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Abstract—Recently, non-orthogonal multiple access (NOMA)
has attracted considerable interest as one of the 5G-enabling
techniques. However, users with better channel conditions in
downlink communicaitons intrinsically benefits from NOMA
thanks to successive decoding, judicious designs are required
to guarantee user fairness. In this paper, a two-user downlink
NOMA system over fading channels is considered. For delay-
tolerant transmission, the average sum-rate is maximized subject
to both average and peak power constraints as well as a minimum
average user rate constraint. The optimal resource allocation
is obtained using Lagrangian dual decomposition under full
channel state information at the transmitter (CSIT), while an
effective power allocation policy under partial CSIT is also
developed based on analytical results. In parallel, for delay-
limited transmission, the sum of delay-limited throughput (DLT)
is maximized subject to a maximum allowable user outage
constraint under full CSIT, and the analysis for the sum of
DLT is also performed under partial CSIT. Furthermore, an
optimal orthogonal multiple access (OMA) scheme is also studied
as a benchmark to prove the superiority of NOMA over OMA
under full CSIT. Finally, the theoretical analysis is verified by
simulations via different trade-offs for the average sum-rate
(sum-DLT) versus the minimum (maximum) average user rate
(outage) requirement.

Index Terms—Non-orthogonal multiple access, orthogonal
multiple access, fairness, fading channel, ergodic rate, outage
probability, Lagrangian dual decomposition, strong duality,

I. INTRODUCTION

As the incoming fifth generation (5G) wireless communi-
cations features massive connectivity among heterogeneous
types of users in the Internet of Things (IoT), non-orthogonal
multiple access (NOMA) has been envisioned as a promising
candidate for 5G networks [2–4], due to its advantage in
enabling high spectral efficiency via non-orthogonal resource
allocations over other orthogonal multiple access (OMA)
techniques, such as time-division multiple access (TDMA) and
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frequency-division multiple access (FDMA) (see [5] and the
references therein). Hence, it has recently sparked widespread
interest in both industry [6, 7] and academia [8–17]. Variation
forms of NOMA, namely, multi-user superposition transmis-
sion (MUST) and layer division multiplexing (LDM), have
been included in the 3rd Generation Partnership Project Long
Term Evolution Advanced (3GPP-LTE-A) [6] and the next
general digital TV standard ATSC 3.0 [7], respectively.

Among a variety of studies addressing the challenges
posed by NOMA, a general NOMA downlink framework
was proposed in [8] in which a base station (BS) is capable
of simultaneously communicating with several randomly de-
ployed users. To increase the throughput of cell-edge users in
multi-cell NOMA networks, coordinated multi-point (CoMP)
transmission techniques were adopted in [9] and [10] with
the BS equipped with a single antenna and multiple antennas,
respectively.

On another front, far users that suffer from severe path-
loss attenuation are usually disadvantaged in competing for
resources enhancing the sum throughput of the system, and
therefore their performance could be substantially compro-
mised without proper design. Multi-user proportional fairness
was adopted in [2] as a scheduling metric to achieve a
good trade-off between system throughput and user fairness.
There are mainly three types of countermeasures against
such unfairness in NOMA networks. The first strategy is to
invoke cooperative NOMA [11, 12], in which a nearby user is
regarded as a relay to assist a distant user. It is demonstrated
in [11] that by utilizing the proposed cooperative protocol, all
users experience the same diversity order. In [12] the nearby
NOMA users are equipped with wireless energy harvesting
capability to assist far users. The second strategy is to enhance
the worst user performance [13–15]. The max-min power allo-
cation problem that maximizes the minimum achievable user
rate was studied for single-input-single-output (SISO) NOMA
systems in [13], and for clustered multiple-input-multiple-
output (MIMO) NOMA systems in [14]. In [15], the authors
provided a mathematical proof for NOMA’s superiority over
conventional OMA transmission in terms of the optimum sum
rate subject to a minimum rate constraint. The third strategy is
to introduce additional factors to guarantee fairness. Weighted
sum-rate is an effective metric to reflect the priority of users
in resource allocation [16, 17]. [16] considered a mutli-carrier
downlink network, in which each sub-channel can be shared
by multiple users by adopting NOMA. Joint sub-channel
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and power allocation was formulated as a weighted sum-rate
maximization problem, and iteratively solved by leveraging
a matching problem with externalities. multi-carrier NOMA
systems employing a full-dupex (FD) BS was considered in
[17], and an optimal joint sub-carrier and power policy for
maximizing the weighted sum-rate was developed by applying
monotonic optimization.

A. Related Work

Fairness issues were studied for NOMA over fading chan-
nels in the above work. However, they were either considered
in a long term with fixed power allocations, e.g., in [8,
12], or investigated exploiting adaptive allocation of power
and/or bandwidth in a short term, e.g., in [16, 17]. By con-
trast, we consider adaptive resource allocations to channel
dynamics for a two-user downlink NOMA over the whole
fading process, the system design of which requires satisfying
long-term constraints for quality-of-service (QoS) thus posing
new challenges compared with short-term objectives. The
information theoretic study of fading broadcast channels (BCs)
can be traced back to [18] and [19]. Assuming perfect channel
state information (CSI) at both the transmitter (Tx) and the
receivers (Rxs), dynamic power and rate allocations for various
transmission schemes including code division (CD) with and
without successive decoding, time division, and frequency di-
vision over different fading states were studied for the ergodic
capacity region (ECR) and the (zero-) outage capacity region
(OCR) in [18] and [19], respectively. The boundaries of the
ECRs have been characterized in [18] by solving equivalent
weighted sum-rate problems each corresponding to one set of
weights. The (zero-) OCRs were inexplicitly characterized by
deriving the outage probability regions given a rate vector in
[19]. The boundaries of these regions were also obtained by
solving equivalent sum-reward maximization problems [19].

While [18] studied the boundary of the ergodic capacity
region by solving an equivalent average weighted-sum rate
problem subject to an average total power constraint, the op-
timal throughput fairness trade-off region that we characterize
in this paper is obtained by maximizing the average sum rate
subject to a minimum average rate constraint in addition to
average and/or peak power constraints. Therefore, the single-
variable Lagrangian multiplier employed to decide the “water-
filing” power level therein is not readily applicable to our pro-
posed problem. With more Lagrangian multipliers involved,
our formulated Lagrangian can be decoupled into many (equal
to the total number of fading states) subproblems, which can
thus be solved in a parallel fashion with high efficiency. On
the other hand, in [19], assuming that the transmission to each
user is independent, for each joint fading state, an outage was
declared when a given rate vector cannot be maintained for all
the users using CD either with or without successive decoding.
By contrast, we considered a more general scenario in which,
for example, under full CSI at the Tx (CSIT), even if the
user with better channel condition fails to decode the weak
user’s message using successive decoding, it is still possible to
directly retrieve its own treating the interference from the weak
user as noise. Furthermore, unlike [19] that defined the usage
probability via the power set of the users, we equivalently

reformulate this continuous variable by arithmetic operation
over multiple discrete variables via an indicator function [20].

B. Motivation and Contributions

Since the performance of users with disadvantage channel
conditions over multi-user fading BC tends to be compromised
for the objective of mere sum-throughput maximization, we
aim for maximizing the sum throughput of these systems
while satisfying the QoS of the worst user. The classical
results derived in the above work are nevertheless not readily
extendible to problems with minimum ergodic rate constraints
in delay-tolerant scenarios or those with maximum outage con-
straints in delay-limited scenarios. Although [21] investigated
the minimum-rate capacity region taking fairness into account,
it imposes the minimum rate constraint in every fading state,
which may require quite complex encoding/coding design (see
Section IV. B of [21]). Furthermore, other than the modified
“water-filling” based optimal power allocation procedure [18,
22] that requires iteratively selecting the “best” Rx for each
fading state, in this paper we are interested in optimal solution
that can be obtained more efficiently, e.g., by solving a series
of subproblems in parallel.

Motivated by these new challenges, we study the average
sum-rate and/or the sum of delay-limited throughput (DLT)
maximization subject to user fairness for a two-user downlink
NOMA system over fading channels. The main contributions
of this paper are summarized as follows. We 1) solve the
ergodic sum-rate (ESR) maximization problem ensuring a min-
imum average user rate by optimally adapting the power and
rate allocations to fading states with full CSIT for both NOMA
and an optimal OMA scheme; 2) obtain the optimal power
control to the sum of DLT maximization problem, which is
subject to a maximum permissive user outage constraint, with
full CSIT for both NOMA and the optimal OMA scheme; 3)
under full CSIT, prove the superiority of NOMA over OMA
in terms of the considered metrics; 4) under partial CSIT,
analyse the ESR and the DLT, respectively, in closed-form with
the static power allocation and/or proportion of orthogonal
resources designed; and 5) characterize the optimal average
sum-rate (sum-DLT) versus min-rate (max-outage) trade-offs
for different transmission schemes via simulations.

The remainder of the paper is organized as follows: Sec-
tion II introduces the system model and the corresponding
performance metrics. In Section III, the average sum-rate is
maximized subject to transmit power constraints as well as a
minimum average user rate constraint under full and partial
CSIT, respectively, while in Section IV, the sum of DLT
is maximized subject to transmit power constraints as well
as a maximum user outage constraint. Numerical results are
provided in V. Finally, Section VI concludes the paper.

