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Abstract—In the realm of ultra dense Intelligence of Things,
efficient utilization of computation and sensation (CAS) resources
remains a challenge due to their uneven temporal and spatial
distribution. Priority Aggregation Network (PAN) is introduced
to employ priority as an intermediary to restore, combine, and
exchange idle CAS resources’ permissions for cross-temporal and
cross-modal resource leasing. PAN awards priority to devices
that lease their sensing and computing resources to others, fa-
cilitating efficient resource allocation. Numerical results indicate
PAN maintains high cross-temporal task completion rates while
conserving equipment resources, with increased willingness to
pay for resources.

Index Terms—Resources leasing; joint computation and sen-
sation; resource management

I. INTRODUCTION

The proliferation of Artificial Intelligence of Things (AIoT)
devices has led to explosive growth, resulting in an increased
demand for computational and sensory resources. Globally,
the number of mobile devices is projected to exceed 70
billion, with a monthly traffic volume of over 25 exabytes.
This exponential growth imposes a high task workload, but
the utilization of computational and sensory (CAS) resources
in AIoT devices remains uneven across time and space. For
instance, some devices may have idle CAS capabilities during
computing (and vice versa), while others may remain idle
as a whole while charging. These idle resources may not
require immediate utilization currently but could encounter
significant workloads in the future, leading to resource wastage
and constraints. While these resources may not currently
require immediate computation or sensory resources, they
could potentially encounter significant workloads in the future,
leading to both resource wastage and constraints. Additionally,
the heterogeneity and immediacy of CAS resources, which
cannot be stored, integrated, or exchanged, further complicate
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addressing the uneven distribution of resources across tempo-
ral and spatial dimensions.

Various strategies have been explored to alleviate CAS task
burdens in edge or dense networks. In Ref. [1], a game theory-
based algorithm was introduced to offload traditional local
computational tasks to the cloud. Considering AIoT devices,
it is crucial to account for the energy consumption associated
with computation tasks, as emphasized by the offloading
algorithm detailed in Ref. [2]. Furthermore, studies have lever-
aged resource utilization across different layers through task
offloading or task migration [3], [4] to counteract the uneven
spatial distribution of computational resources. However, the
dual requirements of AIoT entail not only robust computa-
tional prowess but also a versatile spectrum of sensors. To
optimize resource allocation for sensation, an system offloads
specific operations from the platform to the network edge with
incentive for the workers to maximize their utility [5]. In Ref.
[6] a collaborative sensing solution is explored for both ideal
scenarios and real-world applications, addressing occlusion
and sensor failure challenges in autonomous driving scenarios.
The challenge remains of transcending the inherent hetero-
geneity of CAS resources, enabling seamless interaction and
overcoming the limitations imposed by idle CAS resources.

To address this issue, we propose a priority aggregation
network with integrated computation and sensation (PANI-
CAS). PANICAS enables the integration and exchange of
CAS capabilities by utilizing priority variables as interme-
diary transaction bridges, thereby mitigating the impact of
heterogeneous CAS resources. It effectively leverages priority-
based storage to aggregate the contributions of current CAS
devices to the entire network in exchange for assistance with
their own tasks. This transforms the challenge of ‘storing and
exchanging CAS resources’ into a priority accumulation and
consumption problem, effectively addressing the immediacy
and uneven utilization across temporal and spatial domains.
PANICAS establishes low-latency device groups, fostering
resource-sharing dynamics and prioritizing high-demand de-
vices within the CAS framework.

II. SYSTEM MODEL

Within the PANICAS framework (see Figs. 1 and 2), AIoT
devices have logically adjacency or experience time delays
lower than τ . Each device within a range of size S has posi-
tion information (dx,j , dy,j). CAS Priority Leasing (CASPL)
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Fig. 1. System model of PANICAS.

