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Abstract

The Fourth Industrial Revolution (Industrial 4.0) is coming, and this revolution will fundamentally

enhance the way the factories manufacture products. The conventional wired lines connecting central

controller to robots or actuators will be replaced by wireless communication networks due to its low cost

of maintenance and high deployment flexibility. However, some critical industrial applications require

ultra-high reliability and low latency communication (URLLC). In this paper, we advocate the adoption

of massive multiple-input multiple output (MIMO) to support the wireless transmission for industrial

applications as it can provide deterministic communications similar as wired lines thanks to its channel

hardening effects. To reduce the latency, the channel blocklength for packet transmission is finite, and

suffers from transmission rate degradation and decoding error probability. Thus, conventional resource

allocation for massive MIMO transmission based on Shannon capacity assuming the infinite channel

blocklength is no longer optimal. We first derive the closed-form expression of lower bound (LB) of

achievable uplink data rate for massive MIMO system with imperfect channel state information (CSI) for

both maximum-ratio combining (MRC) and zero-forcing (ZF) receivers. Then, we propose novel low-

complexity algorithms to solve the achievable data rate maximization problems by jointly optimizing

the pilot and payload transmission power for both MRC and ZF. Simulation results confirm the rapid

convergence speed and performance advantage over the existing benchmark algorithms.
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I. INTRODUCTION

Industry 4.0 has been envisioned as the future paradigm for the next generation of industrial

systems, which integrates advanced manufacturing functions with the industrial internet-of-things

(IIoT) to create a more intelligent and automatic digital manufacturing system [1]. Traditionally,

industrial control systems mainly rely on wired connections such as cables or optical fiber, since

the current wireless networks cannot meet their stringent latency and reliability requirements.

However, there are some drawbacks to deploying wired lines. First, significant cost will be

incurred by the installation and maintenance. Second, wired lines are vulnerable to wear and

tear in motion control applications, and suffer from aging. Finally, they cannot be deployed

in some harsh environments, such as those with high temperatures and rotating part. Hence,

to make Industry 4.0 a reality, it is imperative to design wireless networks tailored for indus-

trial applications to replace the traditional wired lines. Typical industrial applications require

deterministic communications with ultra reliability (1 − 10−9) and low latency (1 ms), such as

factory automation (FA), power system protection (PSP), and power electronics control (PEC)

[2]. Significant research efforts have been devoted to the design of wireless communications

in industrial applications. However, most of the existing works mainly focused on the adaption

of the upper layers of conventional wireless networks to achieve deterministic communications,

while keeping the physical layer untouched. Some related standards are WirelessHART, wireless

interface for sensors and actuators (WISA), and Wireless Networks for Industrial Automa-

tion/Process Automation (WIA-PA) [3]. Although keeping the wireless standards of physical

layers can allow faster design and better compatibility, it leads to a fundamental bottleneck for

the system performance. None of the above standards can meet the stringent demand requested

by the most critical FA, PSP and PEC applications. As a result, more efforts should be devoted

to the design from the physical layer perspective of view.

From the physical layer perspective, the dominate feature of the industrial applications is

that the packet transmission should be completed within short blocklength due to low latency

requirement [4]. Hence, the transmission is not error-free with any finite/short blocklength

channel codes. In this case, Shannon capacity formula is not applicable since it is based on

the principles of the law of large numbers, and we need to design the resource allocation by

considering the decoding error probability requirement. In [5], Peter et al. have derived the



3

approximation formula of the maximum achievable data rate with finite blocklength transmission,

which characterises the complicated relationships among decoding error probability, channel

blocklength, and signal-to-noise ratio (SNR). Unlike Shannon capacity formula, the data rate

expression under short packet transmission is neither convex nor concave with respect to the

SNR or blocklength [6]. As a result, the optimal resource allocation under this formula is difficult

to obtain.

Recently, there are increasing research studying the transmission design based on the short

packet transmission capacity formula [7]–[13]. In specific, the effective throughput maximization

was studied in [7] for a two-device downlink non-orthogonal multiple access (NOMA) system.

The overall error probability is minimized in [8] for a simultaneous wireless information and

power transfer (SWIPT)-enabled decode-and-forward (DF) relaying network. The decoding error

probability minimization was investigated in [9] for a unmanned aerial vehicle (UAV)-enabled

DF relay system. We recently proposed a low-complexity power and blocklength optimization

algorithm for both orthogonal multiple access (OMA) and NOMA in a two-hop relay system in

[10]. However, all these contributions are limited to a simple scenario with two devices, where

one device acts as a relay and the other as the destination node. In industrial applications, the

central controller needs to support a large number of devices [3]. On one hand, Chen et al. in [11]

investigated the effective capacity maximization problem for wireless-powered IoT network with

multiple devices operating in a time division multiple access (TDMA) mode. However, the time

budget is already tight, and the portion allocated to each device will be marginal. Hence, TDMA

strategy is not suitable for the applications in industrial applications with extremely stringent

latency target. On the other hand, the authors in [12] [13] studied the resource allocation for

multiple devices operating under the orthogonal frequency division multiple access (OFDMA)

mode. Unfortunately, this requires huge amount of system bandwidth, which is not feasible as

some industrial applications operate over unlicensed spectrum [14].

By equipping a large number of antennas at the base station (BS), massive multiple-input

multiple-output (MIMO) has been widely regarded as the key enabler for the creation of the

fifth generation (5G) wireless networks [15]. By exploiting excessive number of spatial degrees

of freedom, massive MIMO is capable of supporting multiple devices simultaneously without

additional time or frequency resources. In addition, due to the channel hardening effect, massive

MIMO is more immune to the fast fading and can provide deterministic communications required
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by the industrial applications. Due to these attractive advantages, massive MIMO is ideal for

supporting industrial applications with stringent quality of services (QoS) requirements. However,

most of the existing literature adopted Shannon capacity as the performance metric to optimize

the resource allocation [16]–[18], which implicitly assumes the infinite channel blocklength.

Therefore, conventional resource allocation solution based on Shannon capacity is not optimal

for industrial applications with short channel blocklength. To the best of our knowledge, we

are the first to study the resource allocation for massive MIMO providing ultra-reliability and

low-latency communications (URLLC) for any number of devices. Specifically, our contributions

are summarized as follows:

1) We derive the closed-form lower bounds (LBs) on the achievable rates for a uplink massive

MIMO system by considering the imperfect channel state information (CSI) with finite

channel blocklength, and assuming both maximum-ratio combining (MRC) and zero-

forcing (ZF) receivers. They can be regarded as the conventional Shannon capacity minus

a penalty term due to short packet transmission. Simulation results confirm the tightness

of the LBs. Given fixed delay budget, we formulate an optimization problem with the

objective to maximize the weighted sum rate by jointly optimizing the pilot and payload

transmission power subject to the decoding error probability, the minimum data rates, and

the energy constraints for all URLLC devices.

2) For the case with MRC receiver, the formulated optimization problem is non-convex due to

the complicated expression of data rate LBs, and it is difficult to find the globally optimal

solution. To deal with this issue, we first approximate the penalty term in the data LB

as a log-function, which can facilitate the transformation from the original optimization

problem to a series of geometric programs (GPs). Each GP problem can be efficiently

solved with polynomial time. Besides, we provide a novel method to check the feasibility

of the original problem, and provide both complexity and convergence analysis.

3) For the case with ZF receiver, the data rate LB is more complicated and the algorithm pro-

posed for MRC cannot be directly applied since the nominator of the signal-to-interference-

plus-noise (SINR) is a posynomial function. To handle this issue, we approximate the

polynomial functions with their best local monomial approximations and then transform

the optimization into a series of GPs with low-complexity. Convergence analysis tailored
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for the ZF receiver is further provided.