Notation—We use upper-case boldface letters for matrices
and lower-case boldface letters for vectors. ∇xf(x) denotes
the gradient of f(x) with respect to (w.r.t.) x. Ex[·] stands for
the statistical expectation w.r.t. the random variable (RV) x.
∼ represents “distributed as” and , means “denoted by”. The
circularly symmetric complex Gaussian (CSCG) distribution
with mean u and variance σ2 is denoted by CN (u, σ2).
Ei(x) =

∫ x
−∞

et

t dt (x < 0) is the exponential integral
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function of argument x. In addition, (x)+ = max(0, x) and
[x]ba = max(min(x, b), a).

II. SYSTEM MODEL

We consider a simplified single-carrier downlink cellular
system that consists of one BS and two users1, denoted by
Uk, k ∈ {1, 2}, as shown in Fig. 1. Both the BS and the
users are assumed to be equipped with single antenna. We
assume that the complex channel coefficient from the BS
to Uk, hk(ν) experiences block fading with a continuous
joint probability density function (pdf), where ν represents
a fading state. The channel remains constant during each
transmission block, but may vary from block to block as ν
changes2. The channel gain |hk(ν)|2 is assumed to consist
of multiplicative small scale and large scale fading given by
|hk(ν)|2 = |h̄k(ν)|2

λk
, in which h̄k(ν) is a complex Gaussian RV

denoted by h̄k(ν) ∼ CN (0, 1), and λk is a distant-dependent
constant. Hence, |hk(ν)|2 is an exponentially distributed RV
with its mean value specified by 1/λk.
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Fig. 1. System model for a two-user downlink NOMA.

A. Full CSIT

In this paper, we investigate two types of CSIT, i.e., full
CSIT and partial CSIT, while CSI at the Rxs is assumed to
be perfectly known. When full CSIT is available, the BS can
adapt its power and rate of the transmit signal intended for
each user to the channel hk(ν)’s in each fading state. On the
other hand, when only partial CSIT including the order of the
two channel gains and their channel distribution information
(CDI) is available, due to some reasons like limited feedback
from the users to the BS or reducing signalling for the purpose
of reducing overhead, the BS can only determine its power
allocation policy at each fading state based on this order.
We also consider two different multiple access transmission

1We consider a single-carrier multi-user downlink NOMA with only two
users for the following two factors. First, the two-user case is practically
favourable to industry [23], since the delay incurred in successive interference
cancellation (SIC) is significantly reduced. Second, insights for system design
can be drawn easily from the two-user solution, while general solution with
more than two users can also be obtained under full CSIT without much
difficulty. In addition, more complex design for multi-carrier NOMA can be
applied to each transmission block considered herein, but is beyond the scope
of this paper. The interested reader can refer to [16, 17] for multi-carrier based
transmission schemes in NOMA.

2Note that the “block fading” herein refers to slow fading scenarios in which
the channel remains constant within each block length such that short-length
coding schemes are applicable.

schemes, viz., NOMA and optimal OMA. In the NOMA
transmission scheme, the two users non-orthogonally access
the channel by enabling superposition coding (SC) at the
BS and SIC at the users. For optimal OMA transmission,
we consider power and (continuous) time/frequency allocation
both in an adaptive manner, which is referred as OMA-TYPE-
II [15]. (Another benchmark scheme, OMA-Type-I, will be
introduced in Section V.)

1) NOMA: For NOMA transmission, the received signal at
the downlink user Uk is given by

yk(ν) =
√
pk(ν)hk(ν)sk +

√
pk̄(ν)hk(ν)sk̄ + nk, (1)

where k̄ denotes the element in the complementary set of
{1, 2} w.r.t. k; sk’s is the transmit signal intended for Uk’s,
denoted by sk ∼ CN (0, 1)3; pk(ν)’s denotes Uk’s transmit
power; and nk’s is the AWGN at Uk’s Rx, denoted by
nk ∼ CN (0, σ2

k).
We also define Uk’s achievable rate for decoding Uk̄’s

message at fading state ν in bits/sec/Hz, k ∈ {1, 2}, treating
interference as noise (TIAN), as follows.

RNOMA
k→k̄ (ν) = log2

(
1 +

pk̄(ν)gk(ν)

pk(ν)gk(ν) + 1

)
, (2)

where gk(ν) is the normalized channel gain given by
|hk(ν)|2
σ2
k

, gk(ν). Similarly, the achievable rate for Uk to
decode its own message by TIAN is given by

RNOMA
k→k (ν) = log2

(
1 +

pk(ν)gk(ν)

pk̄(ν)gk(ν) + 1

)
. (3)

If gk(ν) > gk̄(ν), it implies that RNOMA
k→k̄ (ν) > RNOMA

k̄→k̄ (ν). In
other words, under this condition, the achievable rate for Uk
(the stronger user) to decode the message of Uk̄ (the weaker
user) is larger than that intended for Uk̄’s transmission, and
therefore Uk is able to successfully perform SIC. Otherwise,
Uk is only able to decode its own message by TIAN. To sum
up, the instantaneous achievable rate for Uk’s is thus given by
[18]

RNOMA
k (ν) ={

log2 (1 + pk(ν)gk(ν)) , if gk(ν) > gk̄(ν),
RNOMA
k→k (ν), otherwise.

(4)

Moreover, similar to [21], we simultaneously consider two
types of transmit power constraints on pk’s, namely, average
power constraint (APC) and peak power constraint (PPC), in
which the former constrains the total transmit power in the
long term, i.e., Eν [pk(ν) + pk̄(ν)] ≤ P̄ , and the latter limits
the instantaneous total transmit power below P̂ , i.e., pk(ν) +
pk̄(ν) ≤ P̂ , ∀ν. It is assumed that P̄ ≤ P̂ without loss of
generality (w.l.o.g.).

3Note that in real communications system with transmitted signals drawn
from finite-alphabet (i.e., discrete) constellations and uniform distribution, the
associated encoding/decoding schemes must be judiciously designed such that
SIC detector is performed to satisfied level [24, 25]. However, the associated
design is beyond the scope of this paper, and is left as an interesting future
direction.
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2) OMA-Type-II: For OMA-Type-II transmission, each user
receives its information over αk(ν) of the time/frequency
dedicated to it in fading state ν, such that αk(ν)+αk̄(ν) = 1,
where αk(ν) ∈ [0, 1]. The same sets of transmit power
constraints as in its NOMA counterpart, i.e., APC and PPC,
are taken into account as well. Accordingly, the instantaneous
achievable rate for Uk’s in fading state ν is given by4

ROMA-II
k (ν) = αk(ν) log2

(
1 +

pk(ν)gk(ν)

αk(ν)

)
. (5)

Note that (5) applies to both TDMA and FDMA transmission
in the sense that the total energy consumed for the two users
in fading state ν over time remains the same as that over
frequency, which is given by αk(ν) pk(ν)

αk(ν) + αk̄(ν) pk̄(ν)
αk̄(ν) =

pk(ν) + pk̄(ν), ∀ν.

B. Partial CSIT

1) NOMA: Under partial CSIT, for NOMA transmission,
the BS does not know the exact CSI of the two users
due to insufficient channel estimation but their relation, i.e.,
whether gk(ν) ≤ gk̄(ν) or gk(ν) < gk̄(ν), and statistical
characteristics, and therefore the Tx cannot dynamically adjust
the allocation of power, rate and/or time/frequency resources
to each fading state as in full CSIT. Hence, we adopt a
binary power allocation strategy depending on which user has
better CSI5. Specifically, in each fading state ν, an amount of
power ps is always assigned to the stronger user while pw is
assigned to the other weaker user. We also assume that ps and
pw are static over all fading states, and therefore only APC
applies, i.e., ps + pw ≤ P̄ . In this case, the instantaneous rate
R′NOMA
k (ν)’s for Uk’s is expressed as

R′NOMA
k (ν) ={

log2 (1 + psgk(ν)) , if gk(ν) > gk̄(ν),

log2

(
1 + pwgk(ν)

psgk(ν)+1

)
, otherwise.

(6)

2) OMA-Type-II: Similarly, for OMA-Type-II transmis-
sion, the binary allocation policy with a fixed sharing of
time/frequency between the two users is adopted. Specifically,
the signal intended for Uk is transmitted with power ps if its
channel gain from the BS is stronger than Uk̄’s, and with power
pw otherwise. The fixed proportion of time/frequency assigned
to Uk and Uk̄ is αk and αk̄, respectively. Consequently, the
instantaneous achievable rate for Uk’s is expressed as

R′OMA-II
k (ν) = αk log2

(
1 + psgk(ν)

αk

)
, if gk(ν) > gk̄(ν),

αk log2

(
1 + pwgk(ν)

αk

)
, otherwise.

(7)

C. System Throughput

1) Delay-Tolerant Transmission: First, for “delay-tolerant”
transmission, we refer it to the scenario in which no delay

4If αk(ν) = 0, we define ROMA-II
k (ν) = 0, since lim

αk→0+
ROMA-II
k = 0.

5Such power policy under partial CSIT is not necessarily optimal but
provided as performance lower-bound in comparison with its counterpart
under full CSIT.

constraints are imposed for decoding, and thus the codeword
can be designed arbitrarily long (approaching infinity in theory
) spanning over all the fading states, and decoded until it
is received in its full length. The associated performance
metric for each user is ergodic rate [18], at which the
Tx delivers the intended data for each user over the entire
fading process. Consequently, the ergodic sum-rate (ESR) of
the two users are given by Eν [RNOMA

k (ν) + RNOMA
k̄

(ν)]
(Eν [R′NOMA

k (ν) + R′NOMA
k̄

(ν)]), and Eν [ROMA-II
k (ν) +

ROMA-II
k̄

(ν)] (Eν [R′OMA-II
k (ν) + R′OMA-II

k̄
(ν)]), for NOMA

and OMA-Type-II transmission, respectively6.
2) Delay-Limited Transmission: Next, consider the delay-

limited types of transmission for downlink NOMA and/or
OMA-Type-II system. We relax the classical information the-
oretic “zero-outage” definition in [26]. Other than maintain a
constant rate vector at all fading states via power control, we
refer this notion to the scenario in which delay-sensitive data
such as video streaming requires to be correctly decoded at a
constant rate at the end of every fading state7. The associated
performance metric for each user is outage probability, which
measures the percentage of fading states at which a predefined
constant rate cannot be supported.