Fig. 2. Sensation and computation in PANICAS.

involves receivers prioritizing providers, and providers accu-
mulating priority variables, facilitating the provision of compu-
tational or sensory aid. Fig. 1 exemplifies resource invocation
over time and modalities, as device 1 transitions its role from
a provider to a receiver at slots t1 and t2. Assuming a total
of N CAS users, each CAS user j is identified with the ID
dj (j ∈ [1, N ]), while −j represents all other user numbers
except dj . CAS resources are merged and treated as a unified
virtual resource set, with the minimum resource unit identified
as i ∈ {Type1Sense, Type2Compt}, characterizing resources
of different types/modalities. Each task T for each user may
contain sub-tasks from the CAS type set, where Ai,j represents
the resource (i) amount required to complete the task for dj .

During a CASPL slot, dj provides an amount of Rout,i,j
CAS resource i to other users d−j with priority conversion
parameter Pout,i,j (sale price, e.g., per MB/CPU Circle), and
leases an amounts of Rin,i,j CAS resources i from users d−j

with priority conversion parameter Pin,i,j (purchase price). For
all the CAS resource i ∈ {Type1Sense, Type2Compt}, the
CAS priority accumulation value (token) for user dj is denoted
as Tdj

. The fixed amount of internal CAS resource i for user dj
is denoted as Ri,j . Thus, the demand of external CAS resource
i by the execution task of user dj is

DRi,j = Ai,j −Ri,j , (1)

where DRi,j > 0 means dj requires external resource, and
DRi,j < 0 means dj can provide idle internal resource.

In a CASPL slot, dj is willing to provide a portion αi,j =
Rout,i,j
Ri,j

∈ [0, 1] of its fixed internal resource i based on the

demand of both d−j and its own strategy. Similarly, dj is
willing to use a portion βi,j ∈ [0, 1] of its token to lease
external resource i based on the available inventory and its
own strategy. We refer to αi,j and βi,j as willingness factors.

Due to factors introduced by the CASPL process, such as
transmission delay and CASPL execution, utilizing external
CAS resources for remote sensing, controlling, or processing
results in the services provided by d−j being a discounted
version of dj’s own CPU and sensors. To model this effect,
we introduce a penalty factor. To account for transmission
and CASPL execution delay, as well as remote control and
processing of external CAS resources, we use ∆τi,j,−j to
assess the extra delay introduced by CASPL for user dj , where
−j means all the CAS service providers except dj . Note that
∆τi,j,j means dj uses its own CAS resource i with minimum
extra delay. Thus, the penalty factor for relative total delay is
then defined as:

τDi,j,−j =
∆τi,j,−j

∆τi,j,j
> 1. (2)

To handle the heterogeneity of modalities, demand, and
inventory information, selectivity factors are required for dif-
ferent situations. Sensing tasks are influenced by geographical
factors and can be categorized into quantitative and qualitative
perspectives, with the qualitative aspect further subdivided
into two Levels: in non-splittable task level, task can only be
accomplished by the device itself; in splittable task level, de-
vices falling within range S1 constitutes normal transmissions
characterized by the same relative latency as the computation
task. However, task decomposition in S2 leads to higher
latency, which is manifested in τDi,j,−j . Ensuring the target to
be sensed, sensory resources providers from d−j should satisfy
the geographic location condition within a range Sj defined
by user dj’s sensory task. The selectivity requires a filter ∗ to
choose the corresponding users. Considering dj’s willingness
to consume token and the total idle resource from other users,
we introduce an updated version of βi,j as Equ. (3).

Rin,i,j= min

(
βi,j

τDi,j,−j

,

∑
k∈∗ max(0,−DRi,k)

Tdj
τDi,j,−j

)
Tdj

Pin,i,j
, (3)

where ∗ = Sj if i = Type1Sense, and ∗ = −j if
i = Type2Compt. In an ultra-dense AIoT scenario, nearby
massive CAS users can provide superfluous CAS resources
and priority token for dj , resulting in

∑
k∈∗{·} → +∞. This

yields βSel
i,j,−j =

βi,j

τD
i,j,−j

. Therefore, based on Equ. (3), we have
a more simplified expression for Rin,i,j as

RUD
in,i,j =

βi,j

τDi,j,−j

Tdj

Pin,i,j
. (4)

This means in an ultra-dense AIoT scenario, the amount of
resource i to be provided (sold) is determined by willingness,
tokens, delay and the priority conversion parameter (price).