4) Simulation results show that our proposed algorithms converge rapidly, which verifies the

low-complexity of the proposed algorithm. In addition, it is also shown that the proposed

algorithm outperforms the benchmark schemes, especially the ones adopting Shannon

capacity as the optimization performance metric, which emphasizes the importance of

using short packet transmission theory.

The remainder of this paper is organized as follows. In Section II, system model and problem

formulation are provided. In Section III, we provide a low-complexity algorithm for joint design

of pilot and payload power allocation for the MRC case. The ZF case is studied in Section IV.

Then, simulation results and analysis are presented in Section V. The final conclusion is drawn

in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Factory System Model

Consider a uplink multi-device Massive MIMO communication in one factory as shown in

Fig. 1, where the central controller (CC) serves K devices, e.g., actuator, robot, etc. The devices

need to send their emergency information of URLLC requirements such as measured data or their

current operation states to the CC. Thus, the CC can process these data information immediately

and provide prompt response/feedback. For simplicity, we focus on the uplink transmission and

the solutions for downlink can be similarly derived. The set of the devices is denoted as K =

{1, 2, · · · , K}. The CC is equipped with M antennas and each device is equipped with single

antenna due to their low signal processing capability, where M � K. Let us denote hk ∈ CM×1

as the channel vector from the CC to the k-th device and can be decomposed as hk =
√
αkh̄k,

where αk denotes the large-scale channel gain that includes the pathloss and shadowing, and h̄k
denotes the small-scale fading following the distribution of CN (0, I). Let us denote H ∈ CM×K

as the channel matrix from the K devices to the CC, with H = [h1,h2, · · · ,hK ].

The K devices need to transmit K packets to the controller. Then, the M × 1 received signal

vector at the CC is given by
y =

∑
k∈K

hk

√
pdksk + n, (1)

where pdk is the data transmission power of the kth device, sk is the zero mean and unit variance

Gaussian information message from the kth device, and n ∼ CN (0, IM) is the additive noise
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during the data transmission, where the variance of each element is normalized to unit.

Device 1 Device 2 Device 3 Device K

Massive MIMO

Central Controller

…...

Fig. 1: Factory scenario where a massive MIMO central controller serves multiple devices

B. Channel Estimation in Massive MIMO URLLC

Due to the channel hardening [19] brought by massive MIMO, the system is more immune

to the fast fading, which can provide high reliable services for the devices. However, to reap the

benefits brought by massive MIMO, the CSI should be available at the CC. Furthermore, TDD

mode is always taken as an enabler for massive MIMO systems since downlink instantaneous CSI

is obtained by estimating uplink CSI based on channel reciprocity [20]. In addition, for machine

type communications, the devices may not be able to perform complicated signal processing tasks

required in frequency division duplexing (FDD) systems, such as channel estimation calculation,

quantization, etc. More time slots are needed for CSI feedback. Hence, the TDD protocol is

adopted in this paper. All the devices should be allocated with orthogonal pilot resources so that

the CC is able to distinguish the channels from different devices, thus, the number of symbols

for channel estimation should be no smaller than the number of devices [19].

In a massive MIMO URLLC scenario, each block mainly consists of two parts: 1) lp symbols

for channel estimation (the pilot sequence is of length lp); 2) ld symbols for the K devices’

data transmission, thus the total number of symbols of the frame is denoted as L = lp + ld. As

the symbols used for data transmission is already limited, we assume that K devices sharing

the same symbol duration and the frame structure is illustrated in Fig. 2. Accordingly, the time

durations for channel estimation and data transmission in one frame are given by tp = lp/B and

td = ld/B, respectively, where B is the bandwidth of the system.

In the training phase, all devices simultaneously and synchronously transmit orthogonal pilot

sequences q1, · · · ,qlp ∈ Clp×1 to the CC, with qHk qk = 1 and qHi qj = 0, i 6= j. Hence, the
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Device 1

Device 2

Device K

.

.

.

Channel Estimation

(     symbols)

Data Transmission

(     symbols )

Blocklength (     symbols )L

dlpl

Fig. 2: Block diagram scheme in TDD URLLC Massive MIMO scheme

minimum length of the pilot sequences to guarantee the orthogonality is equal to lp = K. Based

on the received signal, the CC estimates the channel conditions of all devices, and the received

pilot signal at the CC is
Yp =

∑
k∈K

√
Kppkhkq

H
k + N, (2)

where ppk is the pilot transmit power at the kth device, and N ∈ CM×K is the additive Gaussian

noise matrix received during the training phase, whose elements are independently generated

and follow the distribution of CN (0, 1). To obtain channel hk, the CC first multiplies Yp by
1√
Kppk

qk, which yields

ypk =
1√
Kppk

Ypqk = hk + npk, (3)

where npk = 1√
Kppk

Nqk. Since qk is a unit-norm vector, it is easy to show that npk is still Gaussian

distribution whose elements are independently and identically distributed as CN (0, 1
Kppk

IM). The

MMSE estimate of channel hk is given by

ĥk =
αkKp

p
k

αkKp
p
k + 1

ypk, (4)

which follows the distribution of CN (0, σkI) with σk given by

σk =
α2
kKp

p
k

αkKp
p
k + 1

. (5)

According to the property of MMSE estimation, channel estimation error h̃k = hk − ĥk is

independent of ĥk, and follows the distribution of CN (0, δkIM), where δk is given by

δk =
αk

αkKp
p
k + 1

. (6)

C. Achievable Data Rate for Massive MIMO URRLC

By taking into account the number of symbols for pilot transmission, to achieve the decoding

error probability of εk for the kth device, the instantaneous achievable data rate Rk can be
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accurately approximated by [21]

Rk ≈ (1− β) log2(1 + γk)−
√

(1− β)Vk
L

Q−1(εk)

ln 2
, (7)

where β is equal to β = K/L, γk is the signal to interference plus noise ratio (SINR) of the

kth device, Q−1 is the inverse function Q(x) = 1√
2π

∫∞
x
e−

t2

2 dt, and Vk is the channel dispersion

given by Vk = 1 − (1 + γk)
−2. As seen from (7), when the blocklength L approaches infinity,

the data rate Rk will approach (1− β) log2(1 + γk), which is the classic Shannon capacity. The

second term in (7) can be interpreted as a penalty on the rate in order to guarantee the decoding

error probability εk.

In the following, we derive the expression of γk for two different low-complexity detection

schemes: 1) maximum-ratio combining (MRC); 2) zero-forcing (ZF).

Define the estimated channels as Ĥ = [ĥ1, ĥ2, · · · , ĥK ] and channel estimation errors as H̃ =

[h̃1, h̃2, · · · , h̃K ]. Let A be an M × K linear detection matrix that is based on the estimated

channel Ĥ. By using the linear detection A, the received signal can be processed as

yD = AHy. (8)

Two conventional low-complexity linear detectors are considered:

A =

 Ĥ, for MRC

Ĥ
(
ĤHĤ

)−1

, for ZF.
(9)

Then, the processed signal after using the detector is given by

yD = AH
∑

i∈K
hi

√
pdi si + AHn.

