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Abstract

Nowadays, the multi-access interference problem in the ISAC systems can not be ignored. The

study on interference management in ISAC has been envisioned as one of key technologies to support

ubiquitous sensing functions. Different from the current works, a communications-sensing-intelligence

converged network architecture is proposed to coordinate interference in this paper. Each base station

equips with the individual deep neural networks to allocate power and beamforming. On this basis, the

interference management is transformed into a functional optimization with stochastic constraints. An

unsupervised learning algorithm is proposed to allocate power for interference management. Further-

more, a transfer learning method is presented to obtain the interference management in terms of transmit

beamforming. Finally, the distributed management is obtained from the local channel state information in

the multi-cell scenario. Simulation results verify the effectiveness of the proposed unsupervised learning

interference management method in the ISAC systems.
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Index Terms

Integrated sensing and communication, distributed interference management, unsupervised learning,

transfer learning.

I. INTRODUCTION

With the development of integrated sensing and communications (ISAC) systems, ubiquitous

sensing is required for multi-user communication in future wireless networks [1]. Widespread

access and large-scale coordination generate more complicated signal interference problems.

These problems include the clutter in harsh environments, the interference from multiple users

in multi-cell communications, and self-interference caused by leakage of transmitter. Besides, the

waveform design, transceiver design, and signal process algorithm in the ISAC system indicate

that the radar subsystem and the communication subsystem are interdependent. On the one hand,

the throughput and sum rate are impaired. On the other hand, dynamic radar detection range is

decreased. Position precision and coverage capacity are weaken, correspondingly. Therefore, an

effective and flexible interference management is worthy of further study in the surging ISAC

systems [2].

Nowadays, the radar and communication subsystems are affected by each other due to the same

spectrum. The interference in the communication-centric ISAC systems can be derived from two

items. One is the multi-user communication signal interference and the other one is generated by

the dedicated sensing streams [3]. The multi-user communication signal interfere with sensing

and impairs target estimation [4]. Meanwhile, the interference caused by the dedicated sensing

leads to a notable degradation in the transmitted symbols. Thus, more attention should be paid

to mitigating two kinds of interference in the ISAC systems.

Existing researches on traditional interference management in cellular networks is fruitful,

including the weighted minimum-mean-square-error (WMMSE) algorithm [5], semi-definite re-

laxation [6], and successive-convex-approximation (SCA) algorithm [7]. Meanwhile, there are

some existing works on the interference management in the ISAC systems [8]–[11]. By exploiting

the constructive multi-user communication signal interference, Liu et. al in [8] minimized the

interference from the ISAC base station for a given quality of service and transmit power budget.
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Barneto et. al in [9] utilized the combination of antenna separation to obtain the interference

cancellation from both analog and digital aspects. With the aid of zero-force beamforming, the

radar interference and multi-user communication interference can be eliminated [10]. Wang et.

al in [11] proposed utilizing non-orthogonal multiple access technology to cancel interference

from these two types. The part of the dedicated sensing signal can be mitigated via successive

interference cancellation.

On the other hand, the distributed MIMO radar can offer improved sensing performance due

to distributed antennas deployment. To save the unnecessary cost, these participating radars are

deployed in the edge base stations. In other words, ISAC network architecture is suitable for the

distributed MIMO radar. Ahmed et al. proposed a distributed dual-function radar-communication

MIMO system firstly [12]. And the power allocation and target localization could be obtained in

this system. Wu et al. designed a novel resource-aware strategy for heterogeneously-distributed

joint radar and communications [13]. The network-level ISAC presented in [2] referred to the

distributed antenna systems. The distributed ISAC systems can obtain the flexible and diverse

performance to support ubiquitous sensing.

The high dimensionality caused by the variable and constraint is intractable. Considering that

artificial intelligence (AI) algorithms have learning and memory capabilities, so they have advan-

tages in the identification, avoidance, and utilization of interference signals [14]. AI algorithms

obtain the prior information of interference signals to the maximum extent and transform them

into sensing areas, so as to improve the anti-interference ability of the system. The unsupervised

learning algorithm has gradually obtained recognition and attention from the academics [15].

