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Abstract— With the recent advances in radio frequency (RF)
energy harvesting (EH) technologies, wireless powered coopera-
tive cognitive radio network (CCRN) has drawn an upsurge of
interest for improving the spectrum utilization with incentive to
motivate joint information and energy cooperation between the
primary and secondary systems. Dedicated energy beamforming
is aimed at remedying the low efficiency of wireless power trans-
fer, which nevertheless arouses out-of-band EH phases and thus
low cooperation efficiency. To address this issue, in this paper,
we consider a novel CCRN aided by full-duplex (FD)-enabled
energy access points (EAPs) that can cooperate to wireless charge
the secondary transmitter while concurrently receiving primary
transmitter’s signal in the first transmission phase, and to
perform decode-and-forward relaying in the second transmission
phase. We investigate a weighted sum-rate maximization problem
subject to transmitting power constraints as well as a total
cost constraint using successive convex approximation techniques.
A zero-forcing-based suboptimal scheme that requires only local
channel state information for the EAPs to obtain their optimum
receiving beamforming is also derived. Various tradeoffs between
the weighted sum-rate and other system parameters are provided
in numerical results to corroborate the effectiveness of the
proposed solutions against the benchmark ones.

Index Terms— Cognitive radio, cooperative communication,
full-duplex, decode-and-forward, D.C. programming, successive
convex approximation, power splitting, energy harvesting.

I. INTRODUCTION

ITH the rapid development of wireless services and
applications, the demand for frequency resources has
dramatically increased. How to accommodate these new wire-
less services and applications within the limited radio spectrum
becomes a big challenge facing the modern society [1].
The compelling need to establish more flexible spectrum
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regulations motivates the advent of cognitive radio (CR) [2].
Cooperative cognitive radio networks (CCRNs) further pave
way to improve the spectrum efficiency of a CR system by
advocating cooperation between the primary and secondary
systems for mutual benefits. Compared with classical CR
approaches [3], CCRN enables cooperative gains on top of
CR in the sense that the secondary transmitter (ST) helps to
provide the diversity and enhance the performance of primary
transmission via relaying the primary user (PU)’s message
while being allowed to access the PU’s spectrum.

Although the conventional CCRN benefits from
information-level cooperation, its implementation in real
world might be limited due to STs’ power constraints,
especially when the STs are low-power devices. With the
advent of various energy harvesting (EH) technologies,
CCRN has now been envisioned to improve the overall
system spectrum efficiency by enabling both information-
level and energy-level cooperation [4]. Apart from the natural
energy sources such as solar and wind that is intermittent
due to the environmental change, radio frequency (RF)
signal has recently been exploited as a new viable source
for wireless power transfer (WPT) (see [5] and references
therein). RF-enabled WPT has many preferred advantages.
For example, compared with other induction-based WPT
technologies, it can power wireless devices to relatively
longer distance (e.g., commercial chips available for tens
of microwatts (uW) RF power transferred over 12m [6]),
while the associated transceiver designs are more flexible
with the transmitting power, waveforms, and resource
blocks fully controlled to accommodate different physical
conditions. Joint information and energy cooperation in CR
networks has thus been explored in many wireless energy
harvesting (WEH)-enabled scenarios, e.g., [7]-[10].

The benefit of RF-powered CCRN is nevertheless compro-
mised by the low WPT efficiency mainly due to the severe
signal attenuation over distance. One way to improve the WPT
efficiency is to employ multiple antennas at the ST, which can
improve the EH efficiency of the secondary system [8]. The
other way to boost the WPT efficiency is to power the ST via
the dedicated energy/hybrid access point (EAP/HAP) [9] in
addition to the PU. However, previous works all assume that
the involved devices operate in half-duplex (HD) mode, which
transfers wireless power at the expense of some spectrum
efficiency. In continuous effort to address this issue, full-
duplex (FD)-enabled communications with wireless informa-
tion and power transfer has sparked an upsurge of interest
(see [11]-[15] and references therein).
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In this paper, we consider a spectrum-sharing decode-
and-forward (DF) relaying CR network consisting of one
pair of primary transmitter (PT) and primary receiver (PR),
and one pair of multiple-input multiple-output (MIMO) sec-
ondary users (SUs). A number of multi-antenna FD EAPs
are coordinated to transfer wireless power to the ST while
simultaneously retrieving information sent from the PT in the
first transmission phase, decode and forward the PT’s message
to the PR in HD mode in the second transmission phase. The
ST is required to assist the primary transmission and earn the
rights to access the PU’s spectrum in return; the EAPs are
paid by the system as an incentive to support the cooperative
WPT and wireless information transfer (WIT). We assume
that there is no direct link between the PT and the PR due
to severe pathloss [14], and the perfect! global channel state
information (CSI) known at a coordination point who is in
charge of acquiring global CSI from the dedicated nodes® and
implementing the algorithm accordingly in every transmission
block (assumed to be equal to the channel coherence time.

Compared with [7] investigating joint opportunistic EH and
spectrum access, we focus on overlay CR transmission, which
allows for primary messages known at the ST a priori due
to the first-slot transmission, so that the ST can precancel
the interference caused to the secondary receiver (SR) by
some non-linear precoding techniques, e.g., dirty-paper cod-
ing (DPC). Furthermore, although overlay cognitive WPCN
has been considered in [9] with dedicated WPT, the HAP
was only equipped with one antenna, and therefore their trans-
mission policy is not applicable to ours with multi-antennas.
In [8], the multi-antenna ST received information from the pri-
mary transmitter (PT) and was also fed with energy by the PT.
However, the energy received by the ST was not intended for
WPT and thus the RF EH capability was limited. By contrast,
the deployment of cooperative FD-enabled EAPs intended for
WPT in ours breaks this bottleneck. A wireless powered com-
munication network (WPCN) with an FD-enabled HAP under
the assumption of perfect self interference (SI) cancellation
was investigated in [15], which is nevertheless not achievable
in practice even with the state-of-the-art FD technique [18].

A similar setup was considered in [19], whereas our work
differs from it mainly in two folds. First, the considered
EAPs in this paper are FD empowered so that they funda-
mentally improve the spectral efficiency of the CCRN system
of interest. Second,compared with the non-cooperative EAPs
whose power levels are binary (on or off) in [19], we exploit
EAP-assisted cooperation in both WPT and WIT phases via
continuous power control, which is an extension to the non-
cooperative model. The main contributions of this paper are
summarized as follows.

o The weighted sum-rate of the FD EAPs-aided CCRN

system is maximized using successive convex approx-

1We assume perfect CSI at the Tx in this paper as in [8], [9], [11], and [12],
and thus the proposed transmission protocol design yields theoretical upper-
bound. More practical design for wireless powered MIMO communication
taking channel uncertainties into account can be referred to [16] and references
therein.

2The dedicated nodes are assumed to be those non energy-limited thereby
performing channel estimation in line with [17] and then reporting the
corresponding CSI to the centralized coordinator connected by backhauls.
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imation (SCA) techniques subject to per-EAP power
constraints for WPT and WIT, respectively, the ST’s
transmitting power constraint, and a practical cost budget
that constrains the payment made to the EAPs for their
assistance.

« The centralized optimization enables cooperation among
the EAPs to effectively mitigate the interference with
ST’s information decoding (ID), and the SI that degrades
EAPs’ reception of the PT’s signal.

« A low-complexity suboptimal design locally nulling out
the SI at the EAPs is also developed in order to reduce the
computational complexity of the iterative algorithm, and
is validated by computer simulations to yield performance
with little gap to that achieved by the proposed iterative
solutions.

