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Ultradense networks (UDNs) have emerged as a 
promising architecture that can support the 
extremely high demand for data traffic in the 
future. Through the dense deployment of massive 

small base stations (SBSs), the system can be well promot-
ed in terms of network capacity and spectrum efficiency, 
but this deployment scheme will also bring huge challeng-
es to wireless resource management. Artificial intelligence 
(AI) can be applied to UDN scenarios, enabling intelligent 
communication devices to learn and complete resource 
allocation. This article discusses resource allocation 
schemes based on AI algorithms in UDNs and proposes an 
event-triggered, reinforcement-learning-based subchannel 
and power allocation algorithm.

We consider nonorthogonal multiple access (NOMA) 
in UDNs, which allows a subchannel to be used by mul-
tiple users at the same time. Each user is regarded as 
an agent, and each agent obtains observational informa-
tion from the environment during the learning process. 
We design event-triggered conditions based on current 
and previous moments of observational information, 
and the agent uses those conditions to decide wheth-
er to update policies and perform actions. Simulation 
results show the effectiveness of the proposed event-
triggered, reinforcement-learning-based resource allo-
cation algorithm.

Motivations and Background
The evolution of mobile communication technology has 
been witnessed all over the world, and the next-generation 
wireless network, unlike the previous one, will have 
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stronger service capabilities. It has been observed that the 
communication network’s data traffic will increase exponen-
tially due to large-scale mobile users, so the next-generation 
wireless network needs a higher capacity and faster data 
transmission rate. One of the most effective solutions is to 
densely deploy cells to improve spatial multiplexing [1].

Recently, UDNs have attracted worldwide attention 
and become a promising architecture that supports mas-
sive mobile devices. In the UDN scenario, there is a large 
number of communication nodes, including low-power 
SBSs and wireless access points, that may be dozens of 
times more dense than current ones and can achieve 
great capacity and spectrum efficiency improvement 
in local hotspots [2]. In UDNs, the full-functional SBSs, 
including picocell and femtocell BSs, aim to enhance 
signals for hotspot areas. Relays are macro-extended ac-
cess points that can quickly respond to burst-capacity 
improvement requirements [3]. UDNs also bring many 
challenges, such as severe interference caused by neigh-
boring cells and performance degradation [4]. Therefore, 
it is essential to design an effective and efficient radio 
resource management mechanism for them.

NOMA can provide users with more access opportu-
nities when there are limited frequency resources, al-
lowing multiple users to share the same frequency [5]. 
In NOMA, different user signals on the same subchannel 
are transmitted nonorthogonally, and interference infor-
mation is introduced actively. Successive interference 
cancelation (SIC) is adopted at the receiver to solve the 
problem of inter-user interference. Compared with tra-
ditional OMA schemes, NOMA can support more users 
by effectively utilizing nonorthogonal resources, which 
increases users’ access opportunities.

However, the increasing number of users will make 
the decoding complexity of the receiver more serious, 
which will result in a reduction in NOMA efficiency. 
The densification of the network makes the BSs’ cov-
erage smaller, while the distance between the BS and 
the user is shorter and each BS needs to serve only a 
small number of users. Therefore, we consider adopt-
ing a NOMA scheme in SBSs. The cooperation between 
NOMA and UDNs further enhances network spectrum 
efficiency and also supports large-scale connection of 
users [6]. However, due to the characteristics of NOMA, 
radio resource management, especially in terms of  
subchannel and power allocation, becomes extremely 
challenging.