= AH
∑

i∈K
ĥi

√
pdi si + AH

∑
i∈K

h̃i

√
pdi si + AHn, (10)

where the last equality is obtained by using hk = ĥk+ h̃k. The detection signal for the kth device

is given by

yDk = aHk ĥk

√
pdksk + aHk

∑
i∈K\k

ĥi

√
pdi si + aHk

∑
i∈K

h̃i

√
pdi si + aHk n. (11)

where ak is the kth column of matrix A. Since Ĥ and H̃ are independent, ak is also independent

of H̃. The CC will treat the estimated channel as the true channel, and the last three terms of
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Fig. 3: Block diagram for transmission in TDD URLLC Massive MIMO scheme.

(11) are regarded as interference and noise. Then, the SINR for the kth device γk is given by

γk =
pdk

∣∣∣aHk ĥk

∣∣∣2∑
i∈K\k p

d
i

∣∣∣aHk ĥi

∣∣∣2 +
∑

i∈K p
d
i

∣∣∣aHk h̃i

∣∣∣2 + ‖ak‖2
. (12)

Remark: Massive MIMO can offer the channel hardening effect, where the channel variations

between different channel fading blocks can be averaged out and the achievable data rate for

these fading blocks mainly depend on the large-scale fading, which changes very slowly. As

a result, we first derive the lower bound (LB) for the achievable data rate as a function of

large-scale channel fading parameters, and then optimize the resource allocation based on the

large-scale fading information rather than the small-scale fading, which can significantly reduce

the computational delay that is beneficial for URLLC applications. In other words, when the

large-scale fading parameters of all devices are given, we can use our developed algorithm to

find the optimal power allocation, which can be used for consecutive channel fading blocks. The

algorithms are needed to be rerun only when the large-scale channel fading parameters have

changed, which vary much slowly compared with the small-scale channel fading. To make it

more clear, a block diagram scheme is given in Fig. 3, where the large-scale channel gains of

any devices vary at t = tLs0 , tLs1 . In general, the channel coherence time is much longer than the

packet transmission time as we consider the URLLC services, and the time difference for large-

scale fading (tLs1 − tLs0 ) is much larger than the channel coherence time. The power allocation

obtained at time t = tLs0 can be employed for the subsequent transmissions until t = tLs1 , which

significantly reduce the computational time. Please note in our scheme, the channel estimation

should be performed at the beginning of each channel coherence since the decoding requires the

channel state information as shown in (9), while the power allocation needs to be updated once

the large-scale fading gains change.

Due to the channel hardening effect, in this paper we focus on the ergodic achievable data
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rate that is defined as R̄k = E {Rk}, where the expectation is taken over the randomness of{
ĥk, h̃k,∀k

}
. Unfortunately, the exact average achievable data rate R̄k with channel uncertainty

is not available. In the following, we aim to derive the closed-form expression of the LB of the

rate expression, which is more tractable to analyse and optimize. To this end, we first define

function f(x) as

f(x) = ln

(
1 +

1

x

)
− a
√

2x+ 1

(x+ 1)2 ≥ 0, x > 0 (13)

where a is a fixed positive value. In the following, we derive the feasible region of function

f(x). Since f(x) ≥ 0, from (13) we have

a ≤
(x+ 1) ln

(
1 + 1

x

)
√

2x+ 1

∆
= g(x). (14)

The first-order derivative of g(x) with respect to x is given by

g′(x) =
−2− 1

x
+ x ln

(
1 + 1

x

)
(2x+ 1)

3
2

≤
−1− 1

x

(2x+ 1)
3
2

< 0 (15)

where the first inequality follows by using the relation ln
(
1 + 1

x

)
< 1

x
. Hence, g(x) is a mono-

tonically decreasing function of x. In addition, lim
x→0

g(x) = ∞ and lim
x→∞

g(x) = 0, where the

latter equation is obtained by using the L’Hospital’s rule. Hence, from (14), we know that the

feasible region of f(x) is given by

Ω =
{
x| 0 < x ≤ g−1(a)

}
. (16)

Then, we have the following lemma.

Lemma 1: Function f(x) defined in (13) is decreasing and convex for x ∈ Ω.

Proof : Please refer to Appendix B in our recent work [22].

Based on Lemma 1, we are able to derive the LB of R̄k in the following. The instantaneous

data rate Rk in (7) can be written as follows:

Rk =
1− β
ln 2

fk

(
1

γk

)
, (17)

where function fk(·) is in the same format as f(·) in (13), where the parameter a is

ak = Q−1(εk)/
√
L (1− β). (18)

In addition, we need to guarantee that Rk ≥ 0, and thus γk ≥ 1/g−1(ak). By using lemma 1 and

Jensen’s inequality, we obtain the following LB on the ergodic data rate:
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R̄k ≥ R̂k
∆
=

1− β
ln 2

fk

(
E
{

1

γk

})
. (19)

In the following theorem, we derive the expression of R̂k for each beamforming solution.

Theorem 1: The ergodic achievable rate for the kth device for MRC in finite blocklenghth

regime can be lower bounded by:

R̂k
∆
=

1− β
ln 2

fk

(
1

γ̂k

)
(20)

where γ̂k is given by

γ̂k =
pdk(M − 1)σk∑

i∈K\k p
d
iσi +

∑
i∈K p

d
i δi + 1

. (21)

Proof : Please refer to Appendix A.

For the ZF detection, the LB of the ergodic data rate is given by the following theorem.

Theorem 2: The ergodic achievable rate for the kth device for ZF in finite blocklength regime

is lower bounded by:
R̂k

∆
=

1− β
ln 2

fk

(
1

γ̂k

)
(22)

where γ̂k is given by

γ̂k =
(M −K)σkp

d
k∑

i∈K p
d
i δi + 1

. (23)

Proof : Please refer to Appendix B.

In the proof of Theorem 1 and Theorem 2, we notice that the above derived LB of the

ergodic data rates are valid for any number of antennas (M > K for the ZF). However, the

gap between the LB and the actual ergodic data rate is reduced when the number of antennas

is large, which is the case for massive MIMO system. These LBs are commonly used in the

literature concerning massive MIMO systems. Hence, we use these lower bounds throughout this

paper. In the following, we aim to optimize the pilot power ppk and data transmission power pdk
to maximize the weighted sum rate. The optimization is performed only when any large-scale

fading parameter changes. The simulation results in Section V also verify the tightness of the

derived LBs. Hence, the optimization solutions are applicable for a long time scale, which is

appealing for URLLC applications.

D. Problem Formulation

In this paper, we jointly optimize the power allocation for pilot and data transmission of each

device for maximizing the weighted sum rate of all devices. By using Theorem 1, the weighted
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sum rate maximization problem can be formulated as

max
{ppk},{p

d
k}

∑
k∈K

wkR̂k (24a)

s.t. R̂k ≥ Rreq
k , ∀k, (24b)

Kppk + (L−K)pdk ≤ Ek,∀k, (24c)

where R̂k and γ̂k are given in (20) and (21) for MRC and (22) and (23) for ZF, respectively,

wk is the weight of device k used to guarantee the fairness among the devices, constraint (24b)

denotes the minimum data rate requirement for the k-th device, constraint (24c) means the energy

constraint for each device.

Power control for weighted sum rate problem with interference is well known to be NP-hard

problem even under perfect CSI [23]. It becomes more complicated for the more general case

with imperfect CSI and finite blocklength. In this paper, we aim for designing efficient algorithms

with polynomial-time complexity to solve the weighted sum rate problem with imperfect CSI.