The remainder of the paper is organized as follows:
Section II and III introduces the system model and formulates
the weighted sum-rate maximization problem, respectively.
Section IV investigates the feasibility of a tractable refor-
mulation of the original problem; proposes an SCA-based
iterative solution along with a suboptimal scheme based upon
zero-forcing (ZF) the SI. Benchmark schemes are studied in
Section V. Section VI provides numerical results compar-
ing the performance achieved by different schemes. Finally,
Section VII concludes the paper.

Notation—We use the upper case boldface letters for matri-
ces and lower case boldface letters for vectors. ()7, (-)7,
and Tr(-) denote the transpose, conjugate transpose, and trace
operations on matrices, respectively. || - ||, is {”-norm of a
vector with p = 2 by default. The Kronecker product of two
matrices is denoted by ®. A > 0 indicates that A is a positive
semidefinite (PSD) matrix, and I denotes an identity matrix
with appropriate size. [E[-] stands for the statistical expectation
of a random variable (RV). In addition, C(R)**” stands for
the field of complex (real) matrices with dimension x x y. (-)*
means the optimum solution.

II. SYSTEM MODEL

In this paper, we consider a WEH-enabled CCRN that
consists of one primary transmitter-receiver pair, one sec-
ondary transmitter-receiver pair, and a set of FD-enabled EAPs
denoted by X = {1,---, K} as shown in Fig. 1. The PT and
the PR are equipped with one antenna each, while the ST and
the SR are equipped with N and M antennas, respectively.
The number of transmitting and receiving antennas at the kth
EAP are denoted by N7 and Ngy, respectively, Vk € X,
and Ny = Nr i + Ng k. We assume that the ST is batteryless,
and thus it resorts to WEH as its only source of power for
information transmission.>

As illustrated by Fig. 2, a two-slot (with equal length)
transmission protocol is assumed to be adopted. In the first

3In this paper, we assume that the main energy consumption at the wireless
powered ST is from its cooperative transmission, and thereby some other
power deletion such as circuit operation [20], encoding/decoding and pilot
transmission are ignored for simplicity of exposition. In addition, we confine
our analysis to one transmission block, i.e., channel coherence time, w/o
taking the initial energy storage [21], [22] into account. However, the solutions
developed in the sequel are readily extended to accommodate constant circuit
power consumption and/or initial power storage in more practical scenarios.
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Fig. 2. Transmission protocol for the wireless powered CCRN.

time slot, the PT transfers the energy-bearing primary user’s
signal to the ST. Concurrently, the EAPs operating in FD
mode cooperate to transfer wireless power to the ST using
N7 «’s antennas, while jointly receiving information from the
PT using Ng’s antennas. In the secondary time slot, the
ST decodes and forwards PT’s message and superimposes it
on its own to broadcast to the PR and the SR. Meanwhile,
the decoded PT’s information is also forwarded to the PR
by the EAPs that employ N; antennas each for information
transmission. Let s denote PT’s transmitting signal that follows
the circularly symmetric complex Gaussian (CSCG) distribu-
tion, denoted by s ~ ¢cA(0, 1), and x ~ CA((0, X), the energy
signals* coordinatedly transmitted by K EAPs, where X is
the covariance matrix of x. On the other hand, x can also be
alternatively expressed by x = [xk],le, where xj; € CNrxx1
is the energy signal transmitted by each individual EAP, and is
subject to per-EAP power constraint given by E [[lx«[*] < P,
Vk € K.

A. The First Time Slot

1) Received Signal at the ST: In this paper, we assume that
the ST employs a dynamic power splitting (DPS) receiver [23]
for EH and information decoding (ID) from the same stream of
received signal, where g portion of the received signal power

4Although the CSCG distributed energy signals are not optimal in term of
pure WPT, we assume such distribution to exempt the dual-function EAPs
from frequent switch between the CSCG and other possible signal generation
and to keep its consistence with WIT.
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is used to feed the energy supply while the remaining 1 — p
for ID. As a result, the signal received by the ST is given by

y(sl% =1 —oh,st/Pps+ Heap,stx +n4) +n., (1)

where h, g7 € CN*! denotes the complex channel from the
PT to the ST; Heap st = [HEap,,sT, - » HEAPY,ST]; R4
denotes the additive white Gaussian noise (AWGN) at the
antennas in RF-band with zero mean and variance anzﬂ; ne
is the RF-band to baseband signal conversion noise denoted
by n, ~ CN(O,O’,%C I). Furthermore, assuming that the lin-
ear receiving beamforming performed by the ST is ulH y(SlT),
where u; € CV*! is given by maximizing ST’s signal-to-
interference-plus-noise ratio (SINR) as follows.

max (1 - Q)Pp|uf1hp,ST|2
we uf (1 —o)(HeapstXHE p o +02 1) +02 Duy’
(2

which proves to be the eigenvector corresponding to
the largest (generalized) eigenvalue of matrices ((1 —
o) Heap st XHY,p gr+or Dol 1, hysrhl o). Tt thus
leads to the SINR at the ST in the first transmission phase
given by

1 1
Amax (1 = 0)PpA™ 2k, s7h o1 A72)

D dnax (1 = 0) Pk 51 A Ry 57)
= (1—0)Pphl sy A" hy 57, 3)

where A = (1 —Q)(HEAP,STXHgAp,ST+0,%al)+0,%cl, and

(a) is due to the rank-one A_%hp,gTh;{STA_f.

2) Received Signal at the EAPs: The received signal at the
EAPs that is interfered with the energy signals transmitted by
the same EAPs can be expressed in a vector form given by

Yepap =hpEap/ Pps + Hrgrx +n§LP, “4)

where hp,EAp = [hII;I,EAPl’ .- ,h[I;I,EAPK]H with hp,EAPk €
CNrix1 | e %, denoting the complex channel from the PT
to the kth EAP; Hrpg indicates the effective loop interfer-
ence (LI) channel from the transmitting to the the receiving
antennas of the EAPs after analogue domain SIC, in which
the block matrices Hr, g, € CVR<*NTk on the diagonal of
H 7R, Vk, denote the intra-EAP LI channels from within the
kth EAP, and the matrices Hr, g; off the diagonal, Vi # j,
represent the inter-EAP LI channels from the ith EAP to the
jth EAP; ng}4 p is assumed to be the AWGN noise received
at the EAPs, ie., ntD, ~ cn(0,02,,1). Without loss of
generality (w.l.o.g.), Hrg is given by Hrgp = \/?HTR,
where each element in Hr, g,’s is a complex Gaussian RV
with zero mean and variance of ¢?; each element in Hr, g ;S
is a complex Gaussian RV with zero mean and variance of ¢?
multiplied by path-loss. H7 g denotes the normalized complex
LI channel, and ¢ € [0, 1] indicates the residual LI channel
gains.

It is worth noting that the analogue domain SIC is imple-
mented though, the power level of the residual LI can still
be much larger than that of the desired signal [24], i.e.,
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@’E[|Hrrx|?] > Pyllhpeapl?, due to which the fol-
lowing concern arises. Channel estimation errors w.r.t the
block diagonal matrices Hr, g,’s cannot be neglected. Assume
that the estimation of HTR is given by Hrg = HTR +
«/—HTR [11], where HTR denotes the estimation of Hrg;
Hyg denotes its errorenous channel, whose elements are
complex Gaussian RVs with zero mean and variance of 1
in the block matrices Hr, g,’s, and variance of path-loss in
the block matrices Hr; g;’s, respectively. €2 < 1 denotes
the level of estimation accuracy. Hence, after analogue-to-
digital conversion (ADC) [25], digital domain SIC is further
applied to subtract \/Pfl rr from (4). The processed signal
is accordingly expressed as

Yeap =hpEar/P S+V¢282HTRx+nEAP (5)

For the purpose of exposition, we denote p& by @ in the sequel.