Specifically, under full CSIT, the outage probability for user
Uk with the target rate R̄k, k ∈ {1, 2}, is introduced as below.
Case 1: gk(ν) > gk̄(ν)

ζNOMA
k = Pr

{
RNOMA
k→k̄ (ν) < R̄k̄, R

NOMA
k→k (ν) < R̄k

}
+

Pr
{
RNOMA
k→k̄ (ν) ≥ R̄k̄, RNOMA

k (ν) < R̄k
}
. (8)

Case 2: gk(ν) ≤ gk̄(ν)

ζNOMA
k = Pr

{
RNOMA
k (ν) < R̄k

}
. (9)

As seen from (8), when Uk has better channel condi-
tion, whether its signal-to-noise ratio (SNR) or signal-to-
interference-plus-noise ratio (SINR) leads to its outage de-
pends on whether or not it manages to recover Uk̄’s message. If
it fails to retrieve Uk̄’s message at the predefined transmission
rate for Uk̄, i.e., R̄k̄, it has to decode its own by TIAN.
Otherwise, if it succeeds in decoding Uk̄’s message, SIC is
performed before it decodes its own interference-free. On the
other hand, when Uk has worse channel condition, it always
decodes its own by TIAN (c.f. (9)).

In addition, at each fading state ν, an outage indicator
function is defined as follows [20].
Case 1: gk(ν) > gk̄(ν)

XNOMA
k (ν) =

1, if RNOMA
k→k̄ (ν) < R̄k̄, R

NOMA
k→k (ν) < R̄k,

1, if RNOMA
k→k̄ (ν) ≥ R̄k̄, RNOMA

k (ν) < R̄k,
0, otherwise.

(10)

6Since the analysis developed for “delay-tolerant” transmission may also
apply to scenarios, in which the short-length codewords are detected at each
user on a block basis and the average sum-rate is used to measure the
achievable sum-rate in the long term, we do not explicitly differentiate the
two terms, “ESR” and “average sum-rate”, throughout the paper.

7We assume in the “delay-limited” transmission that SIC can be perfectly
performed during one block, which is hardly true in practice and thus provides
theoretical upper-bound for the achievable sum of DLT. This assumption may
be lifted by explicitly considering imperfect SIC as in [27] in our future work.
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Case 2: gk(ν) ≤ gk̄(ν)

XNOMA
k (ν) =

{
1, if RNOMA

k→k (ν) < R̄k,
0, otherwise.

(11)

Combining (10) (c.f. (8)) and (11) (c.f. (9)), it is easily verified
that Eν [XNOMA

k (ν)] = ζNOMA
k , k ∈ {1, 2}.

For OMA-Type-II transmission, the outage probability of
Uk’s is defined independent of the other as follows:

ζOMA-II
k = Pr

{
ROMA-II
k (ν) < R̄k

}
. (12)

By analogy, we introduce the following indicator function for
Uk w.r.t. the target rate R̄k:

XOMA-II
k (ν) =

{
1, if ROMA-II

k (ν) < R̄k,
0, otherwise.

(13)

It also follows that Eν [XOMA-II
k (ν)] = ζOMA-II

k , k ∈ {1, 2}.
Accordingly, one relevant metric to assess the overall per-

formance in delay-limited case is the sum of DLT expressed
as R̄k(1−ζNOMA

k )+R̄k̄(1−ζNOMA
k̄

), and R̄k(1−ζOMA-II
k )+

R̄k̄(1− ζOMA-II
k̄

), for NOMA and OMA-Type-II transmission
under full CSIT, respectively. The sum of DLT for NOMA
and OMA-Type-II transmission under partial CSIT is also
similarly given by R̄k(1− ζ ′NOMA

k ) + R̄k̄(1− ζ ′NOMA
k̄

), and
R̄k(1− ζ ′OMA-II

k ) + R̄k̄(1− ζ ′OMA-II
k̄

), respectively.

III. OPTIMUM DELAY-TOLERANT TRANSMISSION

In delay-tolerant scenarios, to maximize the ESR of the
system while guaranteeing certain level of fairness, a minimum
achievable ergodic rate requirement for each user, namely,
Eν [RXX

k (ν)] ≥ R̄ (Eν [R′XX
k (ν)] ≥ R̄′), k ∈ {1, 2}, is

imposed, where (·)XX denotes the multiple access scheme that
is specified in the context throughout the paper. In this section,
the optimal trade-off between the system ESR and user fairness
is pursued in the case of full and partial CSIT, respectively.
Particularly, under full CSIT, the ESR maximization problems
are solved using Lagrangian dual decomposition levering
“time-sharing” conditions, while under partial CSIT, individual
user’s ergodic rate needs to be first analysed in closed form
by means of CDFs of the related SNR and/or SNRs.

A. Full CSIT
In the case of full CSIT, the design objective is to maximize

the system ESR by jointly optimizing the power and/or orthog-
onal resource allocations, and the two users’ instantaneous rate
at each fading state, subject to both APC and PPC at the BS, as
well as a minimum ergodic rate constraint for the two users. As
a result, the optimization problem is formulated as follows8.

(P1-XX) : Maximize
{pk(ν),pk̄(ν),αk(ν)}

Eν [RXX
k (ν) +RXX

k̄ (ν)]

Subject to

Eν [pk(ν) + pk̄(ν)] ≤ P̄ , (14a)

pk(ν) + pk̄(ν) ≤ P̂ , ∀ν, (14b)
pk(ν) ≥ 0, pk̄(ν) ≥ 0, ∀ν, (14c)

Eν [RXX
k (ν)] ≥ R̄, ∀k, (14d)

8Note that E[·] in (P1-XX) is evaluated by the sum of the associated
instantaneous function of ν divided by the total number of fading states N ,
assuming that N is large enough such that N →∞.

where the exclusive parameters for OMA-Type-II, {αk(ν)}’s,
are only valid when XX refers to OMA-Type-II. In the
following, we develop optimal solution to (P1-NOMA) and
(P1-OMA-II), respectively.

1) Optimal Solution to (P1-NOMA): Problem
(P1-NOMA) is non-convex due to the non-convex objective
function (c.f. (4)), and therefore no immediate solution can
be given. However, for channel fading following continuous
distributions, (P1-NOMA) proves to satisfy the “time-
sharing” condition9. Note that if (P1-NOMA) satisfies the
“time-sharing condition”, then it has a zero duality gap
between the primal and the dual problem using Lagrangian
duality [28, Theorem 1], i.e., strong duality [29] holds,
despite of the convexity of the problem itself. Hence, we can
still optimally solve it via its dual problem.

Next, we apply the Lagrangian dual method to solve
(P1-NOMA), the Lagrangian of which is given by

LNOMA
1 ({pk(ν)}, {pk̄(ν)}, λ, δ, µ) =

Eν [(1+δ)RNOMA
k (ν)+(1+µ)RNOMA

k̄ (ν)−λ(pk(ν)+pk̄(ν))]

+ λP̄ − δR̄− µR̄, (15)

where λ is the Lagrangian multiplier associated with the APC
given in (14a); δ and µ are those associated with the ergodic
rate constraints given in (14d) for Uk and Uk̄, respectively.
The dual function of (P1-NOMA) corresponding to (15) is
accordingly given by

g(λ, δ, µ) = maxLNOMA
1 ({pk(ν)}, {pk̄(ν)}, λ, δ, µ),

s.t. pk(ν) ≥ 0, pk̄(ν) ≥ 0, pk(ν) + pk̄(ν) ≤ P̂ , ∀ν. (16)

The dual problem of (P1-NOMA) is thus formulated as

(P1-NOMA-dual) : Minimize
λ≥0,δ≥0,µ≥0

g(λ, δ, µ).

It is observed that g(λ, δ, µ) is obtained by maximizing the
Lagrangian given in (15), which can be decoupled into as
many subproblems as the number of fading states all sharing
the same structure. The index ν is now safely dropped for
the ease of exposition. Taking one particular fading state as
an example, the associated subproblem given a triple (λ, δ, µ)
can be expressed as

(P1-NOMA-sub) : Maximize
pk≥0,pk̄≥0

L̄NOMA
1 (pk, pk̄)

Subject to pk + pk̄ ≤ P̂ ,

where L̄1
NOMA

(pk, pk̄) = (1+δ)RNOMA
k +(1+µ)RNOMA

k̄
−

λ(pk + pk̄). Since these problems are independent of each
other, they can be solved in parallel each for one fading state.
Therefore, w.l.o.g., we focus on solving (P1-NOMA-sub) in
the sequel.

9The original definition of “time-sharing” condition is given by [28,
Definition 1], which essentially implies that the maximum value of the
optimization problem (P1-NOMA) is a joint concave function of P̄ and R̄.
The proof is rather standard and thus omitted herein for brevity.
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Proposition 3.1: The optimal power allocation to Problem
(P1-NOMA-sub) assuming g1 > g2 is given by10

(p∗1, p
∗
2) = arg max{L̄NOMA

1 (0, 0), L̄NOMA
1 (0, P̂ ),

L̄NOMA
1 (P̂ , 0), L̄NOMA

1 (pi,1, pi,2)}, i ∈ {1, 2, 3, 4}, (17)

where (pi,1, pi,2), i ∈ {1, 2, 3, 4}, are given at the top of the
next page with each corresponding to one solution pair given
by (19).