To this end, we first simplify the problem formulation in (24). The first-order derivative of

R̂k w.r.t. γ̂k is given by R̂′k = − (1−β)

γ̂2k ln 2
f ′k

(
1
γ̂k

)
≥ 0 1. Hence, constraint (24b) can be transformed

as
γ̂k ≥ 1

/
f−1
k

(
Rreq
k ln 2

1− β

)
, ∀k. (25)

To additionally simplify the problem formulation in (24), we introduce auxiliary variables χk,∀k,

and then Problem (24) can be equivalently transformed as follows

max
{χk},{ppk},{p

d
k}

∑
k∈K

w̃k [ln(1 + χk)− akG(χk)] (26a)

s.t. γ̂k ≥ χk,∀k, (26b)

(25), (24c), (26c)

where w̃k = (1−β)wk
ln 2

and G(χk) =
√

1− 1
(1+χk)2

. The equivalence between Problem (26) and

Problem (24) can be readily proved by using the contradiction method. Problem (26) and Problem

(24) are equivalent in the sense that they have the same power allocation solutions and the same

objective function (OF) value. Hence, in the following, we focus on solving Problem (26).

Due to different SINR expressions, in the following two sections, we optimize the power

allocation for MRC and ZF, respectively.

1Since R̂k ≥ Rreq
k > 0, the feasible γ̂k must lie in the range of Ω =

{
γ̂k| 0 < 1/γ̂k ≤ g−1(ak)

}
. Hence, Lemma 1 holds

and we have f ′k
(

1
γ̂k

)
≥ 0.
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III. WEIGHTED SUM DATA RATE FOR MRC

In this section, we aim to deal with weighted sum rate maximization problem for MRC.

A. Algorithm Design

The complicated function G(χk) in (26a) makes the optimization problem difficult to solve.

To resolve this issue, we first study several properties of this function.

Lemma 2: G(x) is a concave function of x.

Proof : Please refer to Appendix C.

For the URLLC applications, the decoding error probability εk for each device is much smaller

than 0.5 so that ak is a strictly positive value, and the OF of Problem (26) is to maximize the

difference of two concave functions. However, due to the non-convex constraints in Problem (26).

This problem does not belong to the class of difference of convex (DC) problem. In addition,

due to the additional term of akG(χk) in the OF of Problem (26), this problem cannot be solved

by dealing with a sequence of geometric programs (GPs) as in [24], which considered Shannon

capacity formula under the infinite blocklength regime. The intuitive method to solve Problem

(26) is to approximate function G(χk) as its first-order Taylor series expansion and solve the

approximated problem until convergence. However, the approximation is in linear form while

the first term in the OF is in log-function form. The successive GP method in [24] is still not

applicable. To deal with this issue, we approximate function G(x) as a log-function as shown

in the following lemma.

Lemma 3: For any given x̃ ≥
√

17−3
4

, the following inequality holds:

G(x) =

√
1− 1

(1 + x)2 ≤ ρln(x) + η
∆
= F (x),∀x ≥

√
17− 3

4
, (27)

where ρ and η are given by

ρ =
x̃√

x̃2 + 2x̃
− x̃
√
x̃2 + 2x̃

(1 + x̃)2 , (28)

and

η =

√
1− 1

(1 + x̃)2 − ρ ln(x̃). (29)

In addition, we have:
G(x̃) = F (x̃), G′(x̃) = F ′(x̃), (30)

which means that the approximation F (x) is tight at x = x̃.

Proof : Please refer to Appendix D.
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Fig. 4: Approximation error for different approximation functions at three different points: a)
x̃ = 0.5; b) x̃ = 3; c) x̃ = 6.

According to (16), the optimization variable γ̂k should be no smaller than 1/g−1(ak). Note that

1/g−1(ak) is a decreasing function of the decoding error probability and blocklength, while an

increasing function of the number of device. Hence, for typical FA cases [25], where the typical

required error probability is lower than 10−8, the available channel blocklength is smaller than

200, and the number of devices that should be supported is larger than 5, 1/g−1(ak) is larger

than
√

17−3
4

, which implies that Lemma 3 is applicable for our considered optimization problem

in (26).

In Fig. 2, we compare the approximation accuracy of function F (x) and the linear approxi-

mation function S(x) defined as follows:

G(x) ≤ G(x̃) +G′(x̃) (x− x̃)
∆
= S(x), (31)

where the inequality holds since G(x) is a concave function proved in Lemma 2. It can be

observed from Fig. 4 that the approximation function F (x) is more accurate than the linear

function S(x) over the whole region of x at different points of x̃. We can also find that the

curve of the log-function F (x) is always above the curve of the linear function S(x), which

verifies the correctness of the theoretical conclusion in Lemma 3. The most important advantage

of approximating G(x) as the log-function F (x) is that we can transform the original problem

into a GP problems that enables us to find the optimal solution.

In the following lemma, we also provide the LB of ln(1 + χk), which enables us to develop

low-complexity algorithms.

Lemma 4: For any given x̃ ≥ 0, function ln(1 + x) is lower bounded by
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ln(1 + x) ≥ ρ̂ lnx+ η̂,∀x ≥ 0, (32)

where ρ̂ is given by
ρ̂ =

x̃

1 + x̃
, η̂ = ln(1 + x̃)− x̃

1 + x̃
ln x̃. (33)

In addition, the bound is tight at x = x̃.

Proof : The proof is similar to those in Lemma 3, and thus omitted for simplicity.

Based on Lemma 3 and Lemma 4, we are now ready to solve Problem (26). The main idea

is to approximate the OF of Problem (26) as the approximated functions provided in Lemma 3

and Lemma 4, and then solve the approximate problem in an iterative manner. In the following,

we provide the details of the iterative algorithm.

First, we denote P(i) = {pp(i)k , p
d(i)
k ,∀k} as the power allocation in the i-th iteration, and the

corresponding χk is given by χ
(i)
k . Then, in the i + 1-th iteration, we can approximate G(χk)

around χ
(i)
k as function F (χk) = ρ

(i)
k lnχk + η

(i)
k , where ρ

(i)
k and η

(i)
k are obtained from (28)

and (29) respectively with x̃ = χ
(i)
k . In addition, we can approximate ln(1 + χk) around χ(i)

k as

ρ̂
(i)
k lnχk + η̂

(i)
k , where ρ̂(i)

k and η̂
(i)
k can be obtained from (33) with x̃ = χ

(i)
k . By substituting

these approximations into (26a) and recalling ak is a positive value, we can obtain the LB of

the OF by using Lemma 3 and Lemma 4 as follows∑
k∈K

w̃k [ln(1 + χk)− akG(χk)] ≥
∑

K
w̃k

[
ρ̂

(i)
k lnχk + η̂

(i)
k − akρ

(i)
k lnχk − akη(i)

k

]
. (34)

where the equality holds only when χk = χ
(i)
k .

Next, we optimize the power allocation to maximize the LB of the OF instead of maximizing

(26a) directly. In specific, the LB maximization problem to be solved in the i+ 1-th iteration is

formulated as

max
{χk},{ppk},{p

d
k}

∑
k∈K

ŵ
(i)
k lnχk (35a)

s.t. (26b), (25), (24c). (35b)

where ŵ(i)
k = w̃kρ̂

(i)
k − akw̃kρ

(i)
k and the constant term in the OF is omitted.

Then, we can transform the above optimization into a GP problem as follows:
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max
{χk},{ppk},{p

d
k}

∏
k∈K

χ
ŵ

(i)
k

k (36a)

s.t.
∑
i∈K\k

αiαkKχkp
p
kp
d
i+
∑
i∈K

αiχkp
d
i +χkαkKp

p
k+χk≤(M − 1)Kα2

kp
p
kp
d
k,∀k, (36b)

χk ≥ 1

/
f−1
k

(
Rreq
k ln 2

1− β

)
,∀k, (24c). (36c)

Although GP is not a convex optimization problem, it can be equivalently transformed into

a convex optimization problem by applying a logarithmic change of variables. Therefore, the

globally optimal solution of Problem (36) can be obtained by using the interior-point method

[26]. Some software packages that can solve GP problem are MOSEK package and CVX [27].