The interference management in the ISAC system can be transformed into a constrained

optimization [8], [10], [11]. The constrained problem could be non-convex, mostly. To solve

constrained optimization problems, the primal-dual learning is a promising approach, which

is based on Lagrangian relaxation and updates parameters in primal and dual spaces in turn.

Besides, the transfer learning is an efficient method, which can transfer the developed models

into the related problems [16]. The constrained optimization of interference management is

not an exception. The concept of transfer learning is cost-saving in learning wireless resource

management [17]. Similar to the wireless resource management, the transfer learning can be

November 16, 2022 DRAFT

Page 31 of 120 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

applied to the interference management in the ISAC system.

Without training set and global channel state information (CSI), the distributed unsupervised

learning technique is worthy of a try. Al-Abbasi et al. proposed the concept of DeepPool, a

distributed model-free learning algorithm [18]. The work in [19] proposed a novel approach

for ride sharing. A distributed adaptive unsupervised learning is utilized to minimize the travel

distance and the average idle delay. However, the proposed technique can not detect the targets

precisely with local CSI. The work in [20] paid attention to the interference channel estimation.

The work in [21] provided a robust beamforming solution under the local interference CSI. The

authors aimed to maximize the detect probability and to guarantee the constraint of downlink

signal-to-interference-plus-noise ratio (SINR).

A large volume of data is generated from multi-cell ISAC systems, which requires the AI

method to process properly. The interference management is not an exception [22]. The dis-

tributed learning has been envisioned as an efficient solution to distributed learning problems

[23]. This shift from the centralized model-free learning technique to the distributed one attracts

many researchers’ attentions. With the help of the distributed learning concept, Wen et al.

investigated multiple ISAC devices in edge AI system [24]. This scheme is superior to the

conventional optimization algorithms in terms of communication performance and computing

complexity. Utilizing the edge intelligence, a distributed unsupervised interference management

can be considered in the ISAC systems.

The ISAC systems generate more information including sensing and communication and more

abundant computing resources would be equipped in the future networks. How to utilize AI tech-

nology to obtain resource management in ISAC networks is a tendency in 6G networks. In this

context, we investigate the distributed interference management for ISAC systems cooperating

with edge intelligence. Firstly, we propose an unsupervised algorithm to obtain interference

management in ISAC networks. Moreover, a transfer learning is utilized to obtain transmit

beamforming, which can reduce the training cost. Furthermore, the more practical situation is

considered, in which each base station has the local CSI. Herein, the distributed unsupervised

interference management is designed in this paper. In particular, the main contributions of this

paper are summarized below.
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• The communications-sensing-intelligence converged network architecture: We propose a

communications-sensing-intelligence converged network architecture where base stations are

equipped with the corresponding edge intelligence to save overhead, while each base station

also has a radar communication dual function. The multi-user communication interference

and the interference imposed by dedicated sensing streams are considered in the proposed

scheme.

• The unsupervised learning method to serve interference management: Compared with the

need for sample training of traditional DNNs, an unsupervised learning method is deployed

to obtain the interference management. The cost function iterates via primal-dual learning

method. To optimize the spectral efficiency, the proposed unsupervised learning algorithm

allocates power to aid the interference management. In this scheme, the developed training

set is not required.

• The transfer learning for solving transmit beamforming problem: For the existing multi-

access interference problem in the ISAC systems, we design a beamforming mechanism that

considers the local CSI to reduce interference. We focus on utilizing transfer learning to

obtain the interference management in terms of beamforming. Therefore, a transfer learning

method is utilized to optimize the transmit beamforming in ISAC systems.

• The distributed management to be applied in local CSI situation: To be more realistic, the

local CSI is considered. Accordingly, the distributed DNNs that can only needs the local

knowledge is designed. The structure consists of a qualifier and an optimizer, which can

obtain the distributed interference management in the ISAC systems.