Furthermore, since the K EAPs are coordinated, they can
perform joint decoding of the PT’s signal s to maximize their
receiving SINR. Therefore the optimum receiving beamform-
ing uy is designed such that

Pyluflhy papl? ©)

SINREAp = max
u, uH(HZHTRXHTR +0EAPI)u2

which is equal to imaX(PpB_ihp,EAphg,EAPB_f), where
B=0HrgXHyp+0%,,1.

B. The Second Time Slot

1) Transmitted Signal at the ST: In the second time slot,
the ST extracts the PR’s desired message and superimposes
it with its own message using dirty-paper coding (DPC) as
follows [26].

X7 = wps +4,. )
where w, is the beamforming vector for s, while g, is the
transmitted signal conveying the SR’s information aimed for
multiplexing MIMO transmission,” the covariance matrix of
which is E[q,q 5’ ] = Q. As mentioned before, the transmit-
ting power for the ST is solely supplied by its harvest power,
ie.,

Tr(Q,) + lw, 1> <0 Pen(X), (8)

where Pgu(X) = Tr(HEAP,STXHgAP,ST) + Pp||hp,ST||2 18
the total wireless transferred power, and » denotes the EH
conversion efficiency.

2) Transmitted Signal at the EAPs: In the second time slot,
the EAPs cooperatively transmit the decoded PT’s message to
the PR using all of their Nk s antennas via beamforming v s,
where v, = [v 51,... vpK] ,and vpx € CVX1 | e %,
represents the kthe EAP’s beamforming vector.

SIn fact, w ps and g are transmitting signals precoded by DPC first and
then multi-antenna beamforming.

6In this paper, we focus on the transceiver design of the wireless powered ST
and the FD-enabled EAPs assuming a simple linear EH model. The interested
reader can refer to [27] and [28] for non-linear EH modelling taking the
dependence of # on the input harvested power into account.
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3) Received Signal at the PR: In the second time slot, PR
receives the forwarded PT’s message from both the ST and
EAPs as follows.

2 @ H @
yg’l)e gspxs%"‘gEAP,p”pS"‘”Pge» C))
where g, € CN*1 is the Hermitian transpose of the
complex channels from the ST to the PR, gpup, =
[glgApl P ,ggApK p]H with ggap,. p € CNex1 ke X, is
the Hermitian transpose of those from the EAPS to the PR, and
"g);e is the AWGN at the PR denoted by nPR ~ (0, O'PR)

Plugging (7) into (9), y can be rewritten as

2

2
yPR_(gspwp—‘f_gEAPp )S+gqus +n() (10)

The receiving SINR for the PR treating the interference
caused by the secondary information as noise in the second
transmission slot is thus given by

2
H H
8spWp t+ 8Eap p¥p

H 2
sp ngsp + O-PR

Accordingly, the achievable DF relaying rate for the PR,
denoted by rpr(X, p), is given by

rpr(X, 0)

1
_ min{ max{5 10g2(1+(1 — 0Pk A7 (0, X)hp,ST),

SINR pg = (11)

1
Elogz (1 + PphZEAPB_l(X)hp,EAP) }’

2
1
Elogz(l—f— )]

4) Received Signal at the SR: Assuming that DPC is
adopted at the ST, by which the ST encodes its own message
with the interference caused by the PT’s message known
a priori, the SR is able to receive no interference as follows.

2 2
Y$r = Gusq +n$y, (13)
where Gy denotes the MIMO channels between the ST and
the SR and n(Szl)e is the received noise at the SR, denoted by
"(szl)e ~ (0, aszRI ). Accordingly, the achievable rate for the
secondary overlay MIMO transmission, denoted by rgg, is

given by
Gss Qng)
> .
OSR

II1. PROBLEM FORMULATION

H H
gspwp-"_gEAP,va"
7 7
gsp ngsp_HTPR

12)

rsr(Q;) = log2 det( (14)

In this paper, we assume that the spectrum sharing CCRN
of interest aims for maximizing the weighted sum-rate, i.e.,
c1rpr(X, 0) + carsr(Qy) (c.f. (12) and (14)), where ¢ and
¢y are weight coefficients that balance the priority of service
between the primary and secondary system. Since the ST
is required to assist with the primary transmission by DF
relaying using its harvested power from the EAPs and the PT,
we assume that the EAPs charge ¢3 nTr(HEAp,STXHgAPjST)
from the ST for its harvested power, where c3 is a cost
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conversion factor. Moreover, the EAPs also collaborate to
help relaying PT’s message thus alleviating the burden of
the energy-limited ST. As a return, the ST pays the EAPs
an amount of c4| gg AP, pvp|2 for their information trans-
mission, where c4 represents the cost per unit of received
PT’s signal power (c.f. (9)). In summary, the total cost
for the FD-enabled EAPs-aided CCRN is constrained by
C37’]QTI'(HEAP,STXH£~IAPJST) + C4|ggAP,Pvp|2 < C, where
C is the total budget of the ST.

It is worth noting that this constraint will have a impact
on the system only when C < Cpax, Where Crax denotes the
maximum possible system payment given by the following
problem.

(PO) : Ma>§(imize C37’]QTI'(HEAP’STXHEIAP sT)
Uy ’
+C4|ggAP’pvp|2
Subject to Tr(ExX) < Py, |lvp.kl* < Po, VK,
X >0.

Note that the addends of the objective function of Prob-
lem (PO) are independent of each other and thus can be
solved separately. Specifically, the second term | gg Ap,pY p|2,
which accounts for the amount of PT’s signal power
received by the PR, yields a closed-form solution shown
below.

2

@ (<&
H 2 H
|8Eap,pVpl” = (z ’gEAPk,pvPak’)

k=1
(b) £ ?
= ‘/FOZ leear.pll,
k=1
= Po|l&zar, ;- (15)

where the equality in (a) holds when all gg AP, p iV pk’S are
aligned in the same direction; (b) is due to Cauchy-Schwartz
inequality; and Zap,, = [I€ar, pll2 » I8EaPc.pl2] -
As aresult, only X remains to be solved, the optimum solution
of which is denoted by X*. Thus, Cpax turns out to be
3 WQTr(HEAP,STX*HgAP,ST) +caPollggap, i

Next, the weighted sum-rate maximization problem subject
to the harvested power at the ST, the total payment charged
by the EAPs, and the per-EAP power constraints can be
formulated as follows.

(P1): Maximize cirpr(X,0)+ corsr(Qy)
X.0,w,.v,.0
Subject to |[vpil® < Py, Vk, (16a)
Tr(ExX) < Py, Vk, (16b)

Tr(Qy) + llw, 1 < noPen(X),
(16¢)
C3’7QTr(HEAP,STXHgAP,ST)

+ealgiap vplP <C, (16d)
0<po=1, (16¢e)
X>0, Q >0, (16f)
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where Ej; = Diag([0,---, It,---,0]), in which Diag([-])
denotes a block diagonal matrix with the block matrices on
the diagonal given in [-].

In the above problem (P1), (16a) and (16b) illustrates the
per-EAP power constraint for information and power transfer,
respectively; (16¢) indicates the transmitting power constraint
of the ST subject to its harvested power from the EAPs and
the PT; and (16d) constrains the cost of the CCRN system no
more than a constant value C.

IV. JOINT OPTIMIZATION OF FD ENERGY
BEAMFORMING AND DF RELAYING

In this section we investigate to solve problem (P1).
First, we remove the inner max(:) in rpr(X,p) (c.f. (12)
by recasting (P1) into two subproblems, denoting the opti-
mum value of (P1) by f* = max{ff, fy'}, where f}
and f5 are the optimum value of subproblems (P1.1) and
(P1.2), respectively. They represent the cases in which
the transmission rate of the first-slot DF relaying is
achieved by the ST and the EAPs, respectively, depend-
ing on whether (1 — Q)hg’STA_l(Q, X)h, st is larger than
hZEAPB_l(X)hp,EAp or not.

