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Abstract

Ultra-reliable low latency communication (URLLC) is one of three primary use cases in the fifth-

generation (5G) networks, and its research is still in its infancy due to its stringent and conflicting

requirements in terms of extremely high reliability and low latency. To reduce latency, the channel

blocklength for packet transmission is finite, which incurs transmission rate degradation and higher

decoding error probability. In this case, conventional resource allocation based on Shannon capacity

achieved with infinite blocklength codes is not optimal. Security is another critical issue in mission-

critical internet of things (IoT) communications, and physical-layer security is a promising technique

that can ensure the confidentiality for wireless communications as no additional channel uses are

needed for the key exchange as in the conventional upper-layer cryptography method. This paper

is the first work to study the resource allocation for a secure mission-critical IoT communication

system with URLLC. Specifically, we adopt the security capacity formula under finite blocklength

and consider two optimization problems: weighted throughput maximization problem and total transmit

power minimization problem. Each optimization problem is non-convex and challenging to solve, and

we develop efficient methods to solve each optimization problem. Simulation results confirm the fast

convergence speed of our proposed algorithm and demonstrate the performance advantages over the

existing benchmark algorithms.
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I. INTRODUCTION

The fifth-generation (5G) networks are expected to support three main use cases: enhanced

mobile broadband (eMBB), massive machine type communication (mMTC), and ultra-reliable

low latency communication (URLLC) [1]. Significant advancement has been achieved in the

last decade for the use case of eMBB characterized by high throughput and data rate. Some

typical techniques include massive multiple-input multiple-output (MIMO) and mmWave com-

munications. For the use case of mMTC, 5G networks aim to provide massive connectivity

to tens of billions of low-cost small-size machine-type devices such as smart glasses, smart

thermometers, wireless sensors, etc. Some access protocols such as random access and grant-

free access are shown to be effective in mMTC. However, the realization of URLLC is more

challenging than eMBB and mMTC due to the fact that URLLC targets at two stringent quality-

of-service (QoS) requirements in term of extremely high reliability (e.g., 1 − 10−9) and ultra-

low latency (e.g., 1 ms), which are conflicting with each other. Specifically, to achieve high

reliability, long codeword with redundancy is required, which increases the latency. On the other

hand, short packet/codeword is mandated to achieve low latency, which lowers the reliability

performance. The research of URLLC is still in its infancy and is main target of Release 17. In

addition, URLLC is closely relevant to mission-critical internet of things (IoT) applications with

emphasis on high reliability and low latency, such as autonomous factory manufacture, remote

surgery, unmanned aerial vehicles (UAVs) control, and vehicular communication networks.

The primary feature associated with URLLC compared with conventional human-to-human

communications is its short packet transmission feature, which is adopted to guarantee ultra-

low latency. In this case, the law of large numbers is not valid and Shannon capacity cannot

be applied to characterize the system capacity. Knowing that short blocklength is adopted in

URLLC, the decoding error probability will not approach zero even when signal-to-noise ratio

(SNR) is arbitrarily high. If Shannon capacity expression is directly applied for transmission

design, the reliability and latency will be underestimated, and the QoS cannot be guaranteed.

In [2], the authors first derived the approximate expression of the data rate for a point-to-point

AWGN channel under the case of finite channel blocklength, which is a function of the SNR,

channel blocklength, and decoding error probability. Recently, this information-theoretical result

has been adopted to design the resource allocation in various communication systems [3]–[9].
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Specifically, a wireless-powered IoT network with short packet communication was studied in

[3], where the transmission time and packet error rate of each device was jointly optimized

to maximize the effective-throughput that accounts for both the transmission efficiency and

reliability performance. Joint optimization of the channel blocklength and UAV location was

investigated in [4] to minimize the decoding error probability. The authors in [5] derived the

average achievable data rate from the control information delivery from the ground control

station to UAV under a three-dimensional channel model. In [6], the resource allocation for

non-orthogonal multiple access (NOMA) short-packet communications was studied for a simple

two-user scenario. A cross-layer framework was established in [7] for short packet transmission in

mobile edge computing IoT networks. A resource allocation for a factory automation scenario was

optimized in [8] to minimize the decoding error probability for four transmission schemes, e.g.,

orthogonal multiple access, NOMA, relay-assisted, and cooperative NOMA schemes. In [9], the

authors proposed to adopt the compelling massive MIMO technique to support the transmission

for massive amount of devices in industrial IoT networks, in which channel hardening effect can

be exploited to reduce the computational and operational latency.

On the other hand, due to the broadcast nature of wireless communications, IoT applications

such as industrial robots are particularly vulnerable to security threats (e.g. critical control

information leakage or malicious attack). Conventionally, the security is enhanced through cryp-

tography at the upper layers of the communication system. However, the secret key exchange

and management is complicated and needs additional channel uses to accomplish these pro-

tocols. In URLLC, channel blocklength is limited, and the cryptography method may not be

applicable in URLLC applications. On the other hand, physical layer security, which exploits

the nature of wireless channels, is more favourable for URLLC as the complicated key exchange

procedure is unnecessary. Recently, physical-layer security has been extensively studied in the

existing literature [10]–[14]. In particular, a comprehensive review of physical-layer security

was conducted in [10], which described secure transmission strategies for various transmission

systems. The authors in [11] presented a review on the physical-layer security for the machine-

type communications (MTC), where the MTC devices have limited hardware and limited energy

storage. A novel unmanned aerial vehicle (UAV) flight trajectory optimization was studied in

[12] to maximize the minimum secrecy rate of ground terminals. In [13], a secure mobile edge

computing (MEC) system was proposed where ground users can offload computing tasks to
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the legitimate UAV in the presence of multiple eavesdropping UAVs. A novel secure transmis-

sion scheme was developed in [14] to fight against the eavesdropping in downlink multi-input

single-output non-orthogonal multiple access (NOMA) networks. However, infinite blocklength

is assumed in these papers, and the security capacity is defined as the highest coding rate that

there always exists a pair of channel encoder and decoder such that both the decoding error

probability at the legitimate receiver and the information leakage to the eavesdropper can be

made arbitrarily small when the channel blocklength is sufficiently large.

Unfortunately, the security capacity formula based on the infinite blocklength assumption is

not applicable for secure URLLC applications, where short channel code/blocklength is adopted

to reduce the latency. There are only a limited number of contributions studying the secrecy rate

under finite blocklength [15], [16]. Most recently, the approximate security capacity formula

under finite blocklength has been derived in [15], which is more complicated than the simple

point-to-point communication system in [2]. Based on this information-theoretical result, the

authors in [16] analyzed the performance of secure short-packet communications in a mission-

critical IoT system with an eavesdropper. However, the resource allocation based on this result

has not yet been studied.

Against the above background, the resource allocation problem for a secure mission-critical IoT

system under short packet communications is studied in this paper. Specifically, the contributions

are summarized as follows:

1) We first consider the weighted sum throughput (WST) maximization problem by jointly

optimizing the bandwidth unit and power allocation, while guaranteeing the total power

and bandwidth constraints. This optimization problem is challenging to solve due to the

following reasons. First, this problem involves the discrete variables associated with the

number of bandwidth unit allocation. Second, the optimization variables are coupled in the

objective function. Hence, this problem is a non-convex mixed-integer programming. To

handle this problem, we develop an efficient iterative algorithm based on the principles of

block coordinate descent (BCD) along with the successive convex approximation (SCA)

method to solve this problem. Both the convergence and complexity analysis are provided.

Greedy search method is adopted to convert the continuous variables into discrete ones.

2) We then jointly optimize the power and channel bandwidth unit allocation to minimize

the total transmit power (TTP) for a mission-critical IoT system under short packet com-
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Eavesdropper

Access Point

Device 1 Device 2 Device K

Fig. 1: Illustration of a secure mission-critical IoT communication system.

munications, while guaranteeing the minimum security capacity of each device and the

total channel blocklength. The optimization problem is a non-convex and mixed-integer

programming problem, and NP-hard to solve. We first express the power for each device

as a function of channel blocklength, and relax the discrete constraint for the channel

blocklength to continuous variables. Then, a sufficient condition is proposed when the

channel blocklength allocation problem is a convex optimization problem. This condition

holds for typical URLLC application scenarios. At last, greedy method is used to convert

the continuous solutions to discrete solutions.