The remainder of this paper is summarized as follows. The system model and the formulation

of the interference management are presented in Section II. Section III presents the unsupervised

learning method and transfer learning method with global CSI. In Section IV, the case of local CSI

is considered and the distributed unsupervised algorithm is presented. The designed algorithms

are evaluated by simulation results from a single base station and multiple base stations in Section

V. The conclusions are given in Section VI.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Fig. 1. The multi-user MISO scenario in the ISAC systems.

Fig. 1 presents a multi-user multiple-input single-output (MISO) scenario in the ISAC systems,

in which each base station is equipped with edge intelligence to obtain interference management.

J base stations with M antennas and K single-antenna users are deployed. The set of base

stations, each base station’s antennas, and served users are represented by J = {1, 2, ..., J},
M = {1, 2, ...,M}, and K = {1, 2, ..., K}, respectively. Practically, the separated deployment is

considered in this paper [8]. MC and MR denote the number of communication antennas and

radar antennas for the k-th user, respectively. Note that MC +MR = M. This implies that the

transmit antennas of base station j is divided into two dedicated functions. Here, dk [t] and nk [t]

are the communication symbol and received noise at the time slot t, following CN (0, N0). st

is the radar signal and its sample covariance matrix R ∈ C
MR×MR is

1

T

∑T

t=1
sts

H
t = R. (1)
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T is set as the length of the radar signal. The received signal of the user k after transmit

beamforming is expressed as

yk [t] = gT
k

K∑
l=1

Fldl [t] + fTk st + nk [t] , ∀k, (2)

where gk ∈ C
MC×1 and fk ∈ C

MR×1 are the channel vector of communication signal and radar

signal, respectively. Fk ∈ C
MC×1 is the beamforming vector of the user k. The channel vectors

are set as hk = [fk;gk] ∈ C
M×1. The channel follows flat Rayleigh fading. We assume that the

channel H = [h1,h2, ...,hK ] ∈ C
N×K is locally estimated via the pilot symbols. However, the

global CSI can not be acquired by each base station.

The communication transmit power is constrained within the power budget Pmax,∑K

k=1
τk · ‖Fk‖2 ≤ Pmax, (3)

where τk ∈ {0, 1} is the k-th user’s scheduling variable, and τk = 1 indicates that the user

(target) k is accessed successfully. Otherwise, τk = 0. The scheduling variable follows the rules

that each user occupies one channel at a time. Therefore, the access scheduling variable can be

constrained in the following inequality: ∑K

k=1
τk ≤ 1. (4)

According to the design concept of the MIMO radar probing signals [25], the design target

of the MIMO radar transmit beamforming including two aspects. For one thing, the transmit

power of optimized beamforming should be given at directions. It can ensure the transmit power

matches the desired beam pattern. For another, the cross correlation pattern among signals should

be reduced as soon as possible. These signals at several given directions and the cross correlation

pattern of them has a impact on the performance of sensing performance.

The design of beampattern generally is transformed into the design of the covariance matrix

R. Herein, a constrained beampattern error minimization is provided,

min
α,R

∑L
l=1

∣∣αd (θl)− aH (θl)Ra (θl)
∣∣2

s.t. diag (R) = Pmax1
N

,

R � 0,R = RH ,

α � 0,

(5)

November 16, 2022 DRAFT

Page 35 of 120 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

where {θl}Ll=1 is defined as an angular grid that covers the range of [−π/2, π/2]. A uniform linear

antenna is assumed to be deployed in the proposed ISAC systems, so the steering vector of the

transmit antenna array a (θl) ∈ C
MR×1 is defined as

√
1

MR

[
1, ej2πd/λ sin θl , ..., ej2π(MR−1)d/λ sin θl

]T
.