Based on the above discussion, the iterative algorithm to solve Problem (26) is given in

Algorithm 1.

Algorithm 1 Iterative algorithm for solving Problem (26) for MRC
1: Initialize iteration number i = 1, error tolerance ξ. Initialize a feasible power allocation
{ppk

(0), pdk
(0)
,∀k}, calculate {χ(0)

k , ρ
(0)
1 , ρ

(0)
2 , ŵ

(0)
k , ∀k}, and calculate the OF of Problem (26),

denoted as Obj(0).
2: With given {χ(i−1)

k , ρ
(i−1)
1 , ρ

(i−1)
2 , ŵ

(i−1)
k ,∀k}, solve Problem (36) by using the CVX package

to obtain {pp(i)k , p
d(i)
k , χ

(i)
k ,∀k}.

3: Update {ρ(i)
k , ρ

(i)
k , ŵ

(i)
k ,∀k};

4: Calculate the new OF Obj(i). If
∣∣Obj(i) −Obj(i−1)

∣∣/Obj(i) < ξ, terminate. Otherwise, set
i← i+ 1, go to step 2.

B. Algorithm Analysis

1) Initialization of Algorithm 1: As shown in Step 1 of Algorithm 1, one has to find a feasible

initial power allocation in order to make the algorithm work. Note that randomly selecting a set

of power allocation solutions that satisfy the per-device energy constraints may not satisfy their

minimum SINR requirements. Hence, one has to carefully choose the initial power allocation. In

the following, we provide one alternative method to find the initial power allocation solutions.

Inspired by the user selection problem formulation in [28], [29], we construct the following

alternative optimization problem by introducing an auxiliary variable ϕ:

max
ϕ,{ppk},{p

d
k}

ϕ (37a)

s.t. γ̂k ≥ ϕ

/
f−1
k

(
Rreq
k ln 2

1− β

)
,∀k, (24c). (37b)
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Obviously, Problem (37) is always feasible since at least {ϕ = 0, ppk = 0, pdk = 0,∀k} is a feasible

solution. It can be readily verified that the original Problem (24) is feasible if the optimal ϕ ≥ 1,

and the output power allocation can be adopted as the initial input for Algorithm 1. In this paper,

we assume that Problem (24) is always feasible and the optimal ϕ in Problem (37) is always no

smaller than one. Problem (37) can also be transformed into a GP problem, where the globally

optimal solution can be obtained. The details are omitted here due to the limited space.

2) Convergence Analysis: In this part, we analyze the convergence of Algorithm 1. In the

following, we show that Obj(i) ≤ Obj(i+1).

Since {χ(i+1)
k ,∀k} is the optimal solution of Problem (35) in the i+ 1-th iteration, we have∑

k∈K w̃k

[
ρ̂

(i)
k ln

(
χ

(i+1)
k

)
+ η̂

(i)
k − akρ

(i)
k ln(χ

(i+1)
k )− akη(i)

k

]
≥
∑

k∈K w̃k

[
ρ̂

(i)
k ln

(
χ

(i)
k

)
+ η̂

(i)
k − akρ

(i)
k ln(χ

(i)
k )− akη(i)

k

]
= Obj(i).

(38)

By using inequality (34) with χk = χ
(i+1)
k , we have∑

k∈K w̃k

[
ln(1 + χ

(i+1)
k )− akG(χ

(i+1)
k )

]
≥
∑

k∈K w̃k

[
ρ̂

(i)
k ln(χ

(i+1)
k ) + η̂

(i)
k − akρ

(i)
k ln(χ

(i+1)
k )− akη(i)

k

]
.

(39)

By combining (38) and (39), we have

Obj(i+1) ≥
∑

k∈K
w̃k

[
ρ̂

(i)
k ln(χ

(i+1)
k ) + η̂

(i)
k − akρ

(i)
k ln(χ

(i+1)
k )− akη(i)

k

]
≥ Obj(i). (40)

In addition, since each device has its own energy constraint, the OF value of Problem (24)

has upper bound. As a result, Algorithm 1 is guaranteed to converge.

3) Solution Analysis: Since the original problem (24) is non-convex, the globally optimal

solution cannot be obtained in general. However, by using the similar proof as in Appendix

B in [29], we can prove that Algorithm 1 can converge to the Karush-Kuhn-Tucker (KKT)

point of Problem (24). The converged solution only depends on the initial input of Algorithm 1.

Simulation results show that the algorithm almost converges to the same solution with different

initial input solutions.

4) Complexity Analysis: The main complexity mainly lies in solving a GP problem in each

iteration. In [30], the authors claimed that the GP problem can be efficiently solved by using

the standard interior point methods with a worst-case polynomial-time complexity. The upper

bound of the total number of Newton steps in the interior point method does not depend on
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the number of variables, or the number of constraints. The derived upper bound shows that

the barrier method converges linearly. By carefully choosing the parameters, the bound on the

number of Newton steps can grow as
√
m instead of m, where m is the number of constraints

[31]. In addition, simulation results show that Algorithm 1 converges rapidly, which means that

Algorithm 1 can converge to a local optimal solution with a polynomial time complexity.

IV. WEIGHTED SUM DATA RATE FOR ZF

In this section, we aim to deal with weighted sum rate maximization problem for ZF. Due to

different expressions of the SINR of MRC and ZF, some derivations in MRC cannot be directly

applied in the ZF case. In the following, we develop an efficient algorithm to solve Problem

(26) for the ZF case.

A. Algorithm Design

By substituting (5) and (6) into (23), the SINR in the ZF case can be reformulated as

γ̂k =
(M −K)α2

kKp
p
kp
d
k

∏
i∈K (1 + αiKp

p
i )

(1 + αkKp
p
k)
(∑

i∈K p
d
iαi
∏

j 6=i (1 + αjKp
p
j) +

∏
i∈K (1 + αiKp

p
i )
) , ∀k. (41)

Unfortunately, since the nominator of γ̂k in (41) is a posynomial function, the SINR constraint

in (26b) cannot be transformed into the format as that in (36b), in which the right hand side is

a monomial function. Hence, the problem cannot be directly transformed into a GP problem. To

solve this issue, we introduce Theorem 3 as follows.

Theorem 3: For any given vector x̆ = {x̆1, · · · , x̆K} with x̆i ≥ 0,∀n, function W (x) =∏
i∈K (1 + xi) is lower bounded by

W (x) =
∏

i∈K
(1 + xi) ≥ λ

∏
i∈K

xτii
∆
= Y (x) (42)

where λ and τi, ∀i are given by

λ =

∏
i∈K (1 + x̆i)∏

i∈K x̆
τi
i

, τi =
x̆i

1 + x̆i
,∀i, (43)

and x is given by x = {x1, · · · , xK}.

In addition, we have:
W (x̆) = Y (x̆),∇W (x̆) = ∇Y (x̆). (44)

where ∇W (x) and ∇Y (x) denote the gradient of function W (·) and Y (·) w.r.t. x, respectively.