AI, a recently popular subject, enables computers 
to learn and perform complex tasks. Future intelligent 
mobile terminals are expected to achieve autonomous 
learning and decision making through AI to find the opti-
mal resource allocation scheme [7]. At present, machine 
learning is widely used to solve the problem of AI and is 
the most important way to realize AI. Complex commu-
nication networks will generate large amounts of data,  

and machine-learning algorithms can extract valuable 
information from large data sets and make predictions, 
so they have excellent capabilities for finding new solu-
tions [8]. Considering that the traditional resource allo-
cation scheme takes a lot of time to calculate, we can 
use historical data generated by classical resource al-
location algorithms as training samples and employ the 
k-nearest-neighbor algorithm, one of the simplest of all 
machine-learning algorithms, to locate the most simi-
lar sample sets from the historical database to find a 
matched resource allocation scheme [9]. In addition, a 
deep neural network (DNN) can be used to train existing 
data to find the relationship between inputs and outputs 
and learn the characteristics of optimal resource alloca-
tion for wireless resource management [10].

For the case without a training set, reinforcement 
learning is a good choice and is characterized by repeat-
ed trial and error. Agents regard system performance 
as a reward and constantly perform actions, such as 
resource allocation, to find an allocation scheme that 
maximizes the return [11]. A powerful resource optimi-
zation algorithm can quickly find global optimal solu-
tions without increasing computational complexity. For 
complex networks, traditional optimization algorithms 
may bring huge computational complexity. For machine-
learning algorithms, we need only build a learning mod-
el, and the machine can complete a lot of work through 
self-learning. Therefore, the application of AI in the field 
of wireless communication networks is an inevitable fu-
ture trend.

System Architecture
In Figure 1 we describe the architecture of the UDN with 
NOMA. The UDN introduces multiple types of SBSs with-
in the scope of the macro cell. A large number of low-
power SBSs is characteristic of UDNs, in which the 
deployment density of SBSs is much higher than in cur-
rent networks. SBSs have low power, small coverage, and 
a small physical volume, and they are flexible to deploy.

Different types of SBSs are often applied to different 
scenarios. For example, the femtocell BS is the initial 
design form of small cells. It is easy to manage, can be 
automatically configured and optimized, and is often 
used in indoor scenes, such as homes and offices, to en-
hance signals. Microcells and picocells are often used in 
hotspots, such as shopping streets and other crowded 
areas, where the number of users is extremely large. 
By deploying SBSs, high-speed access can be provided, 
and network capacity can be improved. Through SBSs, 
blind areas that are not covered by MBSs, such as un-
derground parking lots and tunnels, can be covered. 
Similarly, SBSs can be deployed in areas with poor signal 
quality, such as cell edges, thereby extending the cov-
erage of the MBSs and enhancing user experience and 
total system coverage.
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We consider NOMA in a UDN; that is, multiple users 
in small cells can share one subchannel to expand the 
scale of access and improve spectrum efficiency. At the 
transmitter, nonorthogonal transmission between differ-
ent users causes the problem of inter-user interference, 
which is also the reason for employing the SIC technique 
at the receiver. In the SIC process, the receiver ranks the 
users’ power and gradually subtracts the interference 
from the users with the highest power, thereby eliminat-
ing the interference step by step [12].

For example, there are two user signals, x1  and ,x2  on 
one subchannel. The signal power of x1  is greater than 

.x2  It is assumed that the signals received by the receiv-
er are, respectively,  ( ) ,y h x x wi i i1 2= + +  where , ,i 1 2=  
hi  is the channel coefficient and wi  is the Gaussian white 
noise. Since x1  has the strongest signal power, it is de-
coded first. Then, x1  is output and subtracted from the 
received signal;   h x w2 2 2+  is taken as the input, and x2  
is decoded. In fact, in the SIC process, only one signal 
can be detected at a time. If there are n users on one 
subchannel, the user with the lowest power needs to 
perform n 1-  times of SIC before decoding.

AI-Based Resource Allocation in UDNs
Due to the large number of wireless devices, resource 
allocation in the UDN may require more powerful com-
puting capabilities than in the past, or better optimiza-
tion algorithms must be found. Therefore, AI is a good 
choice; it provides the ability to parse abundant data. In 
this section, we discuss several resource allocation 

schemes based on AI in UDNs from 
three perspectives: supervised 
learning, unsupervised learning, 
and reinforcement learning.