The added constraints ensure that the waveform has the same average power. α is a scaling factor

and we set α equals to 1. After setting the beam pattern error, another optimization problem for

cross correlation has been proposed by Stoica et al. [25], which is given by

min
t,R

−t
s.t. aH (θ0)Ra (θ0)− aH (θl)Ra (θl) � t, ∀θl ∈ Ω,

aH (θ1)Ra (θ1) = aH (θ0)Ra (θ0)
/
2,

aH (θ2)Ra (θ2) = aH (θ0)Ra (θ0)
/
2,

R � 0,R = RH ,

diag (R) = P01
N
.

(6)

For better problem formulation in the proposed ISAC system, the beam pattern error and mean-

squared cross correlation pattern are introduced in the problem. The beam pattern error is one of

the key sensing performance metrics in the proposed system [10]. It is aimed to optimize beam

in provided desired directions. Lr,1 (R) is defined as the beam pattern error and it can be given

by

Lr,1 (R) =
1

L

L∑
l=1

|d (θl)− P (θl)|2, (7)

where P (θ) = aH (θ)Ra (θ) is transmit power in direction θ and the desired power d (θ) is

calculated by

d (θ) =

⎧⎨⎩ 1, θp −Δ/2 ≤ θ ≤ θp +Δ/2, p = 1, 2, 3,

0, otherwise,
(8)

where {θl}Ll=1 are sampled from −90◦ to 90◦ with the resolution of 1◦. The subscript of p in (8)

symbolizes the index of the ideal beam patterns. Problem (5) is specified by Lr,1 (R) in formula

(7).

Meanwhile, the loss function is also derived from the mean-squared cross correlation pattern

Lr,2 (R), which is calculated as

Lr,2 (R) =
2

L2 − L

L−1∑
l=1

L∑
r=l+1

|Pc (θl, θr;R)|, (9)

November 16, 2022 DRAFT

Page 36 of 120IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9

where Pc (θ1, θ2;R) = aH (θ1)Ra (θ2) is the cross correlation pattern in directions of θ1 and θ2.

Problem (6) is specified by Lr,2 (R) in formula (9). Different from the sensing-centric problem in

the existing literature [10], the communication-centric problem is considered. The beam pattern

error and cross correlation pattern are transformed into the constraint rather than the objective.

The beam pattern error and cross correlation pattern can be set as a constraint.

Lr,1 (R) + Lr,2 (R) � ε. (10)

Constraint (10) implies that the error can not exceed the threshold ε, which ensures the resolution

of radar detection.

Furthermore, the k-th user’s SINR can be given by [26]

γk =

∣∣gT
kFk

∣∣2
K∑
l �=k

|gT
kFl|2 + fTk Rf∗k +N0

, (11)

where
K∑
l �=k

∣∣gT
kFl

∣∣2 in the denominator is the multi-user interference 1 and fTk Rf∗k is the interfer-

ence imposed by dedicated sensing streams.

B. Problem Formulation

To the best of our knowledge, resource management in wireless communication system can be

evaluated by the instantaneous performance f (h,p (h)), such as sum rate, power consumption,

energy efficiency. Here, h represents unstable and changing wireless environment, such as

channel realization, user access situation, service requirement, etc. Practically, the wireless

communication environment includes uncertain factors, which results in the the unstable and

changing wireless environment. p (h) denotes corresponding instantaneous resource allocation.

Nevertheless, the instantaneous system performance varies frequently. The long-term mathemat-

ical expectations Eh [f (h,p (h))] is a more valuable metric. It can be given by

max
p

Eh [f (h,p (h))]

s.t. Eh [gk (h,p (h))] � Gk,

k = 1, ..., K.