3) Finally, simulation results confirm the performance advantage of the proposed algorithm

over the benchmark solutions such as the conventional long packet transmission scheme,

which verifies the importance of adopting the security capacity formula under finite channel

blocklength in the system design.

The rest of this paper is organized as follows. System model and problem formulation are

provided in Section II. Weighted sum throughput maximization problem is solved in Section III,

while total transmit power minimization problem is considered in Section IV. Simulation results

along with related discussions are shown in Section V. Finally, conclusions of this paper are

drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We consider a downlink mission-critical IoT communication system as depicted in Fig. 1,

in which an access point (AP) transmits confidential control signals to K wireless connected
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devices (e.g. actuators, robots, and automated guided vehicle (AGV)). Meanwhile, there is an

eavesdropper that aims to intercept the critical control signals transmitted by the AP. The AP,

K devices, and the eavesdropper are assumed to be equipped with a single antenna. Due to the

low-latency transmission, it is not feasible to allocate different time slots to all devices. Instead,

we assume that all the devices are allocated with orthogonal frequency bands while transmitting

over the same time duration, denoted as T .

In practical systems, the frequency band is divided into multiple basic bandwidth units with

bandwidth B0. Each device is assumed to operate in different frequency bands and the total

frequency bandwidth allocated to the kth device is denoted as Bk = nkB0, where nk denotes

the number of bandwidth units allocated to the kth device. We assume that the total bandwidth

allocated to all the devices should be no larger than channel coherence bandwidth Wc. It is

assumed that Wc is divisible by B0, which can be expressed as Wc = nmaxB0. Therefore, we

have ∑K

k=1
nk ≤ nmax. (1)

Then, the number of channel uses allocated for the kth device is given by BkT . In URLLC, the

transmission duration T is extremely small, which is shorter than the channel coherence time.

Hence, the channels from the AP to K devices and the eavesdropper stay constant over each

transmission. The channels from the AP to the kth device and the eavesdropper are denoted as

hd
k ∈ C and he ∈ C, respectively. Then, the received signal to noise ratio (SNR) of the kth

device is given by

γd
k =

pkg
d
k

nk

, (2)

where pk is the transmit power for the kth device, and gdk = |hd
k|2/(σ2

d,kB0) with σ2
d,k denoting

the noise power spectrum density at the kth device. It is assumed that the eavesdropper can

access all the frequency bands occupied by the devices. Thus, when the eavesdropper attempts

to eavesdrop the kth device’s information, the received SNR at the eavesdropper is given by

γe
k =

pkg
e

nk

, (3)

where ge = |he|2/(σ2
eB0) and σ2

e is the noise power spectrum density at the eavesdropper. In this

paper, we assume all the channel state information (CSI) is available at the transmitter. This is a
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strict assumption, and the solutions in this paper can serve as the performance benchmark for the

existing more practical case when only imperfect or partial CSI is available at the transmitter.

B. Achievable Secrecy Data Rate Under Finite Blocklength

It is well-known that when the number of channel uses is sufficiently large and the transmission

data rate is lower than the secrecy capacity, we can always find a channel coding scheme such that

both the decoding error probability and information leakage can be made as small as possible.

In URLLC, the transmission blocklength (or the number of channel uses) is finite to guarantee

low latency. However, short blocklength transmission suffers from a non-zero decoding error

probability and non-negligible information leakage.

Based on [15], for a given channel blocklength Nk = BkT , to guarantee a maximum decoding

error probability of εk at the kth device, and a secrecy constraint on the information leakage of

δk, a lower bound on maximum secrecy communication rate (bit/s/Hz) can be approximated by:

rk = Ck −
√

V d
k

Nk

Q−1(εk)
ln 2

−
√

V e
k

Nk

Q−1(δk)
ln 2

, (4)

where Ck = log2(1 + γd
k) − log2(1 + γe

k) denotes the maximum secrecy capacity that can be

achieved under infinite channel blocklength, V x
k = 1 − (1 + γx

k )
−2, x ∈ {d, e} is the channel

dispersion which characterizes the random variability of a channel with respect to a deterministic

channel with the same capacity [17], and Q−1(·) is the inverse of the Q-function Q(x) =∫∞
x

1√
2π
e−

t2

2 dt. A necessary condition to ensure a positive data rate is that γd
k > γe

k [16], which

is equivalent to gdk > ge according to (2) and (3). The total number of bits (or throughput) that

can be transmitted for each transmission for the kth device is given by

Rk = nkB0Trk (5)

= nkB0T

⎛
⎝Ck −

√
V d
k

nkB0T

Q−1(εk)
ln 2

−
√

V e
k

nkB0T

Q−1(δk)
ln 2

⎞
⎠ . (6)

In the following two sections, we aim to jointly optimize the number of bandwidth units and

the power allocation to maximize the weighted sum throughput (WST) and minimize the total

transmit power (TTP), respectively.
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III. WEIGHTED SUM THROUGHPUT MAXIMIZATION

In this section, we aim to maximize the WST of all devices through jointly optimizing the

number of bandwidth units and the power allocation. Specifically, we first provide the problem

formulation. Then, one efficient algorithm is proposed to solve the optimization problem.

A. Problem Formulation

For the case when the AP places more emphasis on the amount of information transmitted, we

aim to jointly optimize the power allocation and the bandwidth unit allocation to maximize the

WST of all devices while guaranteeing the total power constraint at the AP, and the total number

of available bandwidth units. Thus, the optimization problem can be formulated as follows:

(P1) : max
p,n

∑K

k=1
ωkRk (7a)

s.t.
∑K

k=1
pk ≤ Pmax, (7b)∑K

k=1
nk ≤ nmax, (7c)

nk ∈ N
+, ∀k = 1, · · · , K, (7d)

pk ≥ 0, ∀k = 1, · · · , K, (7e)

where p = {p1, · · · , pK}, n = {n1, · · · , nK}, ωk is a positive weight factor used to ensure

the fairness among the devices and N
+ denotes the non-negative integer set. Inequalities (7b)

and (7c) correspond to the total power constraint and total bandwidth constraint, respectively.

Constraint (7d) means that the integer constraint for the number of bandwidth units. Note that

Rk = 0 when pk = 0, which ensures the non-negative value of Rk in the optimal solution.

Problem (P1) is a mixed integer programming problem due to the non-negative integer

constraints on n. To make it tractable, we relax the integer n to continuous variables, and

then convert the continuous solutions into integer ones. Therefore, Problem (P1) is relaxed as

follows:

(P2) : max
p,n

∑K

k=1
ωkRk (8a)

s.t. (7b), (7c), (7e), (8b)

nk ≥ 0, ∀k = 1, · · · , K. (8c)
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However, Problem (P2) is still difficult to solve since p and n are coupled together. To circumvent

this difficulty, we adopt the block coordinate descent (BCD) to decouple these optimization

variables. In particular, we optimize one set of variables while keeping the others fixed, and

vice versa. Then, each subproblem is solved in an iterative manner. Specifically, Problem (P2)

is decoupled into two subproblems as

(P2− 1) : max
p

∑K

k=1
ωkRk(pk) s.t. (7b), (7e)

(P2− 2) : max
n

∑K

k=1
ωkRk(nk) s.t. (7c), (8c)

where Problem (P2− 1) corresponds to the optimization of power allocation p with a given

number of bandwidth units n, while Problem (P2− 2) is the optimization of the number of

bandwidth units n with given p. Each subproblem will be solved in the following subsections.

B. The Solution of (P2-1)

In this subsection, we aim to solve the power allocation of Problem (P2− 1) with given n.