Proof : Please refer to Appendix E.
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Based on Theorem 3, we replace the polynomial functions in the nominator of γ̂k in (41) with

their best local monomial approximations by employing Theorem 3 2. In specific, we denote

P(n) = {pp(n)
k , p

d(n)
k ,∀k} as the power allocation in the n-th iteration, and the corresponding χk

is given by χ(n)
k . Then, in the n+ 1-th iteration, we approximate the term

∏
i∈K (1 + αiKp

p
i ) in

the nominator of (41) by its best local monomial approximations, which is given by function

Y (x) in Theorem 3 with xi = αiKp
p
i :∏

i∈K
(1 + αiKp

p
i ) ≥ λ(n)

∏
i∈K

(αiKp
p
i )
τ
(n)
i , (45)

where λ(n) and τ (n)
i , ∀i are given in (43) with x̃i = αiKp

p(n)
i , ∀i. Then, we focus on the following

constraint instead of the original SINR constraint in (26b):

χk (1 + αkKp
p
k)
(∑

i∈K
pdiαi

∏
j 6=i

(1 + αjKp
p
j) +

∏
i∈K

(1 + αiKp
p
i )
)

(46)

≤(M −K)α2
kKp

p
kp
d
kλ

(n)
∏

i∈K
(αiKp

p
i )
τi

(n)

. (47)

Note that the left hand side (LHS) of (46) is a posynomial function, and the right hand side (RHS)

becomes a monomial function. In addition, the LHS is no larger than RHS. Hence, constraint

(46) satisfies the conditions for a problem to be a GP problem [26].

Then, by using the same method as in the MRC case to deal with the OF, in the n + 1-th

iteration, we aim to solve the following GP problem:

max
{χk},{ppk},{p

d
k}

∏
k∈K

χ
ŵ

(n)
k

k (48a)

s.t. (24c), (46) (48b)

γ̂k ≥ 1

/
f−1
k

(
Rreq
k ln 2

1− β

)
,∀k, (48c)

where the parameters ŵ
(n)
k ’s are the same as those in the MRC case. This problem can be

efficiently solved by using CVX [27].

Based on the above discussion, the iterative algorithm to solve Problem (26) for the case of

ZF is provided in Algorithm 2.
2The best local monomial approximations means that the approximation function should satisfy three conditions as specified

in Section IV-A of [32].
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Algorithm 2 Iterative algorithm for solving Problem (26) for ZF
1: Initialize iteration number n = 1, error tolerance ξ. Initialize a feasible power allocation
{pp(0)

k , p
d(0)
k ,∀k}, calculate {χ(0)

k , ρ
(0)
1 , ρ

(0)
2 , ŵ

(0)
k , λ(0), τ

(0)
k ,∀k}, and calculate the OF of Prob-

lem (26), denoted as Obj(0).
2: With given {χ(n−1)

k , ρ
(n−1)
1 , ρ

(n−1)
2 , ŵ

(n−1)
k , λ(n−1), τ

(n−1)
k ∀k}, solve Problem (48) by using the

CVX package to obtain {pp(n)
k , p

d(n)
k , χ

(n)
k , ∀k}.

3: Update {ρ(n)
1 , ρ

(n)
2 , ŵ

(n)
k , λ(n), τ

(n)
k , ∀k};

4: Calculate new OF Obj(n). If
∣∣Obj(n) −Obj(n−1)

∣∣/Obj(n) < ξ, terminate. Otherwise, set
n← n+ 1, go to step 2.

B. Algorithm Analysis

Algorithm 2 can be analyzed similar to Algorithm 1 except the convergence analysis since the

problems to be solved in each iteration of Algorithm 2 do not have the same set of constraints.

In the following, we prove that the solution obtained in the n-th iteration is also feasible for

the problem to be solved in the n+ 1-th iteration. We only need to check constraint (46) since

the other two constraints are the same in each iteration.

Let us denote {χ(n)
k , p

p(n)
k , p

d(n)
k ,∀k} as the optimal solution in the n-th iteration. Then, it is

also feasible solution, and we have

χ
(n)
k

(
1 + αkKp

p(n)
k

)(∑
i∈K

p
d(n)
i αi

∏
j 6=i

(1 + αjKp
p(n)
j ) +

∏
i∈K

(1 + αiKp
p(n)
i )

)
≤(M −K)α2

kKp
p(n)
k p

d(n)
k λ(n−1)

∏
i∈K

(
αiKp

p(n)
i

)τ (n−1)
i

. (49)

By using (45), we have∏
i∈K

(1 + αiKp
p(n)
i ) ≥ λ(n−1)

∏
i∈K

(
αiKp

p(n)
i

)τ (n−1)
i

. (50)

In addition, by using (44) in Theorem 3 and (50), we have

λ(n)
∏

i∈K

(
αiKp

p(n)
i

)τ (n)i

=
∏

i∈K
(1 + αiKp

p(n)
i ) ≥ λ(n−1)

∏
i∈K

(
αiKp

p(n)
i

)τ (n−1)
i

. (51)

Finally, by combining (46) and (51), we have

χ
(n)
k

(
1 + αkKp

p(n)
k

)(∑
i∈K

p
d(n)
i αi

∏
j 6=i

(1 + αjKp
p(n)
j ) +

∏
i∈K

(1 + αiKp
p(n)
i )

)
≤(M −K)α2

kKp
p(n)
k p

d(n)
k λ(n)

∏
i∈K

(
αiKp

p(n)
i

)τ (n)i

. (52)

Hence, {χ(n)
k , p

p(n)
k , p

d(n)
k ,∀k} is also a feasible solution in the n+ 1-th iteration. Then, by using

the similar proof as in the case of MRC, we can also prove that Algorithm 2 is guaranteed
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to converge. By using a similar method, we also prove that this algorithm will converge to a

feasible solution of Problem (26).

V. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate the effectiveness of our proposed

algorithms for industrial automation systems. The channel path loss is modeled as PL = 35.3 +

37.6log10d (dB) [33], and the small-scale fading is modeled as Rayleigh fading with zero mean

and unit variance. Unless otherwise specified, the simulation parameters are set as follows:

number of transmit antennas of M = 100, number of devices of K = 10, channel bandwidth

of B = 0.2 MHz, noise power spectral density of -174 dBm/Hz, decoding error probability of

εk = 10−9, ∀k, number of transmit antennas of M = 100, and maximum transmission duration

of 0.5 ms. The maximum blocklength is calculated as L = BT = 100. The other parameters

are specified in each figure. The energy constraint for each device is assumed to be equal, i.e.,

Ek = E,∀k, and each device has the same data rate targets, Rreq
k = Rreq,∀k. The weights for

each device are uniformly generated within [0, 1].

A. Tightness of the Date Rate LB

In Fig. 5 and Fig. 6, we investigates the tightness of the LB derived for the cases of MRC

and ZF, respectively. The simulation results are obtained through the Monte-Carlo simulation by

averaging over 5000 random channel generations. It is observed that the data rate LB is tight for

both cases of MRC and ZF for any number of transmit antennas. Interestingly, the curves for

the ZF case are almost overlapped with each other. This verifies that the data rate LBs derived

in Theorem 1 and Theorem 2 are suitable for optimization instead of directly optimizing the

complicated expectation expression.

B. Convergence Behaviour of the Proposed Algorithms

Fig. 7 and Fig. 8 investigates the impact of the energy limit at each device on the performance

of the proposed Algorithm 1 for the MRC case and Algorithm 2 for the ZF case, respectively.

From these two figures, we can observe that both algorithms converge rapidly for various energy

limits and only 2 or 3 iterations are sufficient for the algorithms to converge. This demonstrates

the low-complexity of the proposed algorithms.
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Fig. 5: Tightness of the derived data rate LB
for the MRC case.
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Fig. 6: Tightness of the derived data rate LB
for the ZF case.
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Fig. 7: Convergence behaviour of the proposed
algorithm for the MRC case.
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Fig. 8: Convergence behaviour of the proposed
algorithm for the ZF case.