Problem (P1.1) based on the epigraph reformulation is given
by

(PL.1):

Maximize
X0, w,v,.01

Subject to (16a) — (16e),
(1 =) Pph} 57 A™ (0, X)hp 57
> Pphl oo p BT (X)hp AP,

1
xd logy (1 +1) + carsr(Qy)

(17a)
(1— o) Pyl grA™!

(0, X)hp s >t, (17b)

2

gg)wp+glgAP pvl"

’ > t, 17

g!; ngxp+o-12’R - ( C)
X>0, Q,>0, >0, (17d)

where A is related to the optimization variables p and X, and
thus denoted by A(p, X) for the convenience of exposition,
while B is denoted by B(X).

(P1.2) is similarly given by

(P1.2) :

Maximize
X’ Qs,wp:vp’g’t

Subject to (16a) — (16e), (17¢c)— (17d),
Pohy pap B~ (X)hp,Eap
> (1_Q)Pph5,STA_1(Q, X)hp 57,
(18a)
PphZEAPBil(X)hp,EAP >t
(18b)

1
51 log, (1 + 1) + c2rsr(Qy)

A. Problem Reformulation

It is observed that X and g are coupled together in (17a),
(17b), and (16c), which make these constraints non-convex.
Hence, in this subsection, we reformulate the non-convex



4688

subproblems in a tractable way. Specifically, we propose to
solve problem (P1.1) in two stages as follows. First, given
0 € [0, 1], we solve the following problem.

(P1.1-1) :

Maximize
X. 0. w, v,

Subject to (16a) — (16b), (17¢) — (17d),
(1= 2)Pphlf s A7 (@, X)hp 57
z Pph[[;{EAPBil(X)hp,EAk19a)
(1—2)Pphf ¢p A"

(@, X)hp st =1, (19b)

T(Q,) + lwp > <7 Pen(X),
(19¢)

c3snaTr(Heap,st XHE 4 p s7)
+ealghap oo <C. (19d)

1
X logy (1 4+ 1) + carsr(Qy)

Then, denoting the optimum value of problem (P1.1-1) as
f1(e), the optimum p can be found by solving (P1.1-2) :

mgx f1(p) via one-dimension search over g, which guar-
2€[0,1]

antees an e-optimum’ solution. Hence, we focus on solving
(P1.1-1) in the sequel.

Note that since both hZSTA*I(é,X)hp,ST, denoted by
g1(X), and hZEAPBfl(X)hp,EAp, denoted by g2(X), are
proved to be convex functions w.r.t X (see Appendix A),
the constraints given by (19a) and (19b) are in general not
convex. However, (19a) is seen to admit the form of difference
of convex (D.C.) functions, which falls into the category of
D.C. programming [29], and thus is solvable by employing
D.C. iterations [30]. Specifically, we replace the left-hand-
side (LHS) of (19a) ((19b)) with its first-order Taylor expan-
sion w.r.t. X, since it is a global lower-bound estimator of
the convex function g{(X) and affine. Therefore, (19a) can be
transformed into the following convex constraint.

(1-2)Py (g1(X) + R {Tr (Vxs1(X)(X — X))})

z PPhZEAPB_I(X)hp,EAP, (20)

where Vy g1(X), given by Vx g1(X) =

—(1-2)Hsp 57 A @ X)hp sThl ;A7 @, X)HEap sT,
21

denotes the gradient matrix of g;(X). Accordingly, plugging
the LHS of (20) into (19b), the constraint (19b) is also made
convex as follows.

(1-20)Py (e1(X) +R{Tr (Vxs1(X)(X — X))}) = 1. (22)

It is easy to verify that satisfying constraints (20) and (22)
implies feasibility of (19a) and (19b), but the converse is not
necessarily true. Hence, (20) and (22) in general shrink the
feasible region of (P1.1-1) unless X* = X, and only lead
to its lower-bound solution, which will be discussed in detail

later.

7e—optimum means that Ve > 0, to achieve an objective value in the
e-neighbourhood of its optimum value, there always exits a corresponding
one-dimension search step length.
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Next, we look into the constraint (17¢), which is non-convex
due to coupling Q, and ¢. To facilitate solving (P1.1-1), we
decouple the numerator and the denominator of its LHS by
introducing an auxiliary variable y > 0 as follows.

(23)
(24)

H H
18pWp + &Eap,p¥pl = V1Y,
H 2
gsstgsp +0PR =Y

which prove to be sufficient and necessary to replace (17c).
However, as ./fy is jointly concave w.rt. ¢ and y over
t >0 and y > 0, (23) is still non-convex. To accommodate
this constraint to the framework of convex optimization, we
equivalently transform the LHS of (23) into a linear form
based upon the following lemma.

Lemma 4.1: The optimum value of (P1.1) is attained
when the solution of wj, and v} satisfies K(gg,w;) =

p’
£(ghsp V)
Proof: Please refer to Appendix B. [ ]

In accordance with Lemma 4.1, we have the constraint (23)
equivalently expressed as

ety +gflap,vp) = Vi 25)
By rotating any solution w}‘, and v}’; with a common angle of
—&(gg,w;), (23) turns out to be (25) without violating any
other constraints.

To deal with the RHS of (25), i.e., \/7y, since it is jointly
wrtt > 0 and y > 0, its first-order Taylor expansion given
by

— 1 [ -1 ]7
a/ty5\/t§+§,/%(t—t)+§,/£-(y—?) (26)
y

serves as its upper-bound approximation, in which the equality
holds if and only if r = f and y = y. Hence, (23) can be
approximated by a convex constraint expressed as

H H
R {gspwp + gEAP,pvP}

— 1|y 1/t -
> iy + 5\/:(t—f)+—\/2(y—y)- 27
t 2V y
Finally, the non-convex problem (P1.1-1) is reformulated as
the following convex problem.
(P1.1-1) :

1
Maximize Ecl logy (1 + 1) + corsr(Qy)

X, 0w, v,y
Subject to (16a) — (16b), (17d), (20), (22),
24), (27), (19¢c) — (194d),

y > 0. (28a)

Problem (P1.2) can also be similarly treated and trans-
formed into a two-stage problem, for which we employ the
first-order Taylor expansion of the convex function g7(X) in
the LHS of (18a) and (18b), respectively, to serve as their
lower-bound approximation. As is done with (19a) and (19b),
given any p = p, (18a) and (18b) can be approximated by

Py ($2(X) + % {Tr (Vxg20X)(X — X))})

> (1—2)Pphll ;A7 @, X)hpsT,  (29)
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and
Py (2(X) + 90 {Tr (Vxe2(X)(X = X))}) =1, (30)
respectively, where Vy g>(X) is given by Vy g2(X) =
~ H _ _ ~
—~0*Hy g B~ (X)hp parhl pyp B~ (X)Hrg. (1)

In addition, (P1.2) shares the same constraint (17¢) with
(P1.1), which can be approximated by the same constraints
(24) and (27). Hence, the corresponding main stage of solving
(P1.2) is given as follows.

Maximize
X. 0, . w,,v,,ty

Subject to (16a) — (16b), (17d),
(29) — (30), (24),
(27), (19c) — (19d), (28a).

1
(P1.2-1') : 3¢l log, (1 +1) + corsr(Qy)

B. Proposed Iterative Solutions

In this subsection, we propose an iterative algorithm to solve
(P1) based on investigation into the feasibility of problem
(P1.1-1") and ((P1.2-1’). Due to their similar structure, we
focus on studying the feasibility of (P1.1-1’), and then point
out some key differences between these two problems in terms
of their feasibility.

First, we solve the following feasibility problem to find a
feasible X to (P1.1-1).