Proof: Since L̄NOMA
1 (p1, p2) is a continuous function

over Ψ = {(p1, p2)|p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ P̂}, its
maximum proves to be either at the stationary point, denoted
by (p4,1, p4,2), or on the boundary of Ψ depending on whether
(p4,1, p4,2) ∈ Ψ or not. We calculate (p4,1, p4,2) as follows:

(p4,1, p4,2) = arg
{
∇(p1,p2)L̄NOMA

1 (p1, p2) = 0
}
. (18)

If (p4,1, p4,2) ∈ Ψ, the maximum is L̄NOMA
1 (p4,1, p4,2),

otherwise the maximum can be attained by restricting (p1, p2)
to the lines p1 = 0, p2 = 0 or p1 + p2 = P̂ . The stationary
points on these lines are denoted by (pi,1, pi,2)’s, i = 1, 2 and
3, respectively.

Note that Proposition 3.1 assumes g1 > g2 for the ease of
exposition though, its results also apply to the fading states
where g1 < g2 by simply exchanging δ, p1, and g1 with
µ, p2, and g2, respectively, in (19). Some optimal system
design insights are gained from Proposition 3.1. Considering
an extreme case in favour of U2, in which δ � µ, it is observed
from (19) that p4,1 monotonically decreases with µ while p4,2

monotonically increases with µ, which suggests that when µ
associated with U2’s QoS requirement is sufficiently large,
the optimal power allocation policy tends to suppress U1’s
transmission while supporting U2’s despite of U1’s channel
condition better than U2.

Thanks to Proposition 3.1, given a triple (λ, δ, µ), g(λ, δ, µ)
is obtained efficiently by solving (P1-NOMA-sub) in par-
allel over all fading states. (P1-NOMA-dual) can thus be
iteratively solved using sub-gradient based methods, e.g.,
deep-cut ellipsoid method (with constraints) [30, Localization
methods]. The required sub-gradient for updating (λ, δ, µ)
turns out to be (P̄ − Eν [p∗k(ν) + p∗

k̄
(ν)],Eν [R∗NOMA

k (ν)] −
R̄,Eν [R∗NOMA

k̄
(ν)] − R̄)T , where (p∗k(ν), p∗

k̄
(ν)) is the op-

timal solution to (P1-NOMA-sub) at fading state ν, and
R∗NOMA
k (ν)’s is obtained by substituting (p∗k(ν), p∗

k̄
(ν)) into

(4).
Note that a feasible R̄ in (14d) ensures the successful

implementation of the ellipsoid method, and thus it is impor-
tant to consider a reasonable R̄ that does not exceed R̄max.
We can obtain R̄max by replacing the objective function of
(P1-NOMA) with a variable R̄ and then solving the feasibility
problem by bi-section over R̄. Since the involved procedure
is quite similar to that for solving (P1-NOMA), we omit it
herein for brevity.

10In fact, under full CSIT, following the same method utilized to develop
Proposition 3.1, the two-user results can be generalized to more general cases
with K > 2, since the difficulty of solving (18) does not increase with K.

2) Optimal Solution to (P1-OMA-II): First, (P1-OMA-II)
is a convex problem, since (5) as the perspective of the jointly
concave function log2(1 + pk(ν)gk(ν)) proves to be jointly
concave w.r.t. αk(ν) and pk(ν), k ∈ {1, 2}, ∀ν. As such, we
can solicit the Lagrangian dual method to solve (P1-OMA-II)
due to strong duality.

The Lagrangian of (P1-OMA-II) is expressed as

LOMA-II
1 ({pk(ν)}, {pk̄(ν)}, {αk(ν)}, λ, δ, µ) =

Eν [(1+δ)ROMA-II
k (ν)+(1+µ)ROMA-II

k̄ (ν)−λ(pk(ν)+pk̄(ν))]

+ λP̄ − δR̄− µR̄, (20)

where λ, δ and µ are Lagrangian multipliers associated with
the same constraints as those for (P1-NOMA). Similar to the
previous section, LOMA-II

1 ({pk(ν)}, {pk̄(ν)}, {αk(ν)}, λ, δ, µ)
can also be decoupled into parallel sub-Lagrangian all having
the same structure. We define L̄OMA-II

1 (pk, pk̄, αk) = (1 +
δ)ROMA-II

k +(1+µ)ROMA-II
k̄

−λ(pk+pk̄). Then the associated
subproblem one particular fading state is formulated as

(P1-OMA-II-sub) : Maximize
pk≥0,pk̄≥0,αk

L̄OMA-II
1 (pk, pk̄, αk)

Subject to pk + pk̄ ≤ P̂ ,
0 ≤ αk ≤ 1, ∀k,

where the index ν has been dropped for the ease of exposition.
To solve (P1-OMA-II-sub), the following two lemmas are
required.

Lemma 3.1: If the maximum of L̄OMA-II
1 (p1, p2, α1) is

achieved by its jointly stationary point, it is necessary to have
the following conditions satisfied:

h(λ, δ, µ) = 0, (21a)
c1 ≥ 0, (21b)
c2 ≥ 0, (21c){

P̂−c2
c1−c2 ≥ 0, if c1 > c2
P̂−c2
c1−c2 ≤ 1, otherwise

, (21d)

where c1 = 1+δ
λ ln 2−

1
g1

, c2 = 1+µ
λ ln 2−

1
g2

, and h(λ, δ, µ) is given
by

h(λ, δ, µ) = (1 + δ) log2

(
1 + δ

λ ln 2
g1

)
−

(1 + µ) log2

(
1 + µ

λ ln 2
g2

)
− λc1 + λc2. (22)

The corresponding stationary point is given by

p∗1 = c1α
∗
1, p

∗
2 = c2(1− α∗1), (23)

and

α∗1 =

{
∀ ∈ [0,min{ P̂−c2c1−c2 , 1}], if c1 > c2,

∀ ∈ [( P̂−c2c1−c2 )+, 1], otherwise.
(24)

Proof: First, solve ∇(p1,p2,α1)L̄OMA-II
1 (p1, p2, α1) = 0

to obtain the jointly stationary point. Next, by plugging
p1 = c1α1 and p2 = c2(1 − α1) into the partial derivative
of L̄OMA-II

1 (p1, p2, α1) w.r.t. α1, (21a) is obtained. Finally,
constrain P1 ≥ 0, p2 ≥ 0, and p1+p2 ≤ P̂ , we arrive at (21b),
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p1,1 = 0, p1,2 =
[

1+µ
λ ln 2

− 1
g2

]P̂
0

p2,1 =
[

1+δ
λ ln 2

− 1
g1

]P̂
0
, p2,2 = 0

p3,1 =
[

(1+µ)/g1−(1+δ)/g2
δ−µ

]P̂
0
, p3,2 =

[
P̂ − (1+µ)/g1−(1+δ)/g2

δ−µ

]P̂
0{

p4,1 = (1+µ)/g1−(1+δ)/g2
δ−µ

p4,2 = 1+µ
λ ln 2

− 1
g2

− (1+µ)/g1−(1+δ)/g2
δ−µ

, if p4,1 ≥ 0, p4,2 ≥ 0, p4,1 + p4,2 ≤ P̂
N/A. otherwise

(19)

(21c), and the feasible range for α1 given in (24), respectively.

Lemma 3.2: If the maximum of L̄OMA-II
1 (p1, p2, α1) is

achieved by points on the boundary p1 +p2 = P̂ , the optimum
(p1, p2, α1) turns out to be{

p∗1 = 0, p∗2 = P̂ , α∗1 = 0, if 1+µ
1+δ >

log2(1+P̂ g1)

log2(1+P̂ g2)

p∗1 = P̂ , p∗2 = 0, α∗1 = 1. otherwise
(25)

Proof: Please refer to a longer version of this paper [31,
Appendix A].
Based on Lemma 3.1 and Lemma 3.2, the following proposi-
tion is derived.

Proposition 3.2: The optimal power as well as
time/frequency allocation to (P1-OMA-II-sub) is given
by

(p∗1, p
∗
2, α
∗
1) = arg max{L̄OMA-II

1 (0, 0, 0),

L̄OMA-II
1 (0, P̂ , 0), L̄OMA-II

1 (P̂ , 0, 1),

L̄OMA-II
1 (0, c2, 0)1c2 , L̄OMA-II

1 (c1, 0, 1)1c1}, (26)

where 1(·) is an indicator function defined as

1x =

{
1, if 0 ≤ x ≤ P̂
0. otherwise

(27)

Proof: Please refer to a longer version of this paper [31,
Appendix B].

Remark 3.1: When there are only two users, the optimal
solution given by (26) shares some philosophy in common
with that achieves the boudary of the time division (TD)
capacity region discussed in [18, Thoerem 3]. We focus on
solving (P1-OMA-II-sub) in any fading state given a triple
(λ, δ, µ), while [18] maximized the total weighted sum-rate
in any fading state by determining how to distribute P (n)
among M = 2 users such that the instantaneous total power
constraint

∑2
j=1 τjPj(n) = P (n) (c.f. [18, Eqn. (11)]) is

satisfied. The optimal solutions both suggest that with prob-
ability 1, at most one single user transmits in any fading
state. This is because the probability measure of any subset
of {((gk(ν), gk̄(ν))) : h(λ, δ, µ) = 0} (c.f. (22)) assuming
continuously joint distribution of (gk(ν), gk̄(ν)) is zero, and
so is that of L , {n : h(λ,n) = 0} in [18, Thoerem 3].
This also explains why the maximum of L̄OMA-II

1 (p1, p2, α1)
cannot be achieved by its jointly stationary point in probability.