III. DISCUSSION AND ANALYSIS

A. Case I: Di,j > 0

If DRi,j > 0, it indicates that external resource i is required
to complete the task, and dj should receive more of this
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external resource i by adjusting αi, j and βi,j . Therefore, in
the CASPL process, it isnecessary to adhere to the constraint
that Rin,i,j −Rout,i,j ≥ DRi,j . Based on Equ. (4) we have the
condition for Rout,i,j as

0 ≤ Rout,i,j ≤
βi,j

τDi,j,−j

Tdj

Pin,i,j
−Ai,j +Ri,j . (5)

Furthermore, based on Equ. (5), the amount of resource i
needed to complete the task must satisfy

0 ≤ Ai,j ≤
βi,j

τDi,j,−j

Tdj

Pin,i,j
+Ri,j . (6)

This means that user dj cannot accept large tasks that do
not meet the condition in Equ. (6). Moreover, by using the
definition of of αi,j , we can further specify its bounds as

0 ≤ αi,j ≤ min

(
1,

βi,j

τDi,j,−j

Tdj

Pin,i,jRi,j
− Ai,j

Ri,j
+ 1

)
. (7)

To fully characterize Rout,i,j , we need to consider various
factors such as dj’s willingness factor to provide i to other
users d−j , the total amount of priority token that other users
willing to provide, and the total resource demand from other
users. An updated version of αi,j , denoted as αSel

i,j,−j is
presented in Equ. (8).

αSel
i,j,−j=min

(
αi,j ,

∑
k∈∗ βi,kTdk

Pout,i,j
,
∑
k∈∗

max(0, τDi,j,∗αi,kRi,k)

)
Rout,i,j = αSel

i,j,−jRi,j

.

(8)
In the context of an ultra-dense AIoT Scenario, where∑

k∈∗{·} → +∞, we have αSel
i,j,−j = αi,j . Thus, based on

Equ. (8), we have a simplified expression for Rout,i,j as

RUD
out,i,j = αi,jRi,j . (9)

In a specific case where dj requires one external resource
i1 to complete the task (i.e., Di1,j > 0), and there are
no limitations on the other resource i2, dj can utilize the
following strategy to maximize its amount of the resource i1
in shortage. In the first stage of CASPL, dj provides both i1
and i2 to accumulate token and potentially receive more i1 by
consuming tokens to complete other sub-tasks. An update is
made to the amount of token as T

′

d = Td+
∑

i R
UD
out,i,jPout,i,j−

RUD
in,i2,jPin,i2,j . In the second stage, dj uses all the updated

tokens to purchase i1. Finally, based on Equ. (4), the total
amount of i2 owned by dj is determined considering the
shortage of i1 and the difference between the sale price and
purchase price of i1 (see Equ. (10)).

Rtotal
i1,j =(1− αi1,j)Ri1,j +RUD

in,i1,j

=(1− αi1,j)Ri1,j +
βi1,j

τDi1,j,−j

T
′

dj

Pin,i1,j

=

(
βi1,j

τDi1,j,−j

Pout,i1,j

Pin,i1,j
− 1

)
αi1,jRi1,j+(

1− βi2,j

τDi2,j,−j

)
βi1,j

Tdj

τDi1,j,−jPin,i1,j
+

αi2,jβi1,j

τDi1,j,−j

Pout,i2,j

Pin,i1,j
Ri2,j +Ri1,j .