To this end, we first define ḡdk
Δ
=

gdk
nk

, ḡek
Δ
= ge

nk
, Ld

k = Q−1(εk)
√
Nk

ln 2
, and Le

k = Q−1(δk)
√
Nk

ln 2
. Then,

Rk(pk) can be rewritten as

Rk(pk) = Nklog2
(
1 + pkḡ

d
k

)−Nklog2 (1 + pkḡ
e
k)︸ ︷︷ ︸

fk(pk)

−
(√

V d
k L

d
k +

√
V e
k L

e
k

)
︸ ︷︷ ︸

yk(pk)

. (10)

Since gdk > ge, we have ḡdk > ḡek.

Before solving Problem (P2− 1), we first analyze the concave-convex property of Rk(pk)

with respect to (w.r.t.) pk. To this end, we first show that both functions fk(pk) and yk(pk) are

concave w.r.t. pk as proved in the following lemma.

Lemma 1: fk(pk) and yk(pk) are concave w.r.t. pk, and thus Rk(pk) is the difference of two

concave functions fk(pk) and yk(pk).

Proof : Please refer to Appendix A.

According to Lemma 1, both fk(pk) and yk(pk) are concave w.r.t. pk. Hence, for given n, the

objective function of Problem (P2− 1) is a difference of two concave functions, and thus is

a non-concave function w.r.t. pk. As a reslut, Problem (P2− 1) is a non-convex optimization

problem, and the globally optimal solution is difficult to find. However, Problem (P2− 1)
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belongs to a class of difference of convex (DC) problems [18], where the objective is to maximize

a difference of two concave functions. This type of optimization problem can be efficiently solved

by using the successive convex approximation (SCA) method, which solves the DC problem in

an iterative manner.

Denote the solution of p in the (i − 1)-th iteration as p(i−1). By exploiting the concavity of

yk(pk) and Jensen’s inequality, we have

yk(pk) ≤ yk

(
p
(i−1)
k

)
+ βk(p

(i−1)
k )

(
pk − p

(i−1)
k

)
, (11)

where βk(p
(i−1)
k ) is the first-order derivative of y(pk) at p

(i−1)
k , and is given by

βk(p
(i−1)
k ) =

(
1 + p

(i−1)
k ḡdk

)−3
ḡdkL

d
k(

1−
(
1 + p

(i−1)
k ḡdk

)−2) 1
2

+

(
1 + p

(i−1)
k ḡek

)−3
ḡekL

e
k(

1−
(
1 + p

(i−1)
k ḡek

)−2) 1
2

> 0. (12)

By replacing yk(pk) with the right hand side (RHS) of (12), we obtain the optimization problem

to be solved in the ith iteration, which is given by:

(P2− 1− a) : max
p

∑K

k=1

(
ωkfk (pk)− ωkβk(p

(i−1)
k )pk

)
(13a)

s.t. (7b), (7e), (13b)

where the constant values have been omitted in the objective function. Note that the objective

function of Problem (P2− 1− a) is a concave function and its constraints are affine functions

of p. Then, Problem (P2− 1− a) is a convex optimization problem. The optimal solution of

Problem (P2− 1− a) can be found in the following theorem.

Theorem 1: The optimal solution of Problem (P2− 1− a) is given by

p�k(λ) =

⎡
⎢⎢⎣
− (ḡdk + ḡek

)
+

√(
ḡdk + ḡek

)2 − 4ḡdk ḡ
e
k

(
1− η

(i−1)
k (λ)

)
2ḡdk ḡ

e
k

⎤
⎥⎥⎦

+

, ∀k (14)

where [x]+ is equal to max{x, 0} and η
(i−1)
k (λ) is given by

η
(i−1)
k (λ) =

Nk

ln 2

ωk(ḡ
d
k − ḡek)

ωkβk(p
(i−1)
k ) + λ

, ∀k. (15)
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If
∑K

k=1 p
�
k(0) ≤ Pmax, then λ = 0. Otherwise, λ is the root of the following equation:

K∑
k=1

p�k(λ)− Pmax = 0. (16)

Proof : Please refer to Appendix B.

If
∑K

k=1 p
�
k(0) > Pmax, we need to find a λ to satisfy Equation (16). For the case of p�k(λ) > 0,

by taking the first-order derivative of p�k(λ) w.r.t. λ, we have
∂p�k(λ)

∂λ
< 0.

C. The Solution of (P2-2)

In this subsection, our aim is to solve Problem (P2-2) by optimizing the number of bandwidth

units with given power allocation. For simplicity, we first define Ñ0 = B0T, g̃
d
k = pkg

d
k, g̃

e
k = pkg

e,

L̃d
k =

√
Ñ0

Q−1(εk)
ln 2

, and L̃e
k =

√
Ñ0

Q−1(σk)
ln 2

. Since gdk > ge, we have g̃dk > g̃ek. Then, Rk(nk) can

be rewritten as

Rk(nk) = Ñ0nklog2

(
1 +

g̃dk
nk

)
− Ñ0nklog2

(
1 +

g̃ek
nk

)
︸ ︷︷ ︸

Fk(nk)

−
(√

zdk(nk)L̃
d
k +

√
zek(nk)L̃

e
k

)
︸ ︷︷ ︸

Gk(nk)

, (17)

where zxk (nk) = nk − n3
k

(nk+g̃xk)
2 , x ∈ {d, e}.

Before solving Problem (P2-2), we first analyze the concave-convex property of Rk(nk). In

particular, the following lemma shows that Fk(nk) and Gk(nk) are concave functions w.r.t. nk.

Lemma 2: Fk(nk) and Gk(nk) are concave w.r.t. nk, and thus Rk(nk) is the difference of two

concave functions Fk(nk) and Gk(nk).

Proof : Please refer to Appendix C.

Then, similar to the optimization of power allocation, we adopt the SCA method to solve

Problem (P2-2). By denoting the solution n in the (j − 1)-th iteration as n(j−1) and using

Lemma 2 and Jensen’s inequality, we have

Gk(nk) ≤ Gk(n
(j−1)
k ) + αk(n

(j−1)
k )

(
nk − n

(j−1)
k

)
, (18)

where αk(n
(j−1)
k ) is the first-order derivative of Gk(nk) w.r.t. nk at nk = n

(j−1)
k and is given by

αk(n
(j−1)
k ) =

L̃d
k

(
3
(
g̃dk
)2
n
(j−1)
k +

(
g̃dk
)3)

2

√
zdk(n

(j−1)
k )

(
n
(j−1)
k + g̃dk

)3 +
L̃e
k

(
3(g̃ek)

2n
(j−1)
k + (g̃ek)

3
)

2

√
zek(n

(j−1)
k )

(
n
(j−1)
k + g̃ek

)3 . (19)
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12

By replacing αk(n
(j−1)
k ) with the RHS of (19), the subproblem to be solved in the jth iteration

is given by

(P2− 2− a) : max
n

∑K

k=1

(
ωkFk(nk)− ωkαk(n

(j−1)
k )nk

)
(20a)

s.t. (7c), (8c), (20b)

where the constant terms are omitted in the objective function.

Note that the objective function of Problem (P2− 2− a) is a concave function of nk and the

constraints are affine functions. Hence, Problem (P2− 2− a) is a convex optimization problem.