C. Performance Comparison

In this subsection, we compare the proposed algorithms with the following algorithms:

• Upper bound: In this method, Shannon capacity is adopted for optimization in Problem

(26). In other words, the penalty term akG(χk) is set to zero in both the OF and rate

constraint (24b), i.e., akG(χk) = 0,∀k. This method provides the upper bound of the

average weighted sum rate performance in the IIoT networks.

• Conventional alg.: As in [34], the solution obtained from the upper bound is applied in

(20) and (22) for the cases of MRC and ZF respectively by considering the penalty term

akG(χk). That means that the upper bound is used for obtaining solutions, but the achievable
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data rate under finite blocklength is used for performance evaluation.

• Fixed pilot power alg.: In this scheme, we only optimize the data transmission power pdk
while fixing the pilot power as ppk = E/L. This algorithm is provided to show the benefits

of jointly optimizing the transmission and pilot power.

The following results are obtained by averaging over 100 Monte-Carlo simulations where in

each snapshot the devices are randomly generated in the cell. For each snapshot, if the device’s

achievable data rate cannot achieve its rate targets, we set the corresponding data rate to zero.

The proposed algorithm is denoted as ‘Proposed alg.’ in the following figures.

In Fig. 9 and Fig. 10, we show the average weighted sum rate versus the energy limit at each

device, E. The rate targets for MRC and ZF are set as Rreq = 1 bits/s/Hz and Rreq = 4 bits/s/Hz,

respectively. As seen from these figures, the system performance increases with the available

energy at each device since the SINR at each device is increased. Note that the weighted sum

rate achieved by some algorithms may approach zero, which means the power allocation solution

is infeasible. As expected, the upper bound has the best performance since the penalty terms

are not considered. Furthermore, the ’conventional alg.’ based on Shannon capacity formula has

higher probability to violate the data rate requirement, especially for samll E. Therefore, Shannon

capacity cannot be employed for the transmission design of URLLC for industrial applications,

in particular when the energy limit is small as the QoS target cannot be guaranteed. However,

for the large value of E, the SINR value for each device is very high and then the penalty

term akG(χk) can be ignored when comparing with the first term of ln(1 + χk). Hence, the

’conventional alg.’ will achieve a similar performance as that of the proposed algorithm. As

shown in Fig. 9 and Fig. 10, by jointly optimizing the data transmission power and pilot power,

the proposed algorithm is superior over the ‘Fixed pilot power alg.’, which only optimizes the data

transmission power. The performance gain is obvious when the energy limit is low, especially

for the case of ZF. This means the need of jointly optimizing pilot and data power at low energy

limit. This can be explained as follows. When the energy limit is low, the system performance

is limited by channel estimation procedure. Through the joint power allocation, some power can

be borrowed from that for data transmission to enhance the channel estimation accuracy, and

thus increases the weighted sum rate. However, in the high energy E, the accuracy of channel

estimation is already enough, and additional joint power control bring marginal performance

gain. Another interesting observation is that the performance gain of the proposed algorithm
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Fig. 9: Average weighted sum rate vs. max-
imum energy limit 10log10E for various
schemes for the case of MRC.
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Fig. 10: Average weighted sum rate vs.
maximum energy limit 10log10E for various
schemes for the case of ZF.
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number of devices for various schemes for the
case of MRC.
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Fig. 12: Average weighted sum rate vs. the
number of devices for various schemes for the
case of ZF.

over ‘Fixed pilot power alg.’ is much smaller for the MRC case than the ZF case. This may

be due to the fact that the CSI is more important when using it for removing multiple device

interference in the ZF case.

Fig. 11 and Fig. 12 show the average weighted sum rate versus the number of devices for

various schemes. The rate targets for MRC and ZF are set as Rreq = 1 bits/s/Hz and Rreq =

2 bits/s/Hz, respectively. The energy limit for MRC and ZF are set as E = 2 and E = 1,

respectively. It is observed from Fig. 11 and Fig. 12 that the average weighted sum rate achieved
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by all the algorithms except the ‘Conventional alg.’ increases with the number of devices since

these schemes fully exploit the multi-device diversity. For the MRC case, the performance of

the ‘Conventional alg.’ decreases with the number of devices. The main reason is that the design

is based on Shannon capacity formula, which does not take into consideration the effect of

short blocklength on the achievable data rate. As a result, the probability that the achieved data

rate violates the rate requirement will increase with the number of devices. It is interesting to

observe that ‘Fixed pilot power alg.’ has similar performance as the proposed algorithm for

the case of MF. However, for the case of ZF, the proposed algorithm significantly outperforms

‘Fixed pilot power alg.’, and the performance gain is increasing with the number of devices.

This again reveals the importance of joint power optimization in the case of ZF. For the ZF

case, the weighted sum rate achieved by ‘Conventional alg.’ is first increasing with the number

of devices and then decreases with it.

Finally, we study the effect of blocklength on the weighted sum rate performance in Fig. 13

and Fig. 14 for the cases of MRC and ZF, respectively. The rate targets for MRC and ZF

are set as Rreq = 2 bits/s/Hz and Rreq = 4 bits/s/Hz, respectively. As expected, the system

performance increases with the blocklength since more time/frequency resource can be exploited

for transmission. Some interesting observations can be found in these figures. First, when the

blocklength is small, there is significant performance gap between the proposed algorithm and

the upper bound. However, this gap starts to reduce with the increase of the blocklength.

This demonstrates that the blocklength has significant impact for IIoT devices with URLLC

requirements. In addition, the proposed algorithm outperforms the ‘Fixed pilot power alg.’

algorithm for both cases of MRC and ZF. This may be due to the fact that higher rate target is

imposed in this example than that in Fig. 11.

VI. CONCLUSIONS

In this paper, we studied the resource allocation for uplink massive MIMO systems to support

critical IIoT operating under finite channel blocklength, where multiple robots and/or actuators

transmit URLLC signals to the central controller simultaneously. We first derived the closed-

form data rate LB with imperfect CSI for both MRC and ZF receivers under the short packet

transmission. We then formulate the weighted sum rate maximization to jointly optimize the pilot

and payload power allocation while considering their energy, minimum data rate and decoding
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Fig. 13: Average weighted sum rate vs. block-
length for various schemes for the case of
MRC.
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Fig. 14: Average weighted sum rate vs. block-
length for various schemes for the case of ZF.

error probability requirements. This optimization problem is non-convex, and we proposed novel

low-complexity iterative algorithms to solve it. Simulation results demonstrate that the algorithm

converges rapidly, and outperforms the existing benchmark algorithms, especially the algorithm

based on conventional Shannon capacity. This reveals the importance of adopting the achievable

data expression for finite channel blocklength.