The core of supervised learning is 
classification, and it is a good choice 
to achieve classification through 
neural networks. Therefore, for su-
pervised learning, we discuss the 
approximate optimization scheme 
based on a DNN in a UDN. Artificial 
neural networks simulate the ner-
vous system of the human brain and 
learn the complex relationships be-
tween inputs and outputs. There are 
hidden layers between the input and 
output of the neural network, and 
the DNN has multiple hidden lay-
ers, which is beneficial for data with 
complex relationships. In traditional 
optimization algorithms, a series of 
complex operations may be carried 
out to obtain results. In that respect, 
DNN-based resource management 
algorithms have great advantages.

As shown in Figure 2(a), the application of neural 
networks in resource allocation requires recording the 
input and output values of the optimized resource allo-
cation algorithm (such as the water-filling algorithm) as 
training data sets for the neural network, which means 
that the existing optimization algorithm of the neural 
network is first learned when applying a neural network 
algorithm in UDN resource allocation; then, the neural 
network learns to optimize by approximating the exist-
ing algorithms [13]. The existing resource optimization 
algorithms can be well learned through a DNN algo-
rithm. Therefore, if a DNN algorithm can approximate 
accurately, it can replace some complex algorithms.

The clustering algorithm is a typical unsupervised 
learning one, and K-means is a widely used clustering 
algorithm. It uses the characteristics of samples to clas-
sify those with many similarities into the same category. 
Figure 2(b) illustrates the steps of a resource manage-
ment scheme based on a K-means clustering algorithm 
in a UDN. The clustering method can simplify the topol-
ogy of the UDN before the UDN allocates resources to 
reduce the computational complexity of resource allo-
cation. Due to the different coverage and transmission 
power of the varying types of SBSs in the UDN, the SBS 
in the UDN is divided into multiple clusters using the K-
means algorithm. Users are grouped according to the 
interference among them in each SBS cluster, and every 
user is assigned to the group with the lower interference 
effect in each cluster to alleviate intra-cluster interfer-
ence [14]. After clustering, other algorithms are used  
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Figure 1 The architecture of a UDN with NOMA. MBS: macro base station.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MONTH 2020  |  IEEE VEHICULAR TECHNOLOGY MAGAZINE  ||| 5 

to allocate resources. By using clustering algorithms in 
UDNs, interference can be mitigated, and resource allo-
cation complexity can be reduced.

Compared with those two schemes, reinforcement 
learning does not require a training set; it uses repeated 
trial and error. Q-learning is the most common algorithm 
in reinforcement learning. In the resource allocation 
scheme based on Q-learning in a UDN the system, per-
formance can be regarded as the reward; presently oc-
cupied resources, such as the channel and power, can be 
viewed as the current state, and the allocating resources 
can be considered as the action. The action selection 
strategy is constantly updated to make the optimal deci-
sion and find the distribution scheme that can maximize 
the reward. Because we focus on resource allocation in 
UDNs and have no training set, we consider using a rein-
forcement learning algorithm in UDNs.

Q-Learning–Based Resource Allocation in UDNs
We focus on subchannel and power allocation in UDNs for 
maximizing system energy efficiency. Actually, it is very 
difficult to solve the energy efficiency optimization prob-
lem directly. Moreover, as the number of users and BSs 
increases, the computational complexity rises dramatical-
ly. It should be noted that the user does not know the 
channel state information accurately and that the interfer-
ence information between the BSs is also difficult to know. 
To solve those limitations, in this section, a reinforcement 
learning algorithm is used. We propose an event-trig-
gered, multiagent Q -learning resource allocation algo-
rithm. Users and BSs do not need to be informed of the 
channel status information and interference. The user can 
learn the optimal allocation strategy through historical 
energy efficiency, subchannels, and power values.