In the following, we provide a low-complexity algorithm to obtain the globally optimal solution

by using the Lagrangian dual decomposition method [19]. Since Problem (P2− 2− a) is a

convex optimization problem and the slater’s condition is satisfied 1, the dual gap is zero and

the original problem can be solved by solving its dual problem. Specifically, we introduce the

non-negative Lagrange multiplier μ ≥ 0 corresponding to the constraint of the total number of

bandwidth units, and the partial Lagrange function of Problem (P2− 2− a) is given by

L(n, μ) =
∑K

k=1

(
ωkFk(nk)− ωkαk(n

(j−1)
k )nk

)
− μ

(∑K

k=1
nk − nmax

)
. (21)

The dual function can be obtained by solving the following optimization problem:

Y (μ)
Δ
= max

nk≥0,∀k

∑K

k=1
Lk(nk, μ) + μnmax, (22)

where Lk(nk, μ) is given by

Lk(nk, μ) = ωkFk(nk)− ωkαk(n
(j−1)
k )nk − μnk. (23)

Then, the dual problem is given by

min
μ≥0

Y (μ). (24)

To solve the dual problem (24), we need to first obtain the expression of dual function Y (μ),

which needs to solve Problem (22) with given μ. For given μ, Problem (22) can be decoupled

into K independent optimization problems, and the optimization problem associated with the

1There exist strictly feasible n such as
∑K

k=1 nk < nmax.
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13

kth device is given by

max
nk≥0

Lk(nk, μ) = ωkFk(nk)− ωkαk(n
(j−1)
k )nk − μnk. (25)

The first-order derivative of Lk(nk, μ) w.r.t. nk is derived as

∂Lk(nk, μ)

∂nk

= ωkÑ0 log2

(
nk + g̃dk
nk + g̃ek

)
+

ωkÑ0

(
g̃ek−g̃dk

)
nk

ln 2
(
nk+g̃dk

)
(nk+g̃ek)

−ωkαk

(
n
(j−1)
k

)
− μ. (26)

Since Lk(nk, μ) is a concave function, the optimal solution of Problem (25) can be derived as

follows:

• If
∂Lk(nk,μ)

∂nk

∣∣∣
nk=0

≤ 0, the optimal nk for given μ is given by n�
k(μ) = 0;

• If
∂Lk(nk,μ)

∂nk

∣∣∣
nk=0

> 0, the optimal nk should satisfy the equation
∂Lk(nk,μ)

∂nk
= 0, and its root

is denoted as n�
k(μ). As Lk(nk, μ) is a concave function,

∂Lk(nk,μ)
∂nk

is a decreasing function w.r.t.

nk. Thus, n�
k(μ) can be obtained by the bisection search method when μ is given.

Next, we turn to solve the dual problem by finding the optimal μ. The optimal value of μ

should satisfy the complementary slackness condition for the constraint (7c):

μ
(∑K

k=1
n�
k(μ)− nmax

)
= 0. (27)

From (27), if
∑K

k=1 n
�
k(0) ≤ nmax holds, the optimal solution is given by nk(0), ∀k; Otherwise,

the optimal μ should satisfy W (μ) =
∑K

k=1 n
�
k(μ) = nmax. In contrast to the power allocation

solution in (14), the bandwidth unit allocation nk(μ) cannot be expressed in an explicit function

of μ. As a result, the monotonicity of nk(μ) w.r.t. μ cannot be proved by checking the sign of

the first-order derivative. To deal with this issue, we have the following lemma:

Lemma 3: W (μ) is a monotonically decreasing function w.r.t. μ.

Proof : Please refer to Appendix D.

Based on Lemma 3, the optimal μ can be obtained by using the bisection search method.

D. Algorithm Analysis

1) Algorithm Description: Based on the above analysis, we summarize the proposed BCD

algorithm in Algorithm 1, where R (n,p) is the weighted throughput defined as R (n,p) =∑K
k=1 ωkRk (n,p). This algorithm is a two-layer iterative algorithm, where the inner layer is

the iteration of the SCA algorithm to solve Problem (P2− 1− a) and Problem (P2− 2− a),
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14

and the outer layer is the BCD algorithm to solve Problem (P2). In Line 7 of Algorithm 1, p�

denotes the optimal solution obtained by the inner layer to solve Problem (P2− 1− a), and

n� in Line 12 corresponds to the inner layer to solve Problem (P2− 2− a).

Algorithm 1: BCD Algorithm for Solving Total Throughput Maximization

1 Initialize n = n(0), p = p(0), accuracy ε, the iteration number t = 1 and calculate
R
(
n(0),p(0)

)
;

2 repeat
3 Set n = n(t−1), i = 1;
4 repeat
5 Given p(i−1), calculate p(i) by solving Problem (P2− 1− a), and i ← i+ 1;
6 until p converges;
7 Update p(t) = p�;
8 Set p = p(t), j = 1;
9 repeat

10 Given n(j−1), calculate n(j) by solving Problem (P2− 2− a), and j ← j + 1;
11 until n converges;
12 Update n(t) = n� and set t ← t+ 1;
13 until

∣∣R (n(t),p(t)
)−R

(
n(t−1),p(t−1))∣∣/R (n(t−1),p(t−1)) ≤ε;

2) Convergence Analysis: In the tth outer iteration, the SCA algorithm is adopted to solve

Problem (P2− 1− a) to find the power allocation solution. Based on the property of the SCA

algorithm [20], the SCA algorithm is guaranteed to converge. Then, we have R
(
n(t−1),p(t)

) ≥
R
(
n(t−1),p(t−1)). Afterwards, the SCA algorithm is used to find the channel bandwidth u-

nit solution. We then have R
(
n(t),p(t)

) ≥ R
(
n(t−1),p(t)

)
. Hence, we have R

(
n(t),p(t)

) ≥
R
(
n(t−1),p(t−1)), which shows the solutions obtained by the BCD algorithm are monotonically

increasing. In addition, due to the power and total bandwidth limits, there exists an upper bound

on the total throughput. Hence, the BCD algorithm is guaranteed to converge.

3) Complexity Analysis: In this part, we analyze the complexity of the BCD algorithm. Note

that the main complexity in each outer layer iteration lies in the SCA algorithms to solve

Problem (P2− 1− a) and Problem (P2− 2− a). For each inner layer of the SCA algorithm

to solve (P2− 1− a), the bisection search method is adopted to find λ, and its complexity is

O (Klog2
(
1
ε

))
, where ε is the accuracy. Denote Iin as the total number of iterations required

for the convergence of the SCA algorithm. The total complexity to solve (P2− 1− a) in each

outer layer is given by O (IinKlog2
(
1
ε

))
. By using similar analysis, the total complexity to

solve (P2− 2− a) in each outer layer is given by O (JinKlog2
(
1
ε

))
, where Jin is the total
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15

number of iterations required for the convergence of the SCA algorithm. Denote the total number

of iterations for the BCD algorithm to converge as NBCD. The total complexity of the BCD

algorithm is given by O (NBCD (Iin + Jin)Klog2
(
1
ε

))
. Hence, the BCD algorithm can converge

to the locally optimal solution in polynomial time computational complexity.

E. Integer Conversion for n

In general, the solution of n obtained from the BCD algorithm are positive continuous

values, which may violate the integer constraints. In this part, we provide a greedy search

method to convert the continuous solution into integer ones. Specifically, denote the solution

of n obtained by the BCD algorithm as n̄ = {n̄1, · · · , n̄K}. The integer conversion problem

is a combinatorial optimization problem, and it requires exponential time complexity to find

the globally optimal solution. In the following, we propose a low-complexity algorithm based

on the greedy search method to find a suboptimal solution. Firstly, we set the initial value

of the solution as n�
k = �n̄k� , ∀k, where �·� denotes the flooring operation. Then, there are

NRem =
∑K

k=1 n̄k −
∑K

k=1 n
�
k bandwidth units that are not allocated. The remaining task is to

allocate these bandwidth units to the devices. The main idea of the greedy search method is that

each time we allocate one bandwidth unit to the device with the highest increment of the total

throughput. Denote n� = {n�
1, · · · , n�

K} and ñk = {n�
1, · · · , n�

k +1, · · · , n�
K}. For each given n,

we adopt the SCA algorithm to solve Problem (P2− 1), and denote the optimal value of the

total throughput as R (n). Then, the device index to be allocated one bandwidth unit is given

by k∗ = argmaxk∈K {R (ñk)−R (n�)}, where K denotes the set of all devices. For the k∗th

device, update n�
k = n�

k +1. Repeat the above procedure until all the remaining bandwidth units

are allocated, and the power allocation is updated accordingly based on the final integer solution.

IV. TOTAL TRANSMIT POWER MINIMIZATION

In this section, each device is assumed to have its minimum throughput requirement, and our

goal is to minimize the TTP by jointly optimizing the bandwidth unit and power allocation.