With Proposition 3.2, given a triple (λ, δ, µ),
(P1-OMA-II-sub) is first solved state by state; then

by updating (λ, δ, µ) in accordance with the associated
sub-gradient (P̄ − Eν [pk(ν) + pk̄(ν)],Eν [ROMA-II

k (ν)] −
R̄,Eν [ROMA-II

k̄
(ν)]−R̄)T , (P1-OMA-II) is iteratively solved.

Next, we rigorously prove that the ESR achieved by OMA-
Type-II cannot perform better than that achieved by NOMA.
To prove so, we denote the optimal power and time/frequency
allocation to (P1-OMA-II) by {p∗1(ν), p∗2(ν), α∗1(ν)}. Then
let p1 = p∗1 and p2 = p∗2 in each fading state for NOMA
transmission. If an alternative user is selected to transmit, then
the optimum αk associated with it is seen to be 1 (c.f. (26)).
Hence, assuming p∗1 > 0 (α∗1 = 1) and p∗2 = 0 (α∗2 = 0),
RNOMA

1 turns out be log2(1 + p∗1g1) and RNOMA
2 = 0, which

is exactly equal to R∗OMA-II
1 and R∗OMA-II

2 , respectively; vice
versa when p∗1 = 0 (α∗1 = 0) and p∗2 > 0 (α∗2 = 1). The
other trivial case is that RNOMA

k = R∗OMA-II
k = 0, ∀k, when

p∗1 = p∗2 = 0. Hence, with p1 = p∗1 and p2 = p∗2 in each fading
state, Eν [RNOMA

k (ν)] = Eν [R∗OMA-II
k (ν)] ≥ R̄, ∀k, is met.

It is also easily examined that (14d) is satisfied. To sum up,
the optimal solution to (P1-OMA-II) proves to be feasible
to (P1-NOMA), the former of which thus yields an optimum
value no more than the latter.

B. Partial CSIT

By analogy, the partial CSIT counterpart of Problem
(P1-XX) is formulated as below:

(P1′-XX) : Maximize
ps,pw,αk

Eν [R′XX
k (ν) +R′XX

k̄ (ν)]

Subject to ps + pw ≤ P̄ , (28a)
ps ≥ 0, pw ≥ 0, (28b)

Eν [R′XX
k (ν)] ≥ R̄′, ∀k, (28c)

where αk’s is only valid in the transmission adopting OMA-
Type-II. Similar to Problem (P1-XX), (28c) constrain the
minimum average user rate achieved by the two users. In the
following, we provide optimal solution to (P1′-NOMA) and
(P1′-OMA-II), respectively.

1) Optimal Solution to (P1′-NOMA): Since only the re-
lation between the two users’ channel gains at each fading
state and their CDI are known to the BS, we first derive the
expectation of R′NOMA

k (ν)’s as function of ps and pw, and
then solve (P1′-NOMA) in accordance with these expectation
results.

First, denote the RV |hk(ν)|2 (|hk̄(ν)|2) by X (Y )11. Also,
denote the SNR psgk(ν) and the SINR pwgk(ν)/(psgk(ν)+1)

11Note that we assume σ2
k = σ2, ∀k, throughout the paper such that the

relation between the effective channels of the two users , i.e., gk(ν) and
gk̄(ν), is equivalent to that between |hk(ν)|2 and |hk̄(ν)|2.
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(c.f. (6)) by Γk and Γ̃k, respectively. It thus follows that the
conditional cumulative density functions (CDFs) of Γk and Γ̃k
are given by12

FΓk|X≥Y (z) =
Pr{psX/σ2

k ≤ z,X ≥ Y }
Pr{X ≥ Y }

=1− λk + λk̄
λk̄

e−λkεk +
λk
λk̄
e−(λk+λk̄)εk , (29)

FΓ̃k|X<Y (z) =
Pr{pwX/

(
psX + σ2

k

)
≤ z,X < Y }

Pr{X < Y }

=

{
1, if pw − psz ≤ 0
1− e−(λk+λk̄)ε̃k , otherwise

, (30)

respectively, where εk , σ2
kz
ps

and ε̃k , σ2
kz

pw−psz . In accordance
with (29) and (30), Eν [R′NOMA

k (ν)]’s can be obtained by the
following proposition.

Proposition 3.3: The ergodic rate for NOMA user Uk, k ∈
{1, 2}, under partial CSIT is given by

Eν [R′NOMA
k (ν)] =

2

ln 2

λk
λk + λk̄

f

(
(λk + λk̄)σ2

k

ps

)
− 1

ln 2

λk
λk + λk̄

f

(
(λk + λk̄)σ2

k

ps + pw

)
− 1

ln 2
f

(
λkσ

2
k

ps

)
, (31)

where f(·) denotes the function f(x) = exEi(−x) (x > 0).
Proof: Please refer to a longer version of this paper [31,

Appendix C].
Since the optimization variable pw only contributes to
f(

(λk+λk̄)σ2
k

ps+pw
), we examine the property of Eν [R′NOMA

k (ν)]

in terms of pw by studying f(
(λk+λk̄)σ2

k

ps+pw
) as follows:

∂f
(

(λk+λk̄)σ2
k

ps+pw

)
∂pw

=

∂

(
e

(λk+λ
k̄)σ2

k
ps+pw Ei

(
− (λk+λ

k̄
)σ2
k

ps+pw

))
∂pw

=
1

ps + pw
(uE1 (u) eu − 1)

(a)
<

1

ps + pw

(
u ln

(
1 +

1

u

)
− 1

)
< 0,

(32)

where (λk+λk̄)σ2
k

ps+pw
, u, E1(x) = −Ei(−x) (x > 0), and (a)

is due to the inequality E1(x)ex < ln(1 + 1
x ) (X > 0) [33,

Eq. (5.1.20)]. Hence, Eν [R′NOMA
k (ν)]’s proves to monotoni-

cally increase with pw.
Next, we solicit this monotonicity for solving

(P1′-NOMA). As it is easily seen that given any
ps, (P1′-NOMA) attains its optimum value when
Eν [R′NOMA

k (ν)]’s takes on its maximum w.r.t. pw, i.e.,
when pw = P̄ − ps (c.f. (28a)), (P1′-NOMA) is thus
related with only one optimization variable ps. Hence,
one-dimension search over ps ∈ [0, P̄ ] can be implemented
to find the optimum solution (up to numerical accuracy) to
(P1′-NOMA).

12These results are not explicitly applicable to K > 2 case. A better
approach to deal with the more general cases with K > 2 is to solicit order
statistics [8, 32], which is beyond the scope of this treatise.

2) Optimal Solution to (P1′-OMA-II): Denoting the SNR
of Uk in the case of X ≥ Y by Γk, and that in the case of
X < Y by Γ̃k (c.f. (7)), the conditional CDFs of Γk and Γ̃k
are given by

FΓk|X≥Y (z) =1− λk + λk̄
λk̄

e−λkϕk +
λk
λk̄
e−(λk+λk̄)ϕk , (33)

FΓ̃k|X<Y
(z) =1− e−(λk+λk̄)ϕ̃k , (34)

where ϕk , αkσ
2
kz

ps
and ϕ̃k , αkσ

2
kz

pw
. With (33) and (34), we

have the following proposition.
Proposition 3.4: The ergodic rate for user Uk operating with

OMA-type-II, k ∈ {1, 2}, under partial CSIT is given by

Eν [R′OMA-II
k (ν)] =

αk
ln 2

(
−f
(
λkαkσ

2
k

ps

)
+

λk
λk + λk̄

f

(
(λk + λk̄)αkσ

2
k

ps

)
− λk
λk + λk̄

f

(
(λk + λk̄)αkσ

2
k

pw

))
. (35)

Proof: Please refer to a longer version of this paper [31,
Appendix D].

Similar as is done in (32), Eν [R′OMA-II
k (ν)]’s can be shown

to monotonically increase with pw as well. Therefore it
implies that the optimal solution to (P1′-OMA-II) satisfies
ps + pw = P̄ . As a result, there are two optimization
variables (ps and αk) remaining for (P1′-OMA-II), which
can be solved (up to numerical accuracy) by two-dimension
search over {(ps, αk)|ps ∈ [0, P̄ ], αk ∈ [0, 1]} such that
Eν [R′OMA-II

k (ν)] ≥ R̄′, k ∈ {1, 2}.

IV. OPTIMUM DELAY-LIMITED TRANSMISSION

In delay-limited scenarios, each user attempts to maintain
their respective prescribed rate in as much fading states as
possible so as to reduce their outage probability (c.f. (8),
(9), and (12)). When the users compete for power and/or
time/frequency resources to get their intended data transmitted
at the target rate in each fading state, the combined effects
of outage probability and individual target rate accounts for
the DLT of each user, which causes the solution to the sum
of DLT maximization non-trivial. In this section, the optimal
trade-offs between the system sum-DLT and the maximum
outage probability requirement for the users is investigated
for different multiple access schemes under full and partial
CSIT, respectively. Particularly, under full CSIT, the DLT
maximization problems are solved using Lagrangian dual
decomposition levering “time-sharing” conditions, while under
partial CSIT, the individual user’s outage probability needs to
be first analysed in closed form by means of CDI.