Q-Learning
Q-learning is a model-free reinforcement learning algo-
rithm. Therefore, the process of interaction between 
agent and environment must be considered. The basic 
idea of Q-learning is to train the tuples composed of the 
state, action, reward, and next state. In the Q-learning 
algorithm, a Q -table is constructed between the state 
and action to store the Q-values, which are the reward 
for taking action at a certain time plus the maximum 
expected value for the next step. Then, the action that 
can obtain the greatest reward is selected according to 
the Q-value to get as much return as possible. At each 
time slot, the agent first observes the environment and 
then performs actions to interact with it. The environ-
ment changes after an action is executed, and the quality 
of those changes is expressed by the reward returned 
from the environment. Therefore, the purpose of 
Q-learning is to get as much reward as possible.

Suppose the state set is S and the action set is A. At each 
time slot, t, the agent adjusts the action, ,At  at the next 

moment according to the current state, ,St  and reward, ,Rt  
so that the next state, ,St 1+  can be determined. Consider-
ing that a variety of actions can be selected after a state 
and that each action gets different states and rewards after 
being executed, the next question is the choice of the ac-
tion, that is, the formulation of the strategy, .r  The actions 
under the optimal strategy can get the biggest reward. The 
future potential value of a state can be expressed by the 
value function, which is defined as the expectation of the 
cumulative discount reward, because, with the increase of 
time, the reward will be discounted. The value function un-
der strategy r  is the reward of the current state plus the 
discount of the state value function under the next strategy.

The value of an action in a certain state can be ex-
pressed by an action-value function, that is, ( , ).Q s a  The 
Q-function can be understood as the sum of the reward 

( , )r s a  obtained after the execution of the action and 
the discount state value function under the next opti-
mal strategy. The value function of the state under the 
optimal strategy is equivalent to the maximum action-
value function of all of the possible actions in the state. 
Therefore, as long as the maximum Q-value is found, the 
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Figure 2 (a) The approximate optimization scheme based on a 
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optimal strategy can be found. In Q-learning, the Q-value 
is updated recursively. The Q-value of the previous slot, 
the learning rate, and the maximum Q-value of the next 
state are taken into account in the updating rules.

Event-Triggered, Q-Learning–Based Resource Allocation
We introduced the idea of Q-learning into the research of 
subchannel and power allocation in UDNs, so we need to 
correlate the states, actions, rewards, and strategies in 
Q-learning with the actual process of energy efficiency 
optimization. The corresponding relationship is as fol-
lows. We regard users in small cells as agents.

 ■ State: We define the current channel occupied by the 
user and the allocated power as the state of the agent.

 ■ Action: The actions taken by each agent are divided 
into two aspects: subchannel allocation and power 
allocation. Because NOMA is considered in the UDN, 
the user can select all of the subchannels. We also dis-
cretize the power and divide it into different levels, 
and the user can select all of the levels of power.

 ■ Reward: Users need to achieve quality of service con-
straints by adjusting their power. The energy efficien-
cy of each user is regarded as a reward, but, at the 
same time, the user’s signal-to-interference-and-noise 
ratio (SINR) needs to be greater than the SINR thresh-
old. Therefore, when the SINR satisfies the condition, 
the reward is the value of the energy efficiency; oth-
erwise, the reward is zero.

 ■ Action selection strategy: In the strategy selection of the 
Q-learning algorithm, there is a balance between explo-
ration and exploitation. In Q-learning, an f-greedy algo-
rithm and a Boltzmann distribution algorithm are often 
used as strategies. The f is generally a small value, 
which is used as a probability value for selecting ran-
dom actions. Random actions are used to explore the 
effects of unknown actions, which is conducive to 
updating Q-values and obtaining better strategies. The 
use of a greedy strategy to calculate an optimal action 
based on the current Q-value is the exploitation. It can 
be used to judge whether the algorithm is effective. 
The Boltzmann distribution algorithm can control the 
probability of the actions by adjusting the temperature 
parameters. The strategy can be understood as the 
probability of choosing an action. A larger temperature 
parameter means that all actions can be selected with 
equal probability. As the temperature parameter 
decreases, the action with the largest Q-value will be 
selected as the maximum probability. Therefore, in this 
article we choose the Boltzmann distribution algorithm 
as the strategy.
Because we treat users as agents, each user needs to 