(P1.1-0) : Find a solution of X and v,
s.t. (16b), (20), (19d),

X >0 (32a)

Note that it is guaranteed by this step that given p, a feasible
X to problem (P1) exists, since for an arbitrary X satisfying
(16b) and (19d), either (20) or (29) must hold. Therefore, if the
X fails to make (P1.1) feasible, it must make (P1.2) feasible.

Next, applying the returned X in the above problem as a
new initial point of X, we aim to find feasible 7 and y by
solving the following problem.

(P1.1-0") :
Find a solution of X, @, wp,vp,t, and y
Subject to (16a) — (16b), (17d), (20) — (22),
24), (27), (19¢) — (19d), (28a).

It is worth noting that proper chosen of 7 and y is necessary
to solve (P1.1-0'). For example, with X fixed, y can be
set as azR, and then f can be set as max{0, min{(l —
0)Ppg1(X), (y *)2/y}}, in which y* is the optimum value of
the following problem.

'an}%(p N {gg,wp + ggAP’pvp}

s.t. (16a), (19¢c),

lwp1* <70 Pen(X).

Since problem (P1.1-0) and (P1.1-0") are both easily observed
to be convex problems, they can be optimally solved by some
optimization toolboxes such as CVX [31]. Denoting X, ¢ and y
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returned by (P1.1-0') by X © , 1O and 7O, respectively, it
is easily seen that (P1.1-1’) is feasible if X, ¢, and y take
the value of X (O), t_(O), and )7(0), respectively. Hence, it safely
arrives at a feasible problem (P1.1-1") with the initial points
(X (O), 7, y<0>} specified as above mentioned.

Remark 4.1: Although the initial points to problem (P1.2-1")
can be found similarly, it is worth noting that compared with
(29), (20) turns out to be more likely to be infeasible, since
the LHS of (19a) is a monotonically decreasing function over
o0 € [0,1], and when p — 1, it is hardly lower-bounded
by the LHS of (20). To illustrate this, we consider the case
that there is no X satisfying (20) when p = 1. Hence, when
infeasibility of (P1.1-0) is detected assuming that p is searched
in an increasing order, only (P1.2-1") needs to be solved for
the rest of p.

Since (P1.1-1") and (P1.2-1") have been shown to be convex
problems, and at least one of them is guaranteed to be feasible
by initializing (X', 7@, 5©) as discussed above, an SCA-
based algorithm is developed to solve (P1) as shown in
Algorithm 1. The convergence behaviour of Algorithm 1 is
assured by the following proposition.

Proposition 4.1: Monotonic convergence of solutions to
problem (P1.1-1") and (P1.2-1") in Algorithm 1 is achieved,
ie. 1/2c11logy(1 + t™) + carsr(QM) > 1/2¢1logy(1 +
1=y 4 eorg R(anfl)). Moreover, the converged solutions
satisfy all the constraints as well as the Karush-Kuhn-
Tucker (KKT) conditions of problem (P1.1-1) and (P1.2-1),
respectively.

Proof: Please refer to Appendix C. [ ]

Next, we analyse the complexity of Algorithm 1 in
terms of counting the arithmetic operations. Since most
off-the-shelf convex optimization toolboxes handle the
repeatedly encountered SDP using an interior-point algo-
rithm, the worst-case complexity for solving (P1) is given
by® %(Ll 0 (max{K +4, X + 1, N} max{&f + 1, N}1/2) +
Lzo(max{K +4, %, N+ 1) max{%, N+ 1}1/2)) log(1/¢)
[32], which comprises two parts, where the former part
accounts for the complexity for solving (P1.1); the latter
part accounts for the complexity for solving (P1.2); L; and
Ly denote the number of iterations for the SCA in solving
(P1.1-1") and (P1.2-1"), respectively; B controls the step length
for one-dimension search over p € [0, 1]; and ¢ is determined
by the solution accuracy.

C. Proposed ZF-Based Solutions

In this subsection, we develop an insightful suboptimal
solution that simplifies the receiving beamforming design of
the full-duplex EAPs. It is seen from (6) that the incumbent
design of u; depends on X, which means that there will
be some additional central optimization resources induced
to compute u; after the problem (P1) has been solved and
the optimum X has been returned. The broadcast of u»
causes unfavourable delay particularly when Ng x’s is large in
practice. Hence, we design X in such a way that the receiving
beamforming u, can be locally decided.

8For the simplicity of exposition, we assume N7 | = --- = Ny g =
and Ng | =---=Npg = % in this expression.
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Algorithm 1 Proposed Algorithm for Solving Problem (P1)
Require: p; flaggy =1

1: if both (P1.1-0) and (P1.1-0) are solvable then

2 go to 6

3: else

4 flagst=0; fi(e) <0

5: end if

6 n < 0; initialize {X,7, 7} with (X2, 7©, 5O} returned

by problem (P1.1-0)

7: repeat

8 Solve  problem  (PLI-1)  to  obtain
(X (D), ,(n+1z’ y(n1+1)

9:  Update {X(”+ ), f(n+1)’ )—,(n+1)} -

{X(n+l), t(n+1)’ y(n+1)}
10 n<n+1
11: until convergence of the objective value of (P1.1-1")
12: f1(2) <« the optimum value of (P1.1-1")
13: Obtain f* by one-dimension search over g
14: Solve problem (P1.2) using the SCA method similarly to
obtain f3* by one-dimension search over g
Ensure:  f* = max{f}, f5'}

To do so, let EAPs jointly decode the PT’s message
regardless of the residual LI. For example, an arbitrary vector
align with h, gap is chosen as u», ie., up = uhp gap,
4 € R. In this way, the joint decoding can be implemented
with the kth EAP having access only to its local CSI, i.e.,
h, Eap.’s. Accordingly, the resulting receiving SINR at the
EAPs coincides with its maximum, i.e., Ppllhp Eap ||2/J§AP,
if and only iff (iff) ugfiTRXI:I;IRuz = 0. Combining
with up = ph, pap, X needs to be designed such that
hY o sp HrrXHy ghy pap = 0. Defining h = Hy ghy gap
with its normalized vector denoted by #, the projection matrix
P =1—hi" can be alternatively expressed as P = UU "
with U e CZNtx Nl such that R0 = 0 and
U U = I. The optimum structure of X is then specified
by the following lemma [33, Lemma 3.1].

Lemma 4.2: The ZF-based X to (P1) is given by

x=0x0",
where X € CEN«=Dx(XNrk=1) ig 3 PSD matrix.

Applying Lemma 4.2 to Problem (P1.1), Problem (P1.1-1")
can be reduced to

(33)

(P1.1-1-ZF) :

1
‘Maximize =cjlogy(1+1)+corsr(Q,)

X, 0, w,.v,.y
Subject to (16a), (24), (27),

WO EOX) < Py, VK,

(34a)
(1 =2)P, (81(X)
0 {Tr (ngq (X)(X — X’))})
> Ppllhp eapll*/ofaps (34b)

Algorithm 2 Proposed ZF-Based Algorithm for Solving Prob-
lem (P1)

I: Find feasible {X,1, y} to (P1.1-1'-ZF) as the initial

(x©, 70 50

: Solve (P1.1-1’-ZF) using the SCA method
: Solve (P1.1) to obtain f;* by one-dimension search over g
: Find feasible {z, y} to (P1.2-1-ZF) as the initial {f©, 3}
: Solve (P1.2-1’-ZF) using the SCA method
: Solve (P1.2) to obtain f;° by one-dimension search over g

A L B W N

Ensure:  f* = max{f}", f'}
(1-2)P, (51(X)
R {Tr (Vng]()_()(f( — 5())}) > 1,
(34¢)
- ~ - ~H
Tr(Q,) + llwpI*<no Pen(UXTU "), (34d)
_ ~ -~ H
c3noTr(Hgap sTUXU HgAP,ST)
+ealghap pvpl” < C, (34e)
X>0,0,-0,:>0,y>0, (34f)
where §1(X) = g(UX0"), and Vygi(X) = —(1 —
H

.\ H = T 1= prviH
DU HY,p 57 A @ OXT Yy srh A7 0, UXT")
HpapstU.