(10)

Based on Equ. (2) and βi2,j ∈ [0, 1], it is evident that only
the first term in Rtotal

i1,j
can be negative. Thus, by considering

the scenarios where the sale price of i1 is higher or lower
than τDi1,j,−j times the purchase price, we can find following
optimal strategy to maximize the amount of resource i1.

1) Case Pout,i1,j ≥ τDi1,j,−jPin,i1,j: If
τD
i1,j,−jPin,i1,j

Pout,i1,j
<

βi1,j ≤ 1, dj chooses to maximize the available amount
of i1 by setting the maximum value of βi1,j = 1,

αi1,j = min

(
1, 1

τD
i1,j,−j

Tdj

Pin,i1,jRi1,j
− Ai1,j

Ri1,j
+ 1

)
and αi2,j =

1, while setting the minimum value of βi2,j = 0. This

results in Rtotal,max
i1,j

=

(
1

τD
i1,j,−j

Pout,i1,j

Pin,i1,j
− 1

)
αi1,jRi1,j +

Tdj

τD
i1,j,−jPin,i1,j

+ 1
τD
i1,j,−j

Pout,i2,j

Pin,i1,j
Ri2,j +Ri1,j

If 0 ≤ βi1,j ≤ τD
i1,j,−jPin,i1,j

Pout,i1,j
, dj chooses to maximize

the available amount of i1 by setting the maximum value

of βi1,j =
τD
i1,j,−jPin,i1,j

Pout,i1,j
and αi2,j = 1, while setting the

minimum value of αi1,j = 0 and βi2,j = 0. This results in
Rtotal,max

i1,j
=

Tdj

Pout,i1,j
+Ri2,j +Ri1,j

2) Case Pout,i1,j < τDi1,j,−jPin,i1,j: In this case, 0 ≤ βi1,j ≤
1 <

τD
i1,j,−jPin,i1,j

Pout,i1,j
, and tdj chooses to maximize the available

amount of i1 by setting the maximum value of βi1,j = 1 and
αi2,j = 1, while setting the minimum value of αi1,j = 0 and
βi2,j = 0, resulting in Rtotal,max

i1,j
=

Tdj
+Pout,i2,jRi2,j

τD
i1,j,−jPin,i1,j

+Ri1,j

3) Conclusions: Based on the derived willingness factors,
in the first CASPL stage: all of resource i2 is sold in exchange
for tokens to purchase i1. For resource i1, if the sale price
of i1 is higher than τDi1,j,−j times purchase price, dj has
two strategies: A) Adventurist strategy: Sell a fraction of i1

based on αi1,j = min

(
1, 1

τD
i1,j,−j

Tdj

Pin,i1,jRi1,j
− Ai1,j

Ri1,j
+ 1

)
,

and then use all token to purchase i1; B) Conservative strategy:
Use a fraction of the accumulated token based on βi1,j =
τD
i1,j,−jPin,i1,j

Pout,i1,j
to purchase i1.

In this example, we can observe the cross-spatial domain
and cross-modal usage of CAS resources.

B. Case II: Di,j ≤ 0

In this case, typically, the task load is low, and there
is no extreme shortage of resources. Users do not prefer
to acquire the maximum available resources. Instead, they
can accumulate priority tokens. The exchange value after
accumulating priority is given by

t+∆t∫
t

(
P t

out,i1,j

P t+∆t
in,i2,j

αi1Ri1,j +
P t

out,i2,j

P t+∆t
in,i2,j

αi2Ri2,j)dt. (11)

This shows that even the previously limited resource i1 with
an inventory of Ri2,j can be accumulated across domains and
time by transforming into token.

IV. CASPL ALGORITHMS

The CASPL process comprises two distinct process: sen-
sory/computing resource matching and priority settlement.
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A. CASPL Algorithm

For sensory resource matching, we consider the influence
of geographic factors on the sensation demand, resulting in
the filtration of a subset of CAS resources, denoted as i1,
from the resource set. Subsequently, we apply Algorithm 1 to
perform the matching. The expression for the actual resource
requirement to be procured is

βi1,j ·Tdj

Pini1,j ·τD
i1,j,−j

.