conduct a policy search in each time slot. The agent’s en-
tire learning process is periodic. When the learning envi-
ronment is relatively stable and if the number of users in 
the system is large, the periodic policy search will occupy 

a certain amount of computing resources. The event-trig-
gered control method is an effective alternative to periodic 
control. Therefore, for the learning process of agents, we 
propose an event-triggered Q-learning algorithm that aims 
to reduce resource consumption in the learning process.

Before the agent makes a decision, we set some condi-
tions in advance, that is, events. When the condition is es-
tablished, the agent updates the policy and executes the 
action; otherwise, it executes the action at the last time 
slot. Agents need to observe the environmental state infor-
mation before selecting actions. We regard the Q-value as 
the observed information of the current time slot. Then, we 
can use the change rate of the previously observed value 
and the current observed value as the event-trigger condi-
tion. If agents consider only the change rate of their own 
observations, it will not be conducive to learning the op-
timal strategy of a group. Therefore, we add the deviation 
of the current reward to the design of the event-triggering 
conditions. When calculating the energy efficiency of a cer-
tain user, other users on the same subchannel will interfere 
with it, and the reward will be affected. Thus, we divide the 
agents on the same channel into a group.’ Then, the devia-
tion of the agent’s current reward is the difference between 
the average reward of the agent group and that of the agent. 
Therefore, in the event-triggered Q-learning algorithm, we 
take as events the rate of change of the Q-value in the cur-
rent step and the previous step and also the deviation of the 
reward of the agent. When the change rate of the observed 
value and the deviation of the reward are greater than the 
set threshold, that is, the event is triggered, the agent up-
dates the strategy and action; otherwise, it performs the ac-
tion of the last moment.

Figure 3 illustrates the process of an event-triggered Q-
learning algorithm. Each agent observes the environment 
information, state, and reward. Then, the agent needs to de-
termine whether the event-triggered condition is satisfied 
before updating the strategy. If the condition is satisfied, the 
agent will find the optimal strategy and update the action 
based on current information. Otherwise, it will go directly 
to the next step, and the state will be the same as before. 
After interacting with the environment, the next state and 
reward can be obtained. Finally, the agent updates the Q-
table. Each agent cycles the process until it converges.

Simulation Results
Having explained the proposed event-triggered Q-learn-
ing resource allocation algorithm process, we evaluate 
its performance. Because the aim of the algorithm is to 
maximize system energy efficiency, in the simulation we 
evaluate the algorithm only from the aspect of energy 
efficiency. SBSs are randomly distributed within the 
scope of the MBS, while small cells use NOMA to support 
access to numbers of users. We set the radius of the MBS 
and each SBS to 500 and 10 m, respectively. The band-
width is limited to 1 MHz, and the carrier frequency is 2 
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GHz. The noise power spectral den-
sity is set to –174 decibels with ref-
erence to one milliwatt/Hz.

Figure 4 shows the energy ef-
ficiency curves of the event-trig-
gered Q-learning algorithm and the 
traditional Q-learning algorithm 
in 500 time slots. Considering the 
large number of BSs deployed in 
the UDN, we set the density of the 
SBSs to 500 small cells/km2. The Q-
learning algorithm is a process of 
continuous trial and error, and the 
energy efficiency directly obtained 
is a curve of constant twists and turns. Therefore, we re-
cord the maximum energy efficiency; for each time slot, 
this recorded value is compared with the energy efficien-
cy value obtained in the current time slot. If the recorded 
value is less than the energy efficiency value obtained 
in the current time slot, the recorded maximum energy 
efficiency is updated. In addition, we used the Monte 
Carlo method to smooth the resulting curve. From Fig-
ure 4, we find that the value of the energy efficiency can 
reach convergence with the increase of the time slots. 
Compared with the classical Q-learning algorithm, the 
proposed event-triggered Q-learning can achieve better 
results, which shows that the algorithm can find an im-
proved strategy faster.