We first provide the problem formulation and then propose one efficient algorithm to solve the

problem.
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16

A. Problem Formulation

In some application scenarios where the power consumption of the AP is of great concern,

the design paradigm should be shifted to the energy efficient design by minimizing the power

consumption. Specifically, we aim to jointly optimize the bandwidth unit and power allocation

to minimize the TTP while guaranteeing each device’s minimum throughput requirement and

the budget of the total available bandwidth units. Mathematically, this optimization problem is

formulated as follows:

(P3) : min
p,n

∑K

k=1
pk (28a)

s.t. Rk ≥ Dmin
k , ∀k, (28b)

(7c), (7d), (7e), (28c)

where Dmin
k is the minimum throughput requirement of the kth device. In the following, we

always assume that the problem is feasible.

Problem (P3) can be readily known as a mixed-integer programming problem due to the

integer constraint on the number of bandwidth units, which is NP-hard to solve. We notice that

the objective function of Problem (P3) is not related to the number of bandwidth units and

only depends on the power allocation. Hence, the BCD algorithm that alternately optimizes the

bandwidth unit and power allocation is not applicable. In the following, we assume that the

problem is feasible and we propose one low-complexity algorithm to solve this problem.

B. Approximation Method

The complicated expression of data rate Rk makes Problem (28) difficult to solve. To make it

tractable, we approximate V x
k as one, i.e., V x

k ≈ 1, where x ∈ {d, e}. The approximation is very

accurate when SNR rate γx
k is very high, γx

k 
 1. This approximation has been widely adopted

in the current literature [21], [22]. Define h̃d
k = T |hk|2

/
σ2
d,k and h̃e = T‖he‖22

/
σ2
e with h̃d

k > h̃e,

the achievable data rate can be approximated as

Rk ≈ R̃k=Nk

(
log2

(
1+

pkh̃
d
k

Nk

)
−log2

(
1 +

pkh̃
e

Nk

)
−
√

1

Nk

Q−1(εk)
ln 2

−
√

1

Nk

Q−1(δk)
ln 2

)
. (29)
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17

Since V x
k < 1, R̃k is actually a lower bound of the original data rate Rk. Hence, if R̃k ≥ Dmin

k ,

then Rk ≥ Dmin
k always holds.

By substituting (29) into Problem (P3), we can now optimize the channel blocklength allo-

cation N (N = {N1, · · · , NK}) and the power allocation p, which is formulated as

(P4) : min
p,N

∑K

k=1
pk (30a)

s.t. R̃k ≥ Dmin
k , ∀k, (30b)∑K

k=1
Nk ≤ WcT, (30c)

pk ≥ 0, ∀k (30d)

Nk ∈ {B0T, 2B0T, · · · , nmaxBT}, ∀k, (30e)

where Wc is the coherence channel bandwidth. Due to the discrete constraint on Nk, Problem

(P4) is difficult to solve. To solve this problem, we first remove this constraint and relax it to

continuous values, which is given by

(P4− a) : min
p,N

∑K

k=1
pk (31a)

s.t. (30b), (30c), (30d), (31b)

Nk ≥ 0. (31c)

When Problem (P4-a) is solved, we convert the continuous Nks into discrete values.

We first solve Problem (P4-a). Obviously, for any given channel blocklength allocation Nk,

R̃k is a monotonically increasing function of pk. Hence, inequality (30b) holds with equality at

the optimal point. Then, the power allocation can be expressed as a function of Nk:

pk(Nk) = −Nk

h̃e
+

ckNk

dk − e
ak
Nk

+
bk√
Nk

, (32)

where ak = Dmin
k ln 2, bk = Q−1(εk) +Q−1(δk), ck =

(
h̃d
k − h̃e

)/(
h̃e
)2

, and dk = h̃d
k

/
h̃e. To

guarantee that Nk is positive, by using pk(Nk) > 0, we can obtain the lower bound of Nk as

Nk ≥
(
bk +

√
b2k + 4ak ln dk
2 ln dk

)2

Δ
= N lb

k . (33)
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18

By substituting (32) into Problem (P4-a) and considering the lower bound of Nk, we have

(P4− b) : min
N

∑K

k=1
pk(Nk) (34a)

s.t. (30c), (33). (34b)

Then, in the following theorem, we provide a sufficient condition when pk(Nk) is a convex

function.

Theorem 2: By defining ρk = −12ak+b2k
3

and κk = −2b4k+36akb
2
k+108a2k

27bk
, the function pk(Nk) is a

monotonically decreasing and convex function w.r.t. Nk when the following condition holds:√
Nk ≤ 2

√
−ρk

3
cosh

(
1

3
arcosh

(
3κk

2ρk

√−3

ρk

))
+

bk
3
. (35)

Proof : Please see Appendix E.

Fortunately, the RHS of (35) only depends on the long-term system parameters such as Dmin
k ,

εk, and δk, which is not related to the relative channel gains. For a typical URLLC communication

system, the number of transmission bits for each device is around 100 bits (i.e., Dmin
k = 100),

the decoding error probability εk is about 10−9, the information leakage δk is roughly 10−2 [16].

Then, the value of the RHS of (35) can be calculated as 23.9. Hence, when Nk ≤ 572, the

inequality in (35) holds. For a typical system, the channel coherence bandwidth is around 0.5

MHz, and the transmission delay requirement is 1 ms. Hence, the total number of channel uses

is 500, which should be allocated among all devices. Then, the number of channel uses allocated

to each device is much smaller than the value of 500. As a result, for practical communication

systems, the inequality in (35) holds and thus pk(Nk) is a convex function.

Since constraints (30c) and (33) are affine functions, Problem (P4− b) is a convex problem,

which can be solved by using Lagrangian dual decomposition method. We first introduce a

positive Lagrange multiplier ς associated with constraint (30c), the partial Lagrangian function

of Problem (P4− b) is given by

L(N , ς) =
∑K

k=1
pk(Nk) + ς

(∑K

k=1
Nk −WcT

)
. (36)

We first need to obtain the optimal N by minimizing L(N , ς) over N for a given ς:

min
N

L(N , ς). (37)
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We denote the optimal Nk for given ς as N�
k (ς). For given ς , L(N , ς) is a convex function, and

thus the optimal N�
k (ς) can be obtained as follows:

• If
∂L(N ,ς)

∂Nk
|Nk=N lb

k
≥ 0, the optimal Nk is given by N�

k (ς) = N lb
k ;

• If
∂L(N ,ς)

∂Nk
|Nk=N lb

k
< 0, N�

k (ς) is the solution to the equation
∂L(N ,ς)

∂Nk
= 0, which can be

obtained by the bisection search method.

Once obtaining the optimal N�
k (ς), we can obtain the sum of all channel uses defined as

F (ς) �
∑K

k=1
N�

k (ς). (38)

We need to solve the following equation to find the optimal dual variable ς:

ς (F (ς)−WcT ) = 0. (39)

If F (0) ≤ WcT , then the optimal ς is equal to zero. Otherwise, we need to solve the equation

F (ς) = WcT . By using a similar method as in Lemma 3, we can prove that F (ς) is a

monotonically decreasing function of ς . Hence, the bisection search method can be used to

find the solution of equation F (ς) = WcT .