A. Full CSIT

In the case of full CSIT, we aim for maximizing the system
sum of DLT by jointly optimizing the individual transmit
power as well as time/frequency allocation over different
fading states, subject to a given pair of APC and PPC at the
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BS, and a maximum user outage probability constraint. The
optimization problem is thus formulated as below.

(P2-XX) : Maximize
{pk(ν),pk̄(ν),αk(ν)}

R̄k(1− ζXX
k ) + R̄k̄(1− ζXX

k̄ )

Subject to

Eν [pk(ν) + pk̄(ν)] ≤ P̄ , (36a)

pk(ν) + pk̄(ν) ≤ P̂ , ∀ν, (36b)
pk(ν) ≥ 0, pk̄(ν) ≥ 0, ∀ν, (36c)

Eν [XXX
k (ν)] ≤ ζ̄, ∀k, (36d)

where {αk(ν)}’s are only valid when the two users ac-
cess the channel by OMA-Type-II. It is worthy of noting
that given the same target rate intended for each user, i.e.,
R̄k = R̄k̄ = R̄, even if Uk and Uk̄ suffer from “near-far”
physical condition, the far user can still successfully decode
its data at this constant rate for more than 1 − ζ̄ proportion
of the fading states, thanks to the constraints (36d). As seen
from (10) and (11) ((13)), the discrete value of XNOMA

k (ν)
(XOMA-II

k (ν))’s renders non-convexity w.r.t. the optimization
variables pk(ν), k ∈ {1, 2}, and thus Problem (P2-XX) is also
non-convex. Therefore we exploit the similar “time-sharing”
condition aforementioned to find their optimal solutions in
subsection IV-A1 and IV-A2, respectively. In the following, we
aim for solving (P2-NOMA) and (P2-OMA-II), respectively.

1) Optimal Solution to (P2-NOMA): Adopting Lagrangian
dual decomposition method, the Lagrangian of Problem
(P2-NOMA) is given by

LNOMA
2 ({pk(ν)}, {pk̄(ν)}, λ, δ, µ) =

Eν [−R̄kXNOMA
k (ν)− R̄k̄XNOMA

k̄ (ν)− λ(pk(ν) + pk̄(ν))−
δXNOMA

k (ν)− µXNOMA
k̄ (ν)] + λP̄ + δζ̄ + µζ̄, (37)

where λ is the Lagrangian multiplier associated with the
APC; δ and µ are those associated with the maximum user
outage probability constraints given in (36d) for Uk and Uk̄,
respectively. In line with the principle of dual decomposition,
(37) can be maximized by decoupling it into independent
subproblems each for one fading state and solving those sub-
problems in parallel. Define L̄NOMA

2 (pk, pk̄) = R̄kX
NOMA
k +

R̄k̄X
NOMA
k̄

+ λ(pk + pk̄) + δXNOMA
k + µXNOMA

k̄
. With the

fading index ν safely dropped, given the dual variables’ triple
(λ, δ, µ), the following problem is typical of the subproblems
sharing the same structure:

(P2-NOMA-sub) : Minimize
pk≥0,pk̄≥0

L̄NOMA
2 (pk, pk̄)

Subject to pk + pk̄ ≤ P̂ .

Then, we investigate the possible combinations of outage
occurrences for Uk and Uk̄. Assuming gk > gk̄, k ∈ {1, 2},
the possible combinations of indicator function XNOMA

k and
the corresponding decoding strategies adopted by Uk are
summarized in Table I, where Uk̄ → Uk̄ represents that Uk̄
directly decodes its own information TIAN; Uk → Uk̄ → Uk
denotes Uk’s attempt to perform SIC13; 6→ indicates failure

13Given gk > gk̄ , we assume the decoding order Uk → Uk̄ → Uk , since
in delay-limited NOMA, it is optimum to have only the user with better CSI
perform SIC for the sake of saving the total transmit power.

of decoding. Specifically, if the first step succeeds, Uk is able
to cancel the interference from Uk̄, otherwise Uk continues to
decode its own treating Uk̄’s as interference. Based on Table I,
we derive the optimal solution to (P2-NOMA-sub) in the
following proposition.

TABLE I

Uk Uk 6→ Uk̄ 6→ Uk, X
NOMA
k = 1 (I.A)

Uk 6→ Uk̄ → Uk, X
NOMA
k = 0 (I.B)

Uk → Uk̄ 6→ Uk, X
NOMA
k = 1 (I.C)

Uk → Uk̄ → Uk, X
NOMA
k = 0 (I.D)

Uk → Uk̄ 6→ Uk, X
NOMA
k = 1 (II.A)

Uk → Uk̄ → Uk, X
NOMA
k = 0 (II.B)

Uk̄ Uk̄ 6→ Uk̄, XNOMA
k̄

= 1 Uk̄ → Uk̄, XNOMA
k̄

= 0

Proposition 4.1: The optimal power allocation to Problem
(P2-NOMA-sub) assuming gk > gk̄ is given by

(p∗k, p
∗
k̄) = arg min

i∈{1,2,3,4}
{L̄NOMA

2 (pi,k, pi,k̄)1pi,k+pi,k̄},

where pi,k’s and pi,k̄’s are given by14
p1,k = 0, p1,k̄ = 0

p2,k = 2R̄k−1
gk

, p2,k̄ = 0

p3,k = 0, p3,k̄ = 2R̄k̄−1
gk̄

p4,k = 2R̄k−1
gk

, p4,k̄ =
(

2R̄k̄ − 1
)(

2R̄k−1
gk

+ 1
gk̄

) , (38)

and the indicator function 1(·) is defined the same as (27).
Proof: To minimize L̄NOMA

2 (pk, pk̄), we need to ex-
amine every case of combination regarding Uk’s and Uk̄’s
outage occurrences so as to find the one that minimizes
L̄NOMA

2 (pk, pk̄). First, we show that the cases I.C and I.D
can be safely removed since they are always outperformed
by other cases. Take I.C as an example, if Uk succeeds in
decoding Uk̄’s message at rate R̄k̄, it inexplicitly suggests
that Uk̄’s message is transmitted at pk̄ > 0. Therefore, the
corresponding L̄NOMA

2 (pk, pk̄) = R̄k + R̄k̄ + λpk̄ + δ + µ
is strictly larger than L̄NOMA

2 (0, pk̄) = R̄k + R̄k̄ + δ + µ
in Case I.A. Similarly, Case I.D can be shown to be strictly
outperformed by Case I.B. With the remaining four cases, pi,k
(pi,k̄), i ∈ {1, 2, 3, 4}, is the minimum power required for Uk
(Uk̄) to succeed in transmission associated with the case I.A,
I.B, II.A, and II.B, respectively. Next, select the minimizer
out from these four cases, which depends on how the required
transmit power weighs R̄k’s as well as the given multipliers
(λ, δ, µ).

Note from Proposition 4.1 that the optimal power policy
allocates either the minimum required power to support Uk
and/or Uk̄’s transmission at their respective target rate or
completely shuts down the transmission. For example, when
Uk suspends its transmission in Cases I.A and II.A, Case II.A
outperforms Case I.A iff pk̄ ≤

R̄k̄+µ
λ . From the perspective of

fairness, when µ is large enough appealing for smaller outage,
this condition is easier to be satisfied and thus XNOMA

k̄
is more

likely to be 0, and vice versa.
With Proposition 4.1, given any multiplier-triple (λ, δ, µ),

the maximum of the Lagrangian in (37) is obtained by

14In fact, under full CSIT, following the same method utilized to develop
Proposition 4.1, the two-user results can be generalized to cases with K > 2
by mathematical induction.
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solving (P2-NOMA-sub) state by state in parallel. Finally,
(P2-NOMA) is solved by updating (λ, δ, µ) in accordance
with the ellipsoid method.

2) Optimal Solution to (P2-OMA-II): Despite of its non-
convexity due to the same reason as that for (P2-NOMA), we
can still find the optimal solution to (P2-OMA-II) thanks to
the “time-sharing” condition that (P2-OMA-II) meets.

Similar to Section IV-A1, ((P2-OMA-II) can also be de-
coupled into as many subproblems as the number of fading
states each for one fading state, which is expressed as

(P2-OMA-II-sub) : Minimize
pk≥0,pk̄≥0,αk

L̄OMA-II
2 (pk, pk̄, αk)

Subject to

pk + pk̄ ≤ P̂ ,
0 ≤ αk ≤ 1, ∀k,

where the objective function is defined as
L̄OMA-II

2 (pk, pk̄, αk) = R̄kX
OMA-II
k + R̄k̄X

OMA-II
k̄

+
λ(pk + pk̄) + δXOMA-II

k + µXOMA-II
k̄

with the fading index
ν dropped for brevity.

Since each Uk only needs to decode its own information
without seeing interference in the orthogonal transmission, the
possible combinations of outage occurrences for Uk and Uk̄ are
easily shown in Table II, where Uk → Uk denotes Uk’s direct
decoding of its own message, k ∈ {1, 2}. Based on Table II,

TABLE II

Uk Uk 6→ Uk, XOMA-II
k = 1

Uk → Uk, XOMA-II
k = 0

Uk 6→ Uk, XOMA-II
k = 1

Uk → Uk, XOMA-II
k = 0

Uk̄ Uk̄ 6→ Uk̄, XOMA-II
k̄

= 1 Uk̄ → Uk̄, XOMA-II
k̄

= 0

we obtain the optimal solution to (P2-OMA-II-sub) in the
following proposition.