Similarly, Problem (P1.2-1") reduces to the following
problem.

(P1.2-1-ZF) :

Maximize
X.0,.w,v,.y
Subject to (16a), (34a), (24), (27), (34d) — (341),

2
Eallhyene® o (1 gyt At
OEAP ,

1
51 logy (14 1) + corsr(Qy)

- o H
(2, UXU )Hhp s, (35a)

(35b)

2
Pollhyearl
2

OEAP

Note that compared with (P1.2-1’), (P1.2-1"-ZF) admits a
substantially simplified exposition because not only is there no
more variable related to X in the LHS of (35a) and (35b), but
also they turn out to be convex. This means that there is no
approximation made w.r.t X, and thus (P1.2-1’-ZF) is expected
to converge faster, since there are only two iterated variables
remained, ¢ and y. As the ZF-based solutions are reduced
from Problem (P1), the solution and the convergence analysis
are thus similar to Algorithm 1. Hence, we only present an
outline of the algorithm for the proposed ZF-based solutions
which is shown in Algorithm 2. The worst-case complexity
using the ZF-based solutions can be analysed in analogue
to that using the proposed iterative solutions, which is given
by 7(Ljo (max{K + 5, &5 — 1, N}* max{&f — 1, N}'/?) +
Lyo (max{K + 3,25 — 1N + ¥ max{£f — 1N +
1}1/2))log(1/¢), where L} and L), denote the number of iter-
ations for the SCA in solving (P1.1-1’-ZF) and (P1.2-1’-ZF),
respectively.

> 1.
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V. BENCHMARK SCHEMES

In this section, two benchmark schemes are presented,
where only one of the available EAPs operating in FD mode
is selected to assist with the CCRN, and all the EAPs work
together but operate in HD mode, respectively.

A. Selective Non-Cooperative FD Scheme

First, consider the case when only one EAP is selected in the
CCRN. This is the case when joint transmission and/or detec-
tion of the WPT and WIT signals is expensive or unavailable
due to extra resources (e. g., spectrum, power, centralized coor-
dination point) or strict synchronization requirement among
EAPs. The selection of the EAP is based on a simple criterion:
k= argr]?eayé lhp EAP, ||2. Note that by replacing h, gap

(&Eap,p) With hp pap, (&gap,p)» solving the resultant (P1)
follows the same procedure as those detailed in Section I'V-B,
and thus is omitted here for brevity. Note that the worst-
case complexity for solving (P1) based on the selective non-
cooperative solutions can be attained by simply substituting
K by 1 in the complexity analysis for the proposed iterative
solutions.

B. HD EB and DF Relaying

Next, consider the case when all the EAPs work under the
HD mode. In this case, as DF relaying only takes place at the
ST, rpr(X, p) reduces to

1 . _
rpr(X,0) = 3 log, (1 + min H(l —0)Pphf 1A 'hy st

‘2

ggwp
g{; ngsp_HTIZJR '

Moreover, the total cost constraint for the HD EAPs-aided
CCRN is also simplified as

(36)

csnoTr(Heap, st XHE 4 p 1) < C. (37)

Accordingly, (P1) can be equivalently recast into the following
problem.

(P1-HD) :
1
Maximize —cjlogy(1+1)+ cor
X’Qs’wp,Q,f 2 ! g2 ) 2 SR(QS)

2
H
gspwp‘
— >
gh ngsp-"_gPR

Compared with solving (P1), we use a slightly different
approach to solve (P1-HD) in view of its structure. Note from
(P1-HD) that as ¢ increases, the objective value of (P1-HD)
becomes larger at first. However, continuously increasing ¢
will eventually violate (17b) and/or (38a), since the LHS of
both of them are easily shown to be upper-bounded. On the
other hand, it is observed that a large enough ¢ obtained by
suppressing the value of Tr(Q,) may also compromise the
value of rgr(Q,). Hence, it suggests that there exits a proper
t that achieves the optimum value of (P1-HD). Given g = p

(38a)

4691

and t = 7, denote the optimum value of the following problem
by fi(2, ).
(P1-HD-SDR) :
1 -
Maximi —c I+t
;Xlﬂ,%vze 51 0gy(1 +1) + corsr(Qy)

P

Subject to (16b), (22),
Tr(GSPWP) z E(gs[}l; ngsp + O-IZ’R) >

(39a)
Tr(Q, + Wp) < noPen(X), (39b)
c3ngTr(Heap,stXHE 4p g7) < C,

(39¢)
X>0, 0,>0, W, >0, (39d)

where Gy, = g,,8/,, and W, = wyw!l with its constraint
rank(W ) = 1 removed. Then we have the following lemma
[34, Appendix A].

Lemma 5.1: f{(g,1) is a concave function w.r.t 7.

Note that given p = p and ¢t = ¢, (22) implies (17b),
and therefore leads to a lower-bound solution to (P1-HD),
while imposing rank relaxation on W, in general enlarges
its feasible region and thus yields an upper-bound solution
to (P1-HD). The final effect of these two transformation on
the objective value of problem (P1-HD) is nevertheless of no
ambiguity, since the tightness of the rank relaxation in the
latter holds because of the following proposition.

Proposition 5.1: The optimal solution to problem
(P1-HD-SDR) satisfies rank(W7}) = 1 such that
W* = w* w*H

P pop

Proof: The proof for the rank-one property of W* is
similar to [19, Appendix A], and is thus omitted here due
to the length constraint of the paper. [ ]

As a result, we solve (P1-HD) by two-dimension search
overpg andt,ie., f* = rr;zatx fi(e, 1), where  can be found by

some low-complexity search such as bi-section algorithm in
accordance with Lemma 5.1. Specifically, given any p and ¢,
an SDR problem shown in (P1-HD-SDR) is solved with
only one SCA-approximated constraint (22). The worst-case
complexity for solving (P1-HD) is accordingly given by
%O (max{K + 4, %, N}* max{%, N}l/z) log(tmax/Pvi) log
( 1/¢), where L3 denotes the number of iterations for the
SCA in solving (P1-HD-SDR) and py; represents the step
length for bi-section w.r.t 7.

VI. NUMERICAL RESULTS

In this section, we evaluate the proposed joint EB and DF
relaying scheme aided by multiple FD-enabled EAPs in the
CCRN against the benchmark schemes. The proposed iterative
solutions and the ZF-based solutions for solving (P1) in
Section I'V-B and Section IV-C are denoted by “FD Proposed”
and “FD ZF”, respectively. For the benchmarks, the non-
cooperative scheme with only one EAP associated with the
ST in Section V-A is denoted by “FD Non-cooperative”, while
the HD case introduced in Section V-B is denoted by “HD”.