Denote the solution obtained from Problem (P4− b) as N̄ = {N̄1, · · · , N̄K}. Obviously, the

solution N̄ obtained by using the above the Lagrangian dual decomposition method do not satisfy

the discrete constraint in (30e). Hence, we need to transfer N̄ to satisfy its discrete constraint. As

mentioned before, this kind of problem is a combinatorial optimization problem, which is NP-

hard to solve. We again adopt the greedy search method to solve this problem. Denote the solution

of N that satisfies the discrete constraint as N� = {N�
1 , · · · , N�

K}. Specifically, we first initialize

the solution of N� as N�
k =

⌊
N̄k

B0T

⌋
· B0T, ∀k. There are other channel uses that have not been

allocated, the number of which is given by

(
nmax −

K∑
k=1

⌊
N̄k

B0T

⌋)
·B0T . As proved in Theorem

2, pk(Nk) is a monotonically decreasing function of Nk. Hence, we can assign the unallocated

channel uses to additionally reduce the power consumption. We allocate one channel use to the

device with the largest decrement of pk(Nk), i.e., k� = argmax
k∈K

{pk(N�
k )− pk(N

�
k +B0T )}. For

the k�th device, we allocate one bandwidth unit to it and update N�
k = N�

k + B0T . Repeat this

procedure until
∑K

k=1 N
�
k = WcT .
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Fig. 2: Convergence behavior of the BCD algorithm.
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Fig. 3: WST versus the total power limit.

V. SIMULATION RESULTS

In this section, we provide simulation results to evaluate the performance of our proposed

algorithms. Unless otherwise specified, the adopted simulation parameters are given as follows:

bandwidth of channel unit of B0 = 1 KHz, noise power spectrum density of -173 dBm/Hz,

number of devices of K = 4, εk = 10−9, ∀k, δk = 10−2, ∀k, time duration of T = 1 ms,

channel coherence bandwidth of Wc = 0.5 MHz. The channel path loss is modeled as PL =

35.3 + 37.6log10l (dB) [23], where l (m) is the distance between the devices/eavesdropper and

the AP. The distance between the eavesdropper and the AP is set as le = 180 (m).

A. Weighted Sum Throughput Maximization

In this subsection, we provide simulation results to evaluate the performance of the BCD

algorithm in Algorithm 1 for the WST maximization problem. The distances between the AP

and the devices are assumed to be randomly generated within 100 m ∼ 120 m, and the following

results are obtained by averaging over 200 device location generations.

In Fig. 2, we illustrate the convergence behavior of the BCD algorithm for various number

of devices. It is observed from this figure that the BCD algorithm converges rapidly for all

considered values of K, and roughly ten iterations are sufficient for the convergence of the BCD

algorithm. Fig. 2 also shows that larger number of devices leads to slower convergence speed.

The reason is that larger number of devices corresponds to more optimization variables to be

optimized and require more iterations.
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Fig. 4: WST versus the channel coherence bandwidth.
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Fig. 5: WST versus the number of devices.

Next, we compare the performance of the proposed BCD algorithm with the conventional

long packet transmission, where the penalty terms in (4) are not considered and the throughput

of the kth device is given by

Rk = nkB0T
(
log2(1 + γd

k)− log2(1 + γe
k)
)
. (40)

The BCD algorithm can be directly applied by setting some parameters to zero. This algorithm

is labeled as ‘Conventional’. Then, the solution obtained is applied in calculating the throughput

in (6) by considering the penalty terms. This means that the solution obtained from ‘Conven-

tional’ is used for obtaining solutions, while the throughput under finite blocklength is used for

performance evaluation.

Fig. 3 shows the WST versus the total power limit for various decoding error probabilities ε at

the devices. As expected, the WST of each algorithm increases with an increase of the maximum

available transmit power as higher transmit power will bring higher value of SNR. The proposed

BCD algorithm is observed to outperform the conventional long packet transmission scheme,

and the performance gap increases as the transmit power limit becomes larger. This may be due

to the fact that larger transmit power corresponds to a higher value of SNR, and thus V x
k will

approach one. Then, the impact of the penalty terms will increase, which is not considered in

the conventional long packet transmission scheme. We can also find from this figure that a lower

value of the decoding error probability requirement brings a lower WST. This is because when

δk is large, the value of Q−1(δk) increases, thus leading to larger values of the penalty terms.
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Fig. 4 shows the WST versus the channel coherence bandwidth Wc. We observe from Fig. 4

that the WST achieved by all the schemes increase with the increase of channel coherence

bandwidth. The reason is that higher channel coherence bandwidth corresponds to larger number

of channel uses for each transmission, and thus brings higher throughput. In contrast to Fig. 3

where the WST logarithmically increases with the increasing transmit power, the WST linearly

increases with Wc, which demonstrates the significant impact of the channel coherence bandwidth

on the WST performance. It is again observed that the performance of the proposed BCD

algorithm is better than the conventional long packet transmission scheme.

Fig. 5 shows the WST versus the number of devices. It is found from this figure that the WST

achieved by the proposed BCD algorithm increases with the number of devices as we can employ

the multiuser diversity to achieve higher performance. In contrast, the WST of the conventional

long packet scheme first increases with K and then decreases with K. The main reason is that

the conventional long packet scheme targets at optimizing (40) without considering the penalty

incurred due to the short packet transmission. The solution that maximizes (40) may not perform

well for the short packet throughput formula in (6). This again emphasizes the importance of

optimizing the short packet throughput formula in URLLC applications.

B. Total Transmit Power Minimization

In this subsection, we consider the performance of the proposed method in Section IV for the

TTP minimization problem. The distance between the AP and the devices are set as: lk = 100+

5(k − 1) (m), where k denotes the device index. The minimum date packet size is Dmin
k = 160

bits. Three methods are compared. The first one is the solution obtained by solving Problem

(P4− a) (with legend ‘Continuous Relaxation’), which is a relaxed version of the original

Problem (P4). The second one is the solution obtained by converting the continuous solution

of N̄ into the discrete solution by using the greedy method (with legend ‘Integer Conversion’).

The final one is the solution obtained by equally allocating the channel bandwidth units to the

devices, nk = nmax/K (with legend ‘Equal BU Allocation’), and the power allocated to each

device can be obtained based on (32).

In Fig. 6, we first study the impact of packet size requirement of each device on the TTP.

When packet size D ranges from 100 bits to 200 bits with the interval of 10 bits in Fig. 6,

the upper bound of Nk given in Theorem 2 are respectively calculated as 573, 625, 677, 730,
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Fig. 6: TTP versus the minimum packet size requirement
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Fig. 9: Sum power versus the number of devices.

783, 837, 890, 944, 998, 1054 and 1109. As WcT = 500, the condition in Theorem 2 is

always satisfied. As expected, the TTP required monotonically increases with D for all the

methods. Both the Continuous Relaxation and the Integer Conversion methods have almost the

same performance, which implies the marginal performance loss incurred by the greedy integer

conversion procedure. Moreover, both these methods are shown to achieve superior performance

over the naive Equal BU Allocation method, and the performance gain monotonically increases

with D. When D ≥ 160 bits, the Equal BU Allocation method becomes even infeasible, while

the proposed algorithm can support the packet size up to 200 bits. The reason can be explained

as follows. When the channel blocklength is equally allocated among the devices, the QoS
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of the device with worse channel gain cannot be satisfied even when all the available power is

allocated to this device. Hence, the optimization problem associated with the Equal BU Allocation

has no feasible solution. In contrast, our proposed algorithm dynamically allocated the channel

blocklength bases on each device’s channel condition: the device with bad channel condition can

be allocated with more channel blocklength to satisfy its QoS requirement. Hence, our proposed

algorithm not only achieved high WST, but also has larger feasible range. This implies the

importance of optimizing the bandwidth unit allocation.

In Fig. 7, we investigate the impact of the decoding error probability requirement of the

devices on the TTP. When the decoding error probability ranges from 10−12 to 10−4 with the

interval shown in Fig. 6, the upper bound of Nk given in Theorem 2 are respectively calculated

as 896, 890, 887, 887, 888, 890, 892, 895, and 899. As WcT = 500, the condition in Theorem 2

is always satisfied. It is observed that the TTP required by all the methods decrease with εk. This

can be explained as follows. According to (4), Rk is a monotonically decreasing function of εk.

When εk is small, more power is required to achieve the desired throughput requirement. Again,

the proposed algorithms are observed to have better performance than the Equal BU Allocation

method, especially when the decoding error probability is extremely small.