Proposition 4.2: The optimal power allocation to Problem
(P2-OMA-II-sub) is given by

(p∗k, p
∗
k̄, α
∗
k) =

arg min
i∈{1,2,3,4}

{L̄OMA-II
2 (pi,k, pi,k̄, αi,k)1pi,k+pi,k̄}, (39)

where pi,k’s and pi,k̄’s are given by

p1,k = 0, p1,k̄ = 0, α1,k = 0;

p2,k = 2R̄k−1
gk

, p2,k̄ = 0, α2,k = 1;

p3,k = 0, p3,k̄ = 2R̄k̄−1
gk̄

, α3,k = 0;

p4,k =
α∗k(2

R̄k
α∗
k −1)

gk
, p4,k̄ =

α∗
k̄
(2

R̄
k̄

α∗
k̄ −1)

gk̄
, α4,k = α∗k.

(40)

In (40), α∗k’s denotes the optimum proportion of
time/frequency resource allocated to Uk’s to minimize
the instantaneous total transmit power, which is obtained by
solving the following (convex) problem.

(P2-OMA-II-MP) :

Minimize
αk

αk(2
R̄k
αk − 1)

gk
+
αk̄(2

R̄
k̄

α
k̄ − 1)

gk̄
Subject to 0 ≤ αk ≤ 1.

In addition, the indicator function is given by (27).
Proof: Please refer to a longer version of this paper [31,

Appendix E].
As a result, given any triple (λ, δ, µ), (P2-OMA-II-sub) is
solved. (P2-OMA-II) is then solved by updating (λ, δ, µ)
using the ellipsoid method similarly as solving (P2-NOMA).

Next, given the same set of R̄k’s, we provide mathematical
proof for the superiority of NOMA over OMA-Type-II in
terms of the optimum sum of DLT. To prove so, we introduce
the following lemma.

Lemma 4.1: Given g1 ≥ g2 ≥ . . . ≥ gK > 0,

denoting min∑K
i=1 αi=1

∑K
i=1

(2
R̄i
αi −1)αi
gi

by P ∗O2, and∑K−1
i=0

(2R̄K−i−1)2
∑i−1
j=0

R̄K−j

gK−i
by P ∗N, where αi ≥ 0 and

R̄i ≥ 0, ∀i, then it follows that P ∗O2 ≥ P ∗N.
Proof: Please refer to a longer version of this paper [31,

Appendix F].
Then, assuming {p∗1(ν), p∗2(ν), α∗1(ν)} as the optimal solution
to (P2-OMA-II), we construct a solution to (P2-NOMA)
based on {p∗1(ν), p∗2(ν)} as follows. We need to modify
solution (c.f. (40)) to (P2-OMA-II-sub) corresponding to
each of the four cases. It is straightforward to check that for
the first three cases in (40), setting p1 = p∗1 and p2 = p∗2
corresponds to the first three cases in (38), and thus XNOMA

k =
X∗OMA-II
k , ∀k. If (p∗1, p

∗
2) falls in the last case of (40), we

reallocate them among the two users such as p1 = 2R̄1−1
g1

and p2 = (2R̄2 − 1)( 2R̄1−1
g1

+ 1
g2

) assuming g1 > g2 w.l.o.g.,
and therefore it follows that XNOMA

k = X∗OMA-II
k = 1, ∀k.

The modification is feasible, since p∗1 + p∗2 ≥ p1 + p2. This is
because when K = 2, it follows from Lemma 4.1 that

min∑2
i=1 αk=1

2∑
i=1

(2
R̄i
αi − 1)αi
gi

≥ 2R̄2 − 1

g2
+

2R̄2(2R̄1 − 1)

g1
,

in which the left-hand side and right right-hand side corre-
sponds to p∗1 + p∗2 and p1 + p2, respectively.

To sum up, with the constructed solution (p1, p2) in
each fading state, it follows that Eν [XNOMA

k (ν)] =
Eν [X∗OMA-II

k (ν)] ≤ ζ̄, ∀k. Moreover, benefiting from the
saved power by NOMA, (14a) now becomes inactive, which
suggests that Eν [XNOMA

k (ν)]’s are potentially to be fur-
ther reduced should the power be fully allocated. Hence,
(P2-NOMA) is shown to be able to achieve larger sum of
DLT than (P2-OMA-II).

B. Partial CSIT

Problem (P2-XX) under partial CSIT is recast as follows:

(P2′-XX) : Maximize
ps,pw,αk

R̄k(1− ζ ′XX
k ) + R̄k̄(1− ζ ′XX

k̄ )

Subject to ps + pw ≤ P̄ , (41a)
ps ≥ 0, pw ≥ 0, (41b)

Eν [X ′XX
k (ν)] ≤ ζ̄ ′, ∀k, (41c)

where αk’s is only valid when “XX” is replaced by OMA-
Type-II, and (41c) constrain the maximum user outage prob-
ability of the two below ζ̄ ′. We present in the sequel how
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to optimally solve (P2′-NOMA) and (P2′-OMA-II), respec-
tively.

1) Optimal Solution to (P2′-NOMA): In line with the
same notation for channel gains as defined in (29) and (30),
replace pk(ν) with ps, pk̄(ν) with pw, ∀ν, when X > Y , and
otherwise do this reversely. As a result, Eν [X ′NOMA

k (ν)] =
ζ ′NOMA
k can be recast as follows:

Eν [X ′NOMA
k (ν)] = Pr

{
log2

(
1 +

psX

pwX + σ2
k

)
< R̄k,

log2

(
1 +

pwX

psX + σ2
k

)
< R̄k̄, X > Y

}
+ Pr

{
log2

(
1 +

pwX

psX + σ2
k

)
≥ R̄k̄, X > Y

}
+

Pr

{
log2

(
1 +

pwX

psX + σ2
k

)
< R̄k, X ≤ Y

}
. (42)

With CDI regarding X and Y given in Section II,
Eν [X ′NOMA

k (ν)]’s can be derived based upon (42) shown in
the following proposition.

Proposition 4.3: The outage probability for NOMA user Uk
given the prescribed transmit rate R̄k, k ∈ {1, 2}, under partial
CSIT is given by

Eν [X ′NOMA
k (ν)] =

1− e−λkεk,j + λk
λk+λk̄

e−(λk+λk̄)εk,j−
λk

λk+λk̄
e−(λk+λk̄)εk,3 , (a)

1− e−λkεk,j + λk
λk+λk̄

e−(λk+λk̄)εk,j , (b)

1− λk
λk+λk̄

e−(λk+λk̄)εk,3 , (c)
λk̄

λk+λk̄
− e−λkεk,1 + λk

λk+λk̄
e−(λk+λk̄)εk,1 , (d)

1, (e)

(43)

where εk,1 , σ2
kτk
ps

, εk,2 , σ2
kτk

ps−pwτk , εk,3 , σ2
kτk

pw−psτk , and

εk,4 , σ2
kτk̄

pw−psτk̄
, with τk , 2R̄k − 1. The conditions in (a)-(e)

of (43) corresponds to

αk,c1j ≤
ps
pw
≤ βk,c1j , j ∈ {1, 2, 3},

αk,c2j ≤
ps
pw
≤ βk,c2j , j ∈ {1, 2, 3},

αk,c3 ≤ ps
pw
≤ βk,c3 ,

αk,c4 ≤ ps
pw
≤ βk,c4 ,

αk,c5 ≤ ps
pw
≤ βk,c5 ,

(44)

respectively. In (44), αk,c1j and βk,c1j , j ∈ {1, 2, 3}, are given
by15 

αk,c11 = 0

αk,c12 = max
{
τk(τk̄+1)
τk̄(τk+1) , τk

}
or max

{
τk,

1
τk̄

}
αk,c13 = max

{
τk

τk̄(τk+1) , τk

}
or τk

τk̄(τk+1)

and
βk,c11 = min

{
τk

τk̄(τk+1) ,
1
τk

}
βk,c12 = min

{
1
τk
, 1
τk̄

}
or 1

τk

βk,c13 = min
{
τk(τk̄+1)
τk̄(τk+1) ,

1
τk
, 1
τk̄

}
or min

{
τk,

1
τk
, 1
τk̄

} .

15The parameter values preceding and coming after “or” form a pair,
respectively.

Moreover, αk,c2j and βk,c2j , j ∈ {1, 2, 3}, are given by
αk,c21 = max

{
τk,

1
τk

}
αk,c22 = max

{
τk(τk̄+1)
τk̄(τk+1) , τk,

1
τk

}
or max

{
τk,

1
τk
, 1
τk̄

}
αk,c23 = max

{
τk

τk̄(τk+1) , τk,
1
τk

}
or max

{
τk

τk̄(τk+1) ,
1
τk

}
and 

βk,c21 = τk
τk̄(τk+1)

βk,c22 = 1
τk̄

or +∞
βk,c23 = min

{
τk(τk̄+1)
τk̄(τk+1) ,

1
τk̄

}
or min

{
τk,

1
τk̄

} .

Finally, αk,cl and βk,cl , l ∈ {3, 4, 5}, are given by
αk,c3 = 1

τk̄
αk,c4 = 1

τk

αk,c5 = max
{

1
τk
, 1
τk̄

} ,


βk,c3 = min

{
τk,

1
τk

}
βk,c4 = min

{
τk

τk̄(τk+1) , τk

}
βk,c5 = τk

.

Proof: Please refer to a longer version of this paper [31,
Appendix G].