APPENDIX A

PROOF OF THEOREM 1

We first consider the MRC beamforming. The proof follows the similar steps as those in

Appendix A of [35] for perfect CSI. Denote γk as the instantaneous SINR value when using

MRC. By substituting ak = ĥk into (12), we have

γk =
pdk

∥∥∥ĥk∥∥∥4

∑
i∈K\k p

d
i

∣∣∣ĥHk ĥi

∣∣∣2 +
∑

i∈K p
d
i

∣∣∣ĥHk h̃i

∣∣∣2 +
∥∥∥ĥk∥∥∥2 . (53)

Then, E
{

1
γk

}
can be expressed as

E
{

1

γk

}
= E


∑

i∈K\k p
d
i |uk,i|

2 +
∑

i∈K p
d
i |vk,i|

2 + 1

pdk

∥∥∥ĥk∥∥∥2

 (54)

where uk,i =
ĥHk ĥi

‖ĥk‖ and vk,i =
ĥHk h̃i

‖ĥk‖ . Conditioned on ĥk, uk,i and vk,i are Gaussian random

variables with zero mean and variance equal to σi and δi, respectively. In addition, uk,i and vk,i



27

are independent of ĥk. Then, we have

E
{

1

γk

}
=

(∑
i∈K\k

pdiσi +
∑

i∈K
pdi δi + 1

)
E

 1

pdk

∥∥∥ĥk∥∥∥2

 . (55)

By using the identity [36]

E
{

tr
(
W−1

)}
=

m

n−m
(56)

where W ∼ Wm (n, In) is an m ×m central complex Wishart matrix with n (n −m) degrees

of freedom. Then, we have

E

 1

pdk

∥∥∥ĥk∥∥∥2

 =
1

pdk(M − 1)σk
, for M ≥ 2. (57)

By substituting (57) into (55), we can obtain γ̂k in (21).

APPENDIX B

PROOF OF THEOREM 2

By using ZF, we have AHĤ = IK . Thus, akĥi is equal to one if k = i; otherwise, it is equal

to zero. Then, the instantaneous SINR for ZF can be rewritten as

γk =
pdk∑

i∈K p
d
i

∣∣∣aHk h̃i

∣∣∣2 + ‖ak‖2
. (58)

Define Λ = diag
{√

σ1, · · · ,
√
σK
}

and
^

H =
[

ĥ1√
σ1
, · · · , ĥK√

σK

]
. Then, we can express Ĥ as

Ĥ =
^

HΛ. The columns of
^

H are independent of each other, and each column follows the

distribution of CN (0, I). Then, E
{

1
γk

}
can be expressed as

E
{

1

γk

}
=

(∑
i∈K

pdi δi + 1
)
E

{[(
ĤHĤ

)−1
]
k,k

}/
pdk (59)

=
(∑

i∈K
pdi δi + 1

)
E


[(

Λ
^

H
H ^

HΛ

)−1
]
k,k


/

pdk (60)

=
(∑

i∈K
pdi δi + 1

)
E


[(

^

H
H ^

H

)−1
]
k,k


/

σkp
d
k (61)

=
(∑

i∈K
pdi δi + 1

)
E

{
tr

[(
^

H
H ^

H

)−1
]}/

Kσkp
d
k (62)

=
(∑

i∈K
pdi δi + 1

)/
(M −K)σkp

d
k (63)
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where (63) is obtained by using (56).

APPENDIX C

PROOF OF LEMMA 2

For notational simplicity, we define function T (x)
∆
= 1− 1

(1+x)2
. The second derivative of T (x)

w.r.t. x is given by
T ′′(x) =

−6

(x+ 1)4 ≤ 0. (64)

Next, we prove that G(x) is a concave function of x. Since T (x) is a concave function w.r.t. x,

we have
θT (x̂) + (1− θ)T (x̃) ≤ T (θx̂+ (1− θ)x̃), (65)

for 0 ≤ θ ≤ 1, where x̂ and x̃ are two different non-negative values. On the other hand,
√
x is

a concave function w.r.t. x. Then, for 0 ≤ θ ≤ 1 we have

θ
√
T (x̂) + (1− θ)

√
T (x̃) ≤

√
θT (x̂) + (1− θ)T (x̃). (66)

By combining (66) with (65), we have

θ
√
T (x̂) + (1− θ)

√
T (x̃) ≤

√
T (θx̂+ (1− θ)x̃), (67)

which is equivalent to θG(x̂) + (1 − θ)G(x̃) ≤ G(θx̂ + (1 − θ)x̃). Hence, G(x) is a concave

function w.r.t. x, which completes the proof.

APPENDIX D

PROOF OF LEMMA 3

The equalities in (30) can be readily proved by substituting the expressions of ρ and η in (28)

and (29) into (27). Next, we focus on the proof of Inequality (27).

Define function H(x)
∆
= F (x)−G(x), and thus H(x̃) = 0. Then, with some simple manipu-

lations, the first-order derivative of function H(x) w.r.t. x can be calculated as

H ′(x) =
x̃
√
x2 + 2x(x+ 1)2 − x

√
x̃2 + 2x̃(x̃+ 1)2

√
x̃2 + 2x̃(x̃+ 1)2x

√
x2 + 2x(x+ 1)2 . (68)

Since both x and x̃ are positive values, the sign of H ′(x) only depends on the nominator of

H ′(x). Then, denote the nominator of H ′(x) as J(x).

The function J(x) can be rewritten as

J(x) = xx̃

(√
1 +

2

x
(x+ 1)2 −

√
1 +

2

x̃
(x̃+ 1)2

)
. (69)
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Next, we show that J(x) ≤ 0 when
√

17−3
4
≤ x ≤ x̃, and J(x) > 0 when x > x̃. In specific, let

us define
U(x)

∆
=

√
1 +

2

x
(x+ 1)2. (70)

The first-order derivative of U(x) w.r.t. x is given by

U ′(x) =
x+ 1

x1.5
√
x+ 2

(
2x2 + 3x− 1

)
. (71)

It can be readily proved that U ′(x) ≤ 0 when 0 < x ≤
√

17−3
4

, and U ′(x) > 0 when x >
√

17−3
4

.

As a result, when
√

17−3
4
≤ x ≤ x̃, we have U(x) < U(x̃), and thus J(x) < 0. From (68), we

know that H ′(x) < 0, which means H(x) is a monotonically decreasing function of x. Hence,

H(x) ≥ H(0) = 0 holds for
√

17−3
4
≤ x ≤ x̃, which equivalently means F (x) ≥ G(x). On the

other hand, when x > x̃, we have U(x) > U(x̃), and thus J(x) > 0, which means H ′(x) > 0

and H(x) is a monotonically increasing function of x. Hence, H(x) > H(0) = 0 holds for

x ≥ x̃, and thus F (x) > G(x).

Based on the above analysis, when x ≥
√

17−3
4

, F (x) is always no smaller than G(x), which

completes the proof.

APPENDIX E

PROOF OF THEOREM 3

The first equation in (44) can be readily verified. Then, we focus on the second equality in

(44). The partial derivative of W (x̆) and Y (x̆) w.r.t. xi are given by
∂W (x)

∂xi
=
∏

j 6=i
(1 + xj),

∂Y (x)

∂xi
= λτix

−1
i

∏
j∈K

x
τj
j , i = 1, · · · , K. (72)

By substituting x = x̆, λ and τi,∀i into into the above two functions, we can show that
∂W (x)

∂xi

∣∣∣∣
x=x̆

=
∂Y (x)

∂xi

∣∣∣∣
x=x̆

, i = 1, · · · , K. (73)

Hence, the second equality in (44) is proved.

Now, we begin to prove (42). Before proceeding, we first introduce the following lemma.

Lemma 5: For any given x̆ ≥ 0, we have the following inequality:
1 + x

xτ
≥ 1 + x̆

x̆τ
, (74)

where τ is given by τ = x̆
1+x̆

, and equality holds only when x = x̆.

Proof : The proof is similar to those in Lemma 3, and thus omitted for simplicity.
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By applying inequality (74) for each xi, i = 1, · · · , K, we have
1 + xi
xτii

≥ 1 + x̆i
xτii

, i = 1, · · · , K. (75)

Then, by multiplying the above K inequalities, we have∏
i∈K

1 + xi
xτii

≥
∏

i∈K

1 + xi
xτii

(76)

which completes the proof.
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