The impact of the channel bandwidth on the system performance is shown in Fig. 8. For

various values of Wc, the upper bounds of Nk given in Theorem 2 are the same that are all

equal to 891. In addition, the lower bounds of Nk given in (33) for four devices are respectively

given by 85, 95, 107, and 120. When Wc = 1.1 MHz, WcT has the maximum value of 1100.

Then, the maximum values of Nk, k = 1, · · · , 4 are given by 778, 788, 800, and 813, respectively.

This means the maximum achievable value of Nk is smaller than upper bound of Nk given in

Theorem 2. Hence, the condition in Theorem 2 is always satisfied. We can find from Fig. 8 that

the TTP required by all the methods decreases with increasing channel coherence bandwidth.

This is mainly due to the fact that when the channel coherence bandwidth increases, the total

number of channel users increases, which can enhance throughput. It is interesting to observe that

when the channel coherence bandwidth is sufficiently large, the proposed algorithms can only

achieve negligible performance advantage over the Equal BU Allocation method, which implies

the equal bandwidth unit allocation is nearly optimal for large channel coherence bandwidth.

In Fig. 9, we study the impact of the number of devices on the system performance where

the channel coherence bandwidth is assumed to be Wc = 1 MHz. For various values of K, the
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Fig. 10: WST performance comparison between exhaus-

tive search method and the proposed method.
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Fig. 11: TTP performance comparison between exhaustive

search method and the proposed method.

upper bounds of Nk given in Theorem 2 are the same that are equal to 891. In addition, the

lower bounds of Nk given in (33) for the case of three devices are respectively given by 85, 95,

and 107. When Wc = 1 MHz, WcT has the maximum value of 1000. Then, the maximum values

of Nk, k = 1, · · · , 3 are given by 798, 808, and 820, respectively. This means the maximum

achievable value of Nk is smaller than the upper bound of Nk given in Theorem 2. Hence, the

condition in Theorem 2 is always satisfied. It is observed that the sum power increases rapidly

with the number of devices. This is because when the number of devices is large, the number of

bandwidth units allocated to each device will decrease, which requires more power to transmit

the targeted throughput.

C. Comparison with Exhaustive Search Method

Finally, we compare our proposed method with the exhaustive search method. Due to the high

complexity of the exhaustive search method, we consider a small network with two devices.

First, we study the WSR performance comparison between the proposed algorithm with the

exhaustive search method in Fig. 10. The other simulation parameters are set to be same as

in Subsection V-A. For the exhaustive search method, we enumerate all possible bandwidth

unit allocations, and the algorithm in Subsection III-B is adopted to solve the power allocation

problem for each given allocation of the bandwidth units. It can be seen from Fig. 10 that our

proposed algorithm can achieve almost the same performance as the exhaustive search method

for the whole range of transmission power, which verifies the effectiveness of our proposed
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method.

Then, we compare our proposed algorithm for the TTP minimization problem with the ex-

haustive search method in Fig. 11. The parameters are set to the same as in Subsection V-B.

The condition in Theorem 2 can be verified to hold. For the exhaustive search method, we

enumerate all possible bandwidth unit allocations, and we use the line search method to find the

minimum transmit power for each user to satisfy the minimum throughput requirement. It can

be observed from Fig. 11 that the proposed method achieves the similar performance when the

channel bandwidth is small, while the performance gap increases with the channel bandwidth.

However, the maximum performance gap is less than 1 dBm, which is acceptable considering

the lower complexity associated with the proposed method. This means our proposed algorithm

is more appealing for practical applications.

VI. CONCLUSIONS

In this paper, we studied a secure mission-critical IoT communication system under URLLC

requirements, where the AP transmits safety-critical messages to the devices and there exists an

eavesdropper that attempts to eavesdrop this critical message. Under this context, we considered

the WST maximization problem and the TTP minimization problem through joint bandwidth unit

and power allocation. For the WST maximization problem, we provided the BCD algorithm to

decouple the original coupled optimization problem, and obtain its solution in an iterative manner.

For the TTP minimization problem, we derived the sufficient condition when this problem is

a convex problem, and we showed that most of the typical URLLC applications satisfy this

condition. Low-complexity and efficient algorithms were proposed to find the globally optimal

solution, and the greedy method was utilized to convert the continuous solutions into discrete

solutions. Simulation results demonstrate the rapid convergence of the BCD algorithm, and

performance advantages over the conventional long packet transmission scheme. For the method

to solve the TTP minimization problem, simulation results validate the performance advantages

in terms of power savings compared with the naive equal bandwidth unit allocation scheme.
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APPENDIX A

PROOF LEMMA 1

We first prove that fk(pk) is a concave function. The second-order derivative of fk(pk) w.r.t.

pk is given by

f ′′k (pk) =
Nk

ln 2

ḡek − ḡdk(
1 + pkḡdk

)
(1 + pkḡek)

(
ḡek

1 + pkḡek
+

ḡdk
1 + pkḡdk

)
< 0, (41)

where the last inequality holds since ḡdk > ḡek. Hence, fk(pk) is a concave function w.r.t. pk.

Similarly, the second-order derivative of yk(pk) w.r.t. pk is given by

y′′k(pk) = −
(
ḡdk
)2
Ld
k

(
3− 2

(
1 + pkḡ

d
k

)−2)
(
1− (1 + pkḡdk

)−2) 3
2 (
1 + pkḡdk

)4 − (ḡek)
2Le

k

(
3− 2(1 + pkḡ

e
k)
−2)(

1− (1 + pkḡek)
−2) 3

2 (1 + pkḡek)
4
< 0. (42)

Hence, yk(pk) is a concave function w.r.t. pk. As a result, Rk(pk) is the difference of two concave

functions fk(pk) and yk(pk), which completes the proof.

APPENDIX B

PROOF THEOREM 1

Let us define λ ≥ 0 and μ = {μ1, · · · , μK} as the non-negative dual variables associated with

the total power constraint (7b) and the individual non-negative power constraint (7e), respectively.

The Lagrangian function of Problem (P2− 1− a) can be formulated as

L(p,μ, λ) =
∑K

k=1

(
ωkfk (pk)− ωkβk(p

(i−1)
k )pk

)
−λ
(∑K

k=1
pk − Pmax

)
+
∑K

k=1
μkpk. (43)

Since Problem (P2− 1− a) is a convex optimization problem, the globally optimal solution

satisfies the Karush-Kuhn-Tucker (KKT) conditions as follows:

∂L(p,μ,λ)
∂pk

= Nk

ln 2

ωk(ḡ
d
k−ḡek)

(1+pk ḡ
d
k)(1+pk ḡ

e
k)

− ωkβk(p
(i−1)
k )− λ+ μk = 0, ∀k,

μkpk = 0, pk ≥ 0, ∀k, λ
(∑K

k=1 pk − Pmax

)
= 0,

∑K
k=1 pk ≤ Pmax.

(44)
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Note that μk, ∀k are slack variables in the first equation, which can be eliminated. We then have:(
ωkβk(p

(i−1)
k ) + λ− Nk

ln 2

ωk(ḡ
d
k−ḡek)

(1+pk ḡ
d
k)(1+pk ḡ

e
k)

)
pk = 0, ∀k,

ωkβk(p
(i−1)
k ) + λ ≥ Nk

ln 2

ωk(ḡ
d
k−ḡek)

(1+pk ḡ
d
k)(1+pk ḡ

e
k)
, ∀k,

λ
(∑K

k=1 pk − Pmax

)
= 0,

∑K
k=1 pk ≤ Pmax, pk ≥ 0, ∀k.

(45)

By defining η
(i−1)
k (λ) in Theorem 1, the KKT conditions in (45) can be rewritten as((

1 + pkḡ
d
k

)
(1 + pkḡ

e
k)− η

(i−1)
k (λ)

)
pk = 0, ∀k,(

1 + pkḡ
d
k

)
(1 + pkḡ

e
k) ≥ η

(i−1)
k (λ), ∀k,

λ
(∑K

k=1 pk − Pmax

)
= 0,

∑K
k=1 pk ≤ Pmax, pk ≥ 0, ∀k.