Algorithm 1 Sensary Resource Matching
Require: In slot t, user dj with coordinates (dx,j , dy,j) re-

ceives the sensory task dT1,i1,j .
1: If: DRi1,j=Ai1,j-Ri1,j >0
2: Then: Consume priority → Obtain i1
3: End If

Ensure:
4: Condition: (dX,j , dY,j) ∈ Sj , d = {dj1 , dj2 , · · · , djn}

Resources: I1 = {−DRi1,j1 ,−DRi1,j2 , · · · ,−DRi1,jn}
5: If :Td,j −

DRi1,j

Pini1,j ·τD
i1,j,−j

>0, Then: Next
6: Else: Sell other resource until it is greater than 0
7: End If
8: Descending order yields αi1,jmax

Ri1,jmax

9: While: (−αi1,j ·Ri1,jmax
)− βi1,j ·Tdj

Pini1,j ·τD
i1,j,−j

>0, Then: Next
10: Repeat: Plus the next largest resource.
11: Until >0, break.
12: Finally:

βi1,j ·Tdj

Pini1,j ·τD
i1,j,−j

=
∑jn

j1
(−αi1,jm ·DRi1,jm),where

0 < m ≤ n.

In computational resource matching, geography is not a con-
sideration. We can directly repeat Algorithm 1 after removing
the condition: (dX,j , dY,j) ∈ Sj .

B. Priority Settlement

After each exchange process, both the provider and the
receiver should update their priorities.

Algorithm 2 Priority settlement
Require: Before

1: For the receiver: priority = T t
dj

2: For the provider:{dj1 , dj2 , ..., djn},
{
T t
dj1

, T t
dj2

, ..., T t
djn

}
Ensure: After

3: For the receiver:T t+∆t
dj

= T t
dj

− βi,j · T t
dj

4: For the provider:
{
T t+∆t
dj1

, T t+∆t
dj2

, ..., T t+∆t
djn

}
general:T t+∆t

djm
= T t

djm
+

−αi,jm ·Ri,jm

Pouti,jm
,,where 0 < m ≤ n.

In Algorithm 2, following each exchange process, both
the provider and the receiver must update their priorities. In
addition, recording the priority transaction amount and the
priorities held after the transaction enables priority settlement.

V. NUMERICAL RESULTS

In simulation, 30 AI devices are distributed with inte-
ger coordinates in a (10 × 10) rectangular grid. Within S1,
τDi1,j,−j = 3, while within S2, τDi1,j,−j = 5. CASPL is
compared with the non-lease model by assessing the impact of
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Fig. 3. Cross-time Sensing and calculating task completion rates

the β willingness factor on the completion rates of sensory and
computational tasks over a period, where Ri = [10, 12, 15],
Ai = [8, 11, 14], τDi1,j,−j = 3, Pini, Pouti = [1, 1.2, 1.5],
Ri = [10, 12, 15], Ai = [8, 11, 14] and Pini, Pouti =
[1, 1.2, 1.5]. Fig. 3 illustrates that an increase in β, indicative of
a higher proportion of individuals willing to pay for resources,
results in an increased likelihood of task completion. However,
the geographic environment’s limiting effect on perception
is less pronounced compared to computational tasks. Fur-
thermore, we consider a scenario where the resource selling
price exceeds the entry price, incorporating an adventurous
factor, ai = 0.1. Cross-time sensing and calculation task
completion involve maintaining task completion rates higher
than those of the no-lease model over time. This is achieved by
increasing resource utilization within the system while keeping
equipment resources constant.

VI. CONCLUSION

In this paper, we consider the uneven distribution of re-
sources and propose a PANICAS concept that considers the
limitations of smart devices in sensation and computation,
where tokens are used as an intermediary medium to leasing
heterogeneous resources cross-time and cross-modal.
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