In accordance with Proposition 4.3, we are able to derive
the sum of the DLT R̄k(1 − ζ ′NOMA

k ) + R̄k̄(1 − ζ ′NOMA
k̄

).
Problem (P2′-NOMA) can also be characterized by only one
optimization variable ps by replacing pw with P̄−ps, and then
optimally solved (up to numerical accuracy) via one-dimension
search over ps ∈ [0, P̄ ].

2) Optimal Solution to (P2′-OMA-II): In line with the
principle of power and time/frequency allocations for OMA-
Type-II transmission described above (7), replace pk(ν) with
ps, pk̄(ν) with pw, ∀ν, when X > Y , and the reverse when
X ≤ Y in (12). ζ ′OMA-II

k = Eν [X ′OMA-II
k (ν)], is derived as

follows:

Eν [X ′OMA-II
k (ν)] =

Pr

{
αk log2

(
1 +

psX

αkσ2
k

)
< R̄k, X > Y

}
+

Pr

{
αk log2

(
1 +

pwX

αkσ2
k

)
< R̄k̄, X ≤ Y

}
. (45)

We are thus able to derive Eν [X ′OMA-II
k (ν)] in the following

proposition.
Proposition 4.4: The outage probability for OMA-Type-II

user Uk given the prescribed transmit rate R̄k, k ∈ {1, 2},
under partial CSIT is given by

Eν [X ′OMA-II
k (ν)] = 1 +

λk
λk + λk̄

(
e(λk+λk̄)ϕk,1−

e(λk+λk̄)ϕk,2
)
− e−λkϕk,1 , (46)

where ϕk,1 , αkσ
2
kξk
ps

and ϕk,2 , αkσ
2
kξk

pw
, with ξk , 2

R̄k
αk −1.

Proof: With CDI of X and Y known, the derivation
of Eν [X ′OMA-II

k (ν)] from (45) is straightforward and thus
omitted here for brevity.

Based on Proposition 4.4, (P2′-OMA-II) can be solved
similarly as (P2′-NOMA), the detail of which is omitted
herein for brevity.
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V. NUMERICAL RESULTS

In this section, we verify the theoretical analysis for the
considered two-user downlink NOMA system via numerical
results. As a performance bench mark, we also provide one
classical type of OMA transmission scheme, referred as OMA-
Type-I, which assigns equal amount of time (in TDMA) or
frequency (in FDMA) resources among users over all fading
states, i.e., αk(ν) = 1

2 , ∀k, ∀ν in (5), and αk = 1
2 , ∀k, in

(7). The corresponding optimal power policies to OMA-Type-
I are easily seen to be special cases of OMA-Type-II, which
has already been solved. U1 and U2 are assumed to be located
with a distance of d1 and d2 away from the BS, respectively.
The large-scale path loss model of the channel is given by
128.1 + 37.6 log 10(D) in dB, where D in kilometer (km)
denotes the distance from the BS to the user. The small-scale
fading is assumed to be independent and identically distributed
(i.i.d.) Rayleigh fading. The AWGNs at the users’ Rxs are
both assumed to be −169dBm/Hz over 10MHz bandwidth.
The infinite number of fading states is approximated by 107.
Other simulation parameters are set as follows: d1 = 0.1km,
d2 = 0.5km, P̂ = 5Watt and P̄ = 1Watt unless otherwise
specified.

A. Delay-Tolerant Transmission
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1
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Fig. 2. The average sum-rate of the system versus the minimum rate
constraints under full CSIT.

Fig. 2 depicts the optimal trade-offs between the average
sum-rate of the system and the minimum rate constraints
under full CSIT, i.e., R̄, achieved by NOMA and the OMA
schemes with different distance settings. It is seen that with
the near-far distance setting, NOMA outperforms OMA-Type-
II transmission in most cases, while the gap shrinks when R̄
is very little and/or approaches R̄max, respectively. Moreover,
both NOMA and OMA-Type-II achieve substantially larger
optimal trade-off than OMA-Type-I, although OMA-Type-I
is seen more robust against increase in R̄. This is because
OMA-Type-I is intrinsically of fairness in view of equal
time/frequency assigned to each user irrespective of their
CSI. It is also worth noting that when there is no difference
between the two users in terms of large-scale fading, the
average sum-rate versus min-rate trade-offs almost vanish,
since the average sum-rate w/o the minimum rate constraint

has already achieved certain fairness, i.e., Eν [RNOMA
k (ν)] ≈

Eν [RNOMA
k̄

(ν)] (Eν [ROMA-II
k (ν)] ≈ Eν [ROMA-II

k̄
(ν)]) due to

their statistically similar channel distribution.
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Fig. 3. The average sum-rate of the system versus the minimum rate
constraints under partial CSIT.

Fig. 3 shows the optimal trade-offs between the average
sum-rate of the system versus the minimum rate constraints
under partial CSIT, i.e., R̄′, achieved by various multiple
access schemes with different APC. The optimal trade-off
regions between the average-sum rate of the system and the
fairness are expectedly seen to enlarge with increasing limit on
the transmit power P̄ . While the superiority of the proposed
power allocation policies for NOMA against OMA-Type-II
is obviously seen, the contrast is more sharply observed for
NOMA against OMA-Type-I in Fig. 2.

The comparison between the individual ergodic rate subject
to varied minimum average rate constraints is demonstrated
in Fig. 4(a) (Fig. 4(b)) for NOMA, OMA-Type-I, and OMA-
Type-II, respectively, under full (partial) CSIT. First, we see
that OMA-Type-II achieves almost the same ergodic rate for
U1 as NOMA with U2’s ergodic rate both as little as zero, when
there is no minimum rate requirement. This can be intuitively
explained as follows. Since U1 is the near user who enjoys
better CSI in most of the fading states, the optimal power
policy that maximizes the average sum-rate for both NOMA
and OMA-Type-II is to allocate power only to U1 in such
states. Moreover, the advantage of NOMA begins promising
when the system requires a larger R̄ (R̄′), in that NOMA
guarantees the minimum average rate achieved by U2 while
keeping U1’s average rate the maximum.

B. Delay-Limited Transmission

Fig. 5(a) shows the optimal trade-offs between the sum of
DLT and the maximum permissive outage probability, i.e.,
ζ̄, under full CSIT given the same prescribed rate R̄k =
2bits/sec/Hz for each user. It is seen that when the two users
suffer from near-far unfairness, the optimum sum-DLT versus
max-outage trade-off achieved by NOMA outperforms that
achieved by OMA-Type-II and OMA-Type-I. However, this
superiority almost disappears when U1 and U2 are both 0.5km
away from the BS. This is because in this case g1(ν) ≈ g2(ν)
in most fading states, thanks to which the total amount of
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Fig. 4. The average achievable rate allocation between the two users with
different minimum rate requirements, under full and partial CSIT, respectively.

transmit power saved by NOMA tends to be less. Furthermore,
no much trade-off is seen for the sum of DLT versus user
fairness, as the two users hold similar chances to be the
stronger user, and therefore when ζXX

k is minimized, ζXX
k̄

is
nearly minimized as well, where (·)XX stands for NOMA or
OMA-Type-II.

On the other hand, in near-far channel conditions, the impact
of different R̄ks on the optimum sum-DLT versus max-outage
trade-off is demonstrated in Fig. 5(b). With the same intended
rate R̄1 = R̄2 = 2bits/sec/Hz, the optimum trade-off achieved
by NOMA outperforms that achieved by the OMA schemes.
By contrast, when R̄2 reduces to 0.5bits/sec/Hz, the trade-off
becomes trivial, since in this case the stronger user’s advantage
in saving power is compromised by its higher target rate.

Fig. 6 shows the optimum sum-DLT versus max-outage
trade-offs achieved by various schemes with different settings
of R̄1 and R̄2. Unlike in Fig. 5(b), the superiority of NOMA
over the other OMA schemes is significantly seen in Fig. 6.
Moreover, the minimum max-outage achieved by NOMA is
significantly lower than that attained by other schemes. For
example, with R̄1 = R̄2 = 1bist/sec/Hz, min

ps,pw
{max

k
ζ ′NOMA
k }

falls below 0.47 while that achieved by OMA-Type-I and
OMA-Type-II is as large as about 0.49 and 0.60, respectively.

The DLT allocation between the two users subject to
different maximum permissive outage is reflected by their
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Fig. 5. The DLT of the system versus the maximum permissive outage
probability under full CSIT.
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Fig. 7. The DLT allocation between the two users with different maximum
outage requirements, under full and partial CSIT.

outage probability allocation in Fig. 7 under full and partial
CSIT, respectively. Under full CSIT, it is seen from Fig. 7(a)
that with R̄1 = R̄2 = 2bits/sec/Hz and P̄ = 2Watt, U1

achieves almost negligible outage while U2 can achieve an
outage probability as low as 0.3032 by NOMA. OMA-Type-
II follows the same trend unless U1 has to claim more outage
states to reserve power for U2’s transmission. U1’s outage
probability compromised by satisfying a lower maximum
outage constraint is larger in the case of partial CSIT than
in the case of full CSIT.

VI. CONCLUSION

In this paper, we have investigated the average sum-rate
and/or the sum of DLT maximization for a two-user downlink
NOMA over fading channels imposing QoS constraints on
the worst user performance. Under full CSIT, the non-convex
resource allocation problems have been solved using the
technique of dual decomposition leveraging “time-sharing”
conditions. Under partial CSIT, the individual ergodic rate
and/or outage probability have been characterized in closed-
form, based on which the optimal power policies have been
numerically obtained. Simulation results have unveiled that the
optimal NOMA-based power allocation schemes in general
outperform the optimal OMA-based ones in terms of various
throughput versus fairness trade-offs, especially when the two
users’ channels experience contrasting fading gains.
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