In the following numerical examples, the parameters are set
as follows unless otherwise specified. As illustrated in Fig. 2,
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—%— FD Proposed
—o—FDZF

— & —FD Non-cooperative
—¥—HD

Average sum rate of the CCRN system (bps/Hz)

. .
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Fig. 3. The average sum-rate of the CCRN system versus the times of
iteration of the SCA algorithm by the four schemes, in which (¢ = ¢3 =
cq4 = 1) and (cp = 10).

there is one PT, one PR, each with one single antenna, and a
pair of multi-antenna ST and SR equipped with M = 2 and
N = 2 antennas, respectively. There are also K = 3 EAPs
each equipped with L = 4 antennas, among which half of
them are specified as transmitting antennas and the other half
as receiving antennas, i.e., Nr,;1 = Nr» = Nr3 = 2 and
Ngr,1 = Nr,2 = Nr3 = 2. The distance from the ST to the
PT, PR, and SR are set as dp s7 = 10m, d;, = 10m and
dgs = 10m. The EAPs are located within a circle centred on
the ST with their radius uniformly distributed over [0, 10]m.
The generated wireless channels consist of both large-scale
path loss and small-scale multi-path fading. The pathloss
model is given by Ag(d/do)~* with A9 = —30dB , where d
denotes the relevant distance, dyp = 1m is a reference distance,
and a = 2.5 is the path loss exponent factor. The small-
scale fading follows i.i.d. Rayleigh fading with zero mean
and unit variance. The effective residual LI channel gain §°
is set to be —60dB. The weight coefficients are assumed to
be c; =c» =1.¢3 =1 and ¢4 = 1 are adopted for the cost
per unit of received energy for WPT and WIT, respectively.
The normalized cost, defined by C/Cnax, is set to be 0.1. The
transmitting power is set as P, = 10dBm and Py = 20dBm.
The other parameters are set as follows. The RF-band AWGN
noise and the RF-band to baseband conversion noise are set

to be anza = —110dBm and anz‘; = —70dBm, respectively;
aéAP = O'}%R = JSZR are all set equal to afa + anzc; and

the EH efficiency is set as n = 50% [35]. The evaluation
in the following examples are averaged over 300 independent
channel realizations.

Fig. 3 shows the convergence behaviour of the proposed
iterative algorithm, which is guaranteed by Proposition 4.1.
It is also seen that the number of iterations for the proposed
and the suboptimal schemes to converge is around within 10 ,
while that for the benchmark schemes ‘FD Non-cooperative’
and ‘HD’ are less than 5. It is also observed that there is
little performance gap between “FD ZF” solutions and “FD
Proposed” solutions.

Fig. 4 shows the instantaneous sum-rate of the system
achieved by different schemes and the associated values of
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Fig. 4. The instantaneous sum-rate of the CCRN system achieved by different
schemes in special scenarios, in which Py = 23dBm and P; = 20dBm.

the PS factor p in some special cases. In Example 1, There
are K = 2 EAPs located on the right of the ST alongside
the PT-ST direction, with 10m and 20m away from the ST,
respectively; dp st = Sm; N = 4; 0% = —40dB; ¢3 = 10;
and the normalized cost constraint is 0.01. The optimal g for
all the cases except the “HD” is about 0.9, which means that
the ST does not exploit its full EH capability. This is mainly
due to the following two reasons. On one hand, the optimum
value of f is achieved by f}", which means that the constraint
in (17b) is active. As a result, continuing increasing o will
violate (17b). On the other hand, since c3 is as ten times large
as c4, which means that the unit price required by WPT is
quite high, the system intuitively prefers to saving the amount
of harvested power in this case. In Example 2, there are K = 3
EAPs uniformly located on a circle of radius 10m centred
on the ST, dp st = 10m, and all the other settings are the
same as those in Example 1. It is seen that the optimal g is
one in this case for both of the “FD Proposed” and “FD ZF”
scheme, which is apparently due to the good channel condition
of Hgap sT.

Example 3 explores the other special case when “HD”
scheme also performs reasonably well. In this case there are
K = 5 EAPs uniformly distributed on a circle of radius
Sm centred on the ST, dyy = 5Sm; L = 2, ¢ = 0.1,
¢y = 1.9, and ¢4 = 100; and the normalized cost constraint
is 0.001. Note that this case emulates the scenario when the
weighted sum-rate imposes priority on the secondary system
subject to a quite limited cost budget. Since the secondary
system’s rate is contributed by the ST’s harvested power, the
optimum weighted sum-rate in favour of the ST’s transmission
is achieved by using all its received power for EH while
leaving the task of relaying the PT’s message to the EAPs.

Fig. 5 reflects the impact of the residue power of LI on the
average sum-rate of the system subject to different normalized
cost constraints by different schemes. It is observed that the
FD schemes are in general quite robust against the increasing
power of LI. It is also seen that the suboptimal “FD ZF”
approaches “FD Proposed” with negligible gap when 62 is
larger than —20dB. This is because “FD Proposed” solutions
tend to substantially suppress the LI received by the EAPs
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Fig. 5. The average sum-rate of the CCRN system versus the residue power
level of the LI, in which dp s7 = 15m, dsp = 10m, dgs = 10m, ¢; = 0.1,
cp =19, ¢c3 = 0.1, and ¢4 = 10; the K = 3 EAPs are located within a
ST-centred circle with their radius uniformly distributed over [0, S]m.

such that u§HiITRX*fII;Ru§ ~ 0 (c.f. (6)), and therefore
it is overall less affected by #2. In addition, “FD ZF” and
“HD” schemes remain exactly the same, since their designs
are irrelevant to 2. Moreover, it is intriguing to see that “HD”
considerably outperforms “FD Non-cooperative” in Fig. 5(a),
and reversely performs in Fig. 5(b). This can be explained as
follows. As a result of the transmission priority imposed on the
secondary system (c; = 0.1, co = 1.9), as well as the relatively
cheaper per unit price for WPT (c3 = 0.1, ¢4 = 10), the system
tends to power the ST for improving on its own transmission
as much as possible. Hence, in this case, the WPT capability
of “HD” is larger than that of “FD Non-cooperative”, which
leads to a larger objective value that is dominated by the SR’s
contribution in this case.

Fig. 6 illustrates the average sum-rate of the system achieved
by different schemes versus the normalized cost constraints
with different weights of the sum-rate. It is observed that
the average sum-rate of the system goes up drastically when
the transmission is in favour of the ST, which is mainly
caused by the imbalanced transmission efficiency between
WPT and WIT. It is also observed that “FD ZF” performs
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Fig. 7. The average sum-rate of the CCRN system versus the unit price
of WIT normalized by that of WPT, in which Py = 20dBm and there is a
constant total cost C set to be 3.

nearly as well as “FD Proposed” when the primary and the
secondary system share the same weights of sum-rate. This
is because when rsg(Q,) contributes more to the weighted
sum-rate, the requirement of increasing Tr(Q,) leads to the
fact that the WPT plays a more important role in the CCRN,
and therefore the suboptimal design of the WPT transmission
will compromise the objective value.

The way that the unit price of the received energy for WIT
versus WPT affects the average sum-rate of the system is
shown in Fig. 7. It is seen that “FD ZF” approaches the
proposed “FD Proposed” scheme with negligible gap, and both
of them fall over the increasing per-unit cost for WIT, with
the superior scheme of K = 6 eventually decreasing to nearly
the same value as that for K = 3. These observations are
particularly useful when the cost for WIT is higher than that
for WPT, which is usually the case in practice, since compared
to coordinated WPT relying on random energy beams, it
costs the EAPs more to perform WIT. In addition, “FD Non-
cooperative” with K = 6 EAPs is outperformed by that
with K = 3 EAPs, which reveals that the rknea% lhpEap, ||2—

based non-cooperative scheme is not an optimal strategy to
fully exploit the diversity gains, since it only benefits the
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first hop of the DF relaying. In other words, the EAP with
max lhp Eap, [> does not necessarily possess the maximum
ex

lgzap,pl* (ef. (11)).
The benefit of increasing per-EAP transmission power for

the average sum-rate of the system achieved by different
schemes is shown in Fig. 8. It is seen that with larger number
of antennas equipped at each EAP, better performance is
achieved due to the increasing array gain. It is also noticed that
“FD ZF” keeps up with “FD Proposed” with negligible gap
until Py increases to 20dB. Moreover, for both cases of L = 4
and L = 6, it is observed that the average sum-rate achieved
by all the schemes other than “FD Non-cooperative” goes up
quickly as a result of the substantially enlarged feasible region
(c.f. (16a)-(16b)).