(46)

If η
(i−1)
k (λ) > 1, the conditions in (46) hold only when pk > 0. This can be proved by using

the contradiction method. Assume that pk = 0. Then, based on the second condition of (46),

we have 1 ≥ η
(i−1)
k (λ), which contradicts the condition of η

(i−1)
k (λ) > 1. Hence, pk > 0 should

hold. Then, based on the first condition of (46), pk should satisfy the following equation:

(
1 + pkḡ

d
k

)
(1 + pkḡ

e
k)− η

(i−1)
k (λ) = 0, (47)

and its solution is given in (14) in Theorem 1.

On the other hand, if η
(i−1)
k (λ) ≤ 1, then pk must be equal to zero. This can also be proved

by using the contradiction method. Assume that pk > 0. Then, based on the first condition of

(46), the equation in (47) should hold, and pk is derived as:

pk =

− (ḡdk + ḡek
)
+

√(
ḡdk + ḡek

)2 − 4ḡdk ḡ
e
k

(
1− η

(i−1)
k

)
2ḡdk ḡ

e
k

≤
− (ḡdk + ḡek

)
+
√(

ḡdk + ḡek
)2

2ḡdk ḡ
e
k

= 0,

which contradicts the assumption of pk > 0. Hence, pk must be equal to zero.

Combining the above two cases, the optimal solution of pk is given in (14) in Theorem 1.

The remaining part of Theorem 1 can be readily proved by using the similar analysis for the

total power constraint, details of which are omitted for simplicity.
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APPENDIX C

PROOF OF LEMMA 2

We first prove that Fk(nk) is a concave function w.r.t. nk. With some manipulations, the

second-order derivative of F (nk) w.r.t. nk is given by

F ′′k (nk) =
Ñ0

(
g̃ek − g̃dk

) ((
g̃ek + g̃dk

)
nk + 2g̃ekg̃

d
k

)
ln 2 (nk + g̃ek)

2(nk + g̃dk
)2 < 0, (48)

where the inequality holds since ḡek < ḡdk. Hence, Fk(nk) is a concave function w.r.t. nk.

Now, we start to prove that Gk(nk) is also a concave function w.r.t. nk. With some manipu-

lations, the second-order derivative of Gk(nk) w.r.t. nk is given by

G′′k(nk) =
2
∂2zdk(nk)

∂n2
k

zdk(nk)−
(

∂zdk(nk)

∂nk

)2
4zdk(nk)

√
zdk(nk)

L̃d
k +

2
∂2zek(nk)

∂n2
k

zek(nk)−
(

∂zek(nk)

∂nk

)2
4zek(nk)

√
zek(nk)

L̃e
k, (49)

where
∂2zxk (nk)

∂n2
k

is given by

∂2zxk (nk)

∂n2
k

= − 6nk(g̃
x
k)

2

(nk + g̃xk)
4 < 0, x ∈ {d, e}. (50)

Then, combining (50) with (49), we know that
∂2Gk(nk)

∂n2
k

< 0. Hence, Gk(nk) is also a concave

function w.r.t. nk, and Rk(nk) is the difference of two concave functions Fk(nk) and Gk(nk).

APPENDIX D

PROOF OF LEMMA 3

We consider a pair of dual variables μ1 and μ2, where μ1 ≥ μ2. Denote n�
k(μ1) and n�

k(μ2)

as the optimal solution of Problem (25) when μ = μ1 and μ = μ2, respectively. Since n�
k(μ1) is

the optimal solution of Problem (25) when μ = μ1, we have

Lk(n
�
k(μ1), μ1) = Fk(n

�
k(μ1))− αk(n

(j−1)
k )n�

k(μ1)− μ1n
�
k(μ1)

≥ Lk(n
�
k(μ2), μ1) = Fk(n

�
k(μ2))− αk(n

(j−1)
k )n�

k(μ2)− μ1n
�
k(μ2).

(51)

Furthermore, n�
k(μ2) is the optimal solution of Problem (25) when μ = μ2, we have

Lk(n
�
k(μ2), μ2) = Fk(n

�
k(μ2))− αk(n

(j−1)
k )n�

k(μ2)− μ2n
�
k(μ2)

≥ Lk(n
�
k(μ1), μ2) = Fk(n

�
k(μ1))− αk(n

(j−1)
k )n�

k(μ1)− μ2n
�
k(μ1).

(52)
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By adding these two inequalities and simplifying them, we have (n�
k(μ1)− n�

k(μ2)) (μ2 − μ1) ≥
0. Since μ1 > μ2, we have n�

k(μ1) < n�
k(μ2). Then, by summing all these K inequalities, we have

W (μ1) =
∑K

k=1 n
�
k(μ1) <

∑K
k=1 n

�
k(μ2) = W (μ2). Hence, W (μ) is a monotonically decreasing

function of μ.

APPENDIX E

PROOF OF THEOREM 2

We first prove its convexity. With some manipulations, the second-order derivative of pk(Nk)

w.r.t. Nk is calculated as

p′′k(Nk) =

ckdk
N3

k
e

ak
Nk

+
bk√
Nk Ξ(Nk) +

ck
N3

k
e

2ak
Nk

+
2bk√
Nk Φ(Nk)(

dk − e
ak
Nk

+
bk√
Nk

)3 , (53)

where Ξ(Nk) and Φ(Nk) are given by

Ξ(Nk) = −bk
4
N

3
2
k +

b2k
4
Nk + akbkN

1
2
k + a2k,Φ(Nk) =

bk
4
N

3
2
k +

b2k
4
Nk + akbkN

1
2
k + a2k. (54)

Since Nk > N lb
k , the denominator of (53) is larger than zero. Obviously, Φ(Nk) is larger than

zero. Hence, if Ξ(Nk) > 0, then p′′k(Nk) > 0 holds and pk(Nk) is a convex function of Nk. Next,

we derive the condition when Ξ(Nk) > 0.

Denote tk = N
1
2
k . Then, Ξ(Nk) can be re-expressed as

Ξ(tk) = −bk
4
t3k +

b2k
4
t2k + akbktk + a2k. (55)

Note that Ξ(0) = a2k > 0 and Ξ(+∞) = −∞. Since Ξ(tk) is a continuous function, there must

exist at least one positive solution for the equation Ξ(tk) = 0. In the following, we prove that

the solution is unique.

We rewrite equation Ξ(tk) = 0 as a standard cubic equation:

ukt
3
k + vkt

2
k + wktk + zk = 0, (56)

where uk = − bk
4

, vk =
b2k
4

, wk = akbk, and zk = a2k.

By dividing (56) by uk and inserting tk = xk − vk/3uk, we have

x3
k + ρkxk + κk = 0, (57)
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where ρk and κk are defined in Theorem 2. It can be readily verified that

4ρ3k + 27κ2
k > 0, κk > 0, ρk < 0. (58)

As a result, there exists only one real solution for (57), which is given by

x∗k = −2

√
−ρk

3
cosh

(
1

3
arcosh

(−3κk

2ρk

√−3

ρk

))
. (59)

Thus, the unique solution of equation (56) is given by t∗k = x∗k − vk/3uk.

Based on the above discussion, we can conclude that when tk < t∗k = x∗k − vk/3uk, Ξ(tk) is

positive and pk(Nk) is a convex function.

Now we proceed to prove that pk(Nk) is a monotonically decreasing function when inequality

(35) holds. The first-order derivative of pk(Nk) w.r.t. pk is given by

p′k(Nk) = − 1

h̃e
+

ck

(
dk − e

ak
Nk

+
bk√
Nk

)
− cke

ak
Nk

+
bk√
Nk

(
ak
Nk

+ bk√
Nk

)
(
dk − e

ak
Nk

+
bk√
Nk

)2 . (60)

Since pk(Nk) is a convex function when inequality (35) holds, p′k(Nk) is a monotonically

increasing function. Then, we have

p′k(Nk) < p′k(∞) = 0. (61)

In consequence, pk(Nk) is a monotonically decreasing function when inequality (35) holds.
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