, “Computationally tractable
model of energy detection performance over slow fading channels,”
IEEE Commun. Lett., vol. 14, no. 10, pp. 924–926, Oct. 2010.

[12] E. Candes and J. Romberg, “L1-magic: recovery of sparse signals via
convex programming,” California Inst. Technol., Pasadena, CA, USA,
Tech. Rep., Oct. 2005.

[13] “Further advancements for E-UTRA physical layer aspects,” 3GPP TR
36.814 V9.0.0, Tech. Rep., Mar. 2010.

[14] M. Hazewinkel, editor, Encyclopaedia of Mathematics, Vol. 1. Springer,
1987.