Considering different sensitivities w.r.t received power for
WPT and WIT, given fixed distance from the PT to the
ST (dp,st = 10m), the impact of varying WIT dis-
tance (assuming dy, = dys) on the average weighted sum-
rate of the CCRN system is shown in Fig. 9. It is seen
that all of the schemes fall over the WIT distance, and
in particular, when the Rxs are more than 30m away
from the ST, “HD” cannot support effective cooperative
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transmission any more due to the limited harvested power at
the ST.

The performance of different schemes under different num-
ber of FD-enabled EAPs is studied in Fig. 10, in which a set
of EAPs with their distance to the ST drawn from uniform
distribution over [0, 10]m are first deployed and then allowed
to connect to the ST with an increment of one EAP each
time. It is observed that the advantage of cooperative gain
brought by more involved EAPs is more obviously seen in the
cooperative schemes than in those non-cooperative ones.

VII. CONCLUSION

This paper investigated two techniques to fundamentally
improve the spectrum efficiency of the RF EH-enabled CCRN,
namely, dedicated EB and FD relaying both provided by multi-
antenna EAPs. Specifically, assuming a two-equal-slot DF
relaying protocol, the EAPs jointly transfer wireless power to
the ST while decoding PT’s message in the first transmission
phase, the EAPs cooperate to forward PT’s message and the
ST superimposes PT’s message on its own to broadcast in the
second transmission phase. The EAPs’ EBs as well as their
receiving and transmitting beamforming for PT’s message, and
ST’s PS ratio as well as its transmitting beamforming were
jointly optimized to maximize the weighted sum-rate taking
both energy and cost constraints into account. The proposed
algorithms using SCA techniques were proved to converge
with the KKT conditions satisfied. The EB design based on
ZF was also shown to be promising. Other benchmark schemes
were also provided to validate the effectiveness of the proposed
ones.

APPENDIX A
CONVEXITY OF (19a)

First, the gradient of g;(X) w.r.t X is expressed as
Vxgi(X) = —(1 =) HL 1p 57 A~ @, Xy sT
h sr A~ (@, X)HEgap st.

Before obtaining the Hessian matrix of g;(X) wrt X,
we derive the derivative matrix of (40) as follows.

(40)
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D (Vxgi (X)) =
(1—)HY,p s7A' (2, X)D (A, X))
AN @, X)hy sThl 1)
A @, XHEap st + (1 — é)HgIAP,ST
AT @, X)hy sThY o1

A2, X)D (A0, X)) A "0, X)HEgap,sT. (41)

Next, in line with the equality D (A(g, X)) = (1 —

0)HEgap,sTDXH ,p sp, it follows that Vi g1(X) =

(1-0*(47 @ X) ® 422 X) + A} 2, X) ® 412, X)),
(42)
where A1(p, X) is given by A(2, X) =
HY p 7 A7 @, Xy sth o A7 @, X)HEap 5T, (43)

and Ay = HglAp,STA71 (0, X)HEAP,ST~

We can now determine the convexity of g;(X) by studying
the semidefiniteness of Vg( g1(X) [36]. Take AlT ® Ap as an
example, Since /11(A1T®A2) = AI(AIT)/II(AZ) > 0 [37], where
A1(-) denotes the I/th non-zero eigenvalue of the associate
matrix (/ = 1 herein), it turns out that AT ® A, is a PSD
matrix and so is A2T ® A1. Hence Vf‘,gl(X) is proved to be
PSD and so is V} £2(X), which completes the proof.

APPENDIX B

PROOF OF LEMMA 4.1
This can be proved by contradiction. Assuming the optimum
value of problem (P1.1) is achieved by X*, Q*, w’;, v’;, t*
and p* such that K(gg)w}’;) + K(ggAP pv}’;). In other words,
! w;‘, exp{j4£0}, where § # 2nm, n € Z, such that

Jw’, =
P
K(gg,w;) = é(glgAP pv;). Hence, it follows that

H._ ./ H *
185pWp + 8EAP,pY)

= [(giw),| +185ap V5 expliL(€Eap Vi)

VE

H H
- |g_ypw>; +gEAPjpv;|
2
\/t*(gg, Q?gsp + UPR)»

where “>" in (a) holds strictly, as a result of K(gg,w;) #*
i(gg’AP,pv;‘,). According to (44), it holds true that Elwg =
5w;), where ¢ € [0, 1), such that

v

(44)

H.. H * H, . " H *
18sp Wy + 8Eap,pVpl > 185pWp +&Eap, V)l
H H
H 2
t*(gsp Q?gsp +O—PR)'

Meanwhile, we change the solution of p* to be o’ which is
expressed as

\

(45)

(@ + 0% wh*
= e
Tr(Q) + w1
So far, by changing the solution from p* to ¢/, it is observed

that the constraints (17a) and (17b) still hold, for the fact that
the LHS of (17a) is a monotonically decreasing function over

/

< o*. (46)
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o € [0, 1]. Then we take the next step of changing t* to ¢’ as
follows.

¢ = min I(l — Q/)PphII;I,STAil(Q/, X, st,

2
]>t*.

Consequently, by changing the solution of wj, ¢ and 7*
to wg, o', and ¢’ without changing others, we find that a
larger objective value to (P1.1) is achieved without violating
any other constraints, due to the increasing log, (1 + ¢’). This
nevertheless contradicts to the claimed optimality achieved by
t*. Hence, the proof is complete.

H H
gspw/13+gEAP,p v};
H O* 2
gsp Qs gsp_HTPR

(47)

APPENDIX C
PROOF OF PROPOSITION 4.1

Algorithm 1 will generate a sequence of feasible points
(x®, Qg”),wg,”),vg,”),t(”)} to problem (P1.1-1), since for
each iteration the feasible region to (P1.1-1) is always
a subset of that to (Pl1.1-1). For the nth iteration,
(X @ , an) , ﬁ)g,"), ﬁg,"),t_(")} is chosen as a feasible solution
to (P1.1-1"), while {X@+D, @D 3D 30D 4nty i
the returned optimal solution to (P1.1-1’). Hence, denoting
the objective function of (P1.1-1’) as h; with its (implicit)
dependence on the optimization variables omitted, hg"H) >
hl()_((n), an), ﬁ)g,n), I_)gl), t_(”)) = h(ln). As a result, we arrive
at a non-decreasing sequence {hg")}.

Furthermore, we show that the solutions generated by the
sequence {X OR Qg"), wg’), vg,n), 1™} are bounded. In fact, the
boundedness for X ™ and vg,") can be justified via constraints
(16a) and (16b), respectively. Consequently, it holds true that
the nuclear norm of Qg") and the ¢%-norm of wg,"), which are
bounded by 50 Py (X ™), is also bounded from the above. As
for 1, according to (19b), it implies that

_ -1
1™ < (1- Q)Pphg,STA(n) hy. st

_ —1
< (1 = 2)Ppimax (AW ) |1y 571
< (1= @) Ppllbps7l?/(1 - 2)a} + 02

where A(-) denotes the eigenvalue of the associated matrix.
Owing to the continuity of ki, it follows that {h(ln)} is
also bounded from the above. Hence, the non-decreasing
sequence {hg")} is convergent to a real number denoted by A7.
Furthermore, according to Bolzano-Weierstrass theorem, the
bounded sequence {X™, 0, wl(,,"), vl(,,"), 1™} has at least one
convergent subsequence, the accumulation point of which is

denoted by {X*, Q7, w;, v;, t*}. Therefore, we automatically

(48)

arrive at b1 (X*, QF, wy,, vy, t*) = h]. A KKT point of prob-
lem (P1.1-1), namely, {X*, O}, w*[‘,, v;, t*} is thus obtained
[38, Th. 1].

A similar proof can be applied to problem (P1.2-1) and is
thus omitted here for brevity.
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