Figure 5 depicts the change of the energy efficiency 
when the number of users on the small cells increases 
from two to 12 under different optimization schemes. 
We compare the proposed algorithm with an equal 
power allocation scheme. As seen in the figure, the 
event-triggered Q-learning and classical Q-learning al-
gorithms can be significantly better than existing ones. 
As the number of users grows, the energy efficiency 
of the Q-learning algorithm gradually decreases, but, 
when the number of users exceeds eight, energy effi-
ciency remains stable.

Figure 6 illustrates the effect of different densities of 
small cells on energy efficiency under different optimiza-
tion schemes. There are two definitions of UDNs. When 
the density of small cells is much larger than the density 
of users or when there are more than 1,000 small cells/
km2, the network is considered to be a UDN [15]. We sim-
ulated the change of the energy efficiency from 200 to 
1,200 small cells/km2. It can be seen that with increasing 
density the energy efficiency of the different schemes 
decreases. In addition, compared with OMA, NOMA may 
suffer some performance losses when the BSs’ density 
is greater than a certain threshold in the UDN. In fact, 
in the case of high small-cell density, the interference 
between the BSs will be more serious. Moreover, more 
of the BSs’ circuit power will be consumed, which leads 
to performance degradation of the system.
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Figure 3 The event-triggered Q-learning algorithm process.
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Conclusions
In this article, the idea of event-triggered Q-learning was 
introduced into the research of subchannel and power 
allocation in UDNs, and a resource allocation algorithm 
based on event-triggered Q-learning was proposed. Users 
in small cells are regarded as agents, and energy efficien-
cy is viewed as the reward. Through interaction with the 
environment, users dynamically adjust the action of the 
next time slot, and the goal is to maximize the cumulative 
reward value.

In event-triggered Q-learning, users with learning 
ability do not need to know the exact channel state 
information and can choose subchannels and power 
autonomously by strategy. Event-triggered Q-learning 
focuses on the research of action and policy in the 
learning process. Before making a decision, the agent 
judges whether to update the policy and perform the 
action according to the event-triggered condition. The 
simulation results show the effectiveness of the pro-
posed event-triggered, reinforcement-learning-based 
resource allocation algorithm. In the future, we will con-
sider other techniques in event-triggered, Q-learning- 
based UDN resource allocation, such as millimeter-
wave communications.

Future Works
In UDNs, although higher spectrum resource utiliza-
tion and system capacity can be obtained by densely 
deploying small cells with low power consumption 
and shor t distances,  inter ference and power 

consumption are also severe. Therefore, effective 
resource management schemes have always been the 
research hotspot for UDNs. However, there are still 
some problems to be solved in the resource alloca-
tion of event-triggered Q - learning in UDNs. The 
hybrid resource allocation mechanism of OMA and 
NOMA should be further considered to provide a 
more flexible matching mechanism for subchannels 
and users. When BS density increases gradually, the 
use of NOMA results in the performance degradation 
of the system.

In addition, there are many important factors that 
need to be considered and optimized together, for ex-
ample, the user clustering mechanism. The increasing 
density of small cells in UDNs makes the distance be-
tween BSs closer. Therefore, the user’s choice of access 
to the appropriate BS also plays an important role in the 
optimization of resources in UDNs. The application of 
machine learning to wireless resource allocation is an-
other important aspect of our upcoming research. In the 
future, machine learning can be further applied to the 
field of communication, and algorithms that can quickly 
find an optimal resource allocation scheme without in-
creasing computational complexity can be studied.
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