(12)

1The indexes k ∈ K, l ∈ K symbolize the index of user. The index k denotes the communication user, the index l is

symbolized as interference one.
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As a state-of-the-art wireless network architecture, ISAC systems also can be applied into the

optimization problem. Similarly, the interference management can be designed as a long-term

instantaneous performance function [27]. In this paper, h is the channel state and p (h) is the

transmit power matrix p or transmit beamforming matrix F. f (h,p) or f (h,F) can be the data

transmission rate log (1 + γk). The objective function in problem (12) can be given by

f (h,p (h)) =
∑K

k=1
log (1 + γk)τk

K∏
k �=l

(1− τl). (13)

Since users contend for channel access, transmission of user k in the current time is successful

if and only if τk = 1 and τl = 1 for all k �= l. Combined with constraints (3), (4), and (10),

the goal of interference management in this paper is to realize the capacity maximization. The

optimization problem of multi-user MISO scenario in the ISAC systems can be formulated as

max
p,τ

Eh

[∑K
k=1 log (1 + γk)τk

K∏
k �=l

(1− τl)

]
s.t. τk|pk|2 ≤ Pmax,

Lr (R) ≤ ε.

(14)

The mean square error (MSE) is unified as Lr (R) = Lr,1 (R) + Lr,2 (R). Problem (12) is a

non-convex problem so the traditional convex method is intractable to problem (12). In this

context, an optimization method utilizing deep learning is introduced in the next section.

III. UNSUPERVISED LEARNING WITH THE GLOBAL CSI

In this section, the feasibility of the unsupervised learning interference management is dis-

cussed and the approximation of DNNs is confirmed to be applied to problem (14). Subsequently,

we introduce the primal-dual learning optimization to obtain the solution of problem (14). And

updating the iterative parameters and dual variables updating is also presented in detail. Finally,

a transfer learning algorithm is introduced to solving transmit beamforming, which can obtain

interference management.

A. Learning to Interference Management

Deep learning techniques have been applied to wireless resource allocation such as cognitive

radio networks [28], interference channels [29], and simultaneous wireless information-power
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transmission networks [30]. To solve problem (14), the allocation policy p (h) is parameterized

by a DNN π (h;ω) as

p (h) = π (h;ω) . (15)

The set of parameters ωr consists of weights wr and bias br of each layer r. The DNN is

feed-forward and composed of R fully-connected layers.

Utilizing enough linear and non-linear operations, it can be accurately approximated by p (h).

For any ε > 0, π (h;ω) can obtain the approximation with enough R layers and activation

functions.

sup
h∈H

‖p (h)− π (h;ω)‖ ≤ ε. (16)

The utilization of the universal function approximation property in DNNs can be suitable for

problem (14). Constraint (16) utilizes the universal approximation theorem [31], for a given set

H. There exists a set parameter ω such that the DNNs’ structures in (16) can approximate any

optimized policy π (h;ω) with slight positive error ε.

Utilizing enough linear and non-linear operations, it can be accurately approximated by p (h).

For any ε > 0, π (h;ω) can obtain the approximation with enough R layers and activation

functions. There exist a set parameter such that the associated DNN of the structure in (16) can

approximate any continuous function with arbitrary small positive error ε. The proof of (16)

refers to [32].

Proof: Pick R such that 1/R < ε/2. For r ∈ {1, 2, ..., R − 1} set βr = 1/R. Pick M > 0

such that ξ (−M) < ε/2R and ξ (M) > 1 − ε/2R. Because ξ is a sqashing function such

an M can be found. For r ∈ {1, 2, ..., R − 1} set or = sup {ω : π (h;ω) = o/R}. Set rR =

sup {ω : π (h;ω) = 1− 1/2R} . Because p (·) is a continuous sqashing function such or’s exist.

For any r < s let Ar,s ∈ A be the unique affine function satisfying Ar,s = M and Ar,s = −M .

The desired approximation is then π (h;ω) =
∑R−1

r=1 βiξ (Ar (λ)). It is easy to check each of

the intervals (−∞, r1] , (r1, r2] , ..., (rR−1, rR] , (rR,+∞], we have sup
h∈H

‖p (h)− π (h;ω)‖ ≤ ε.
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B. Primal-dual Learning Optimization

The Lagrangian function for problem (12) can be expressed by

L (ω,λ) = Eh [f (h,π (h;ω))]

+
∑K

k=1 λk (Eh [gk (h;π (h;ω))]−Gk).
(17)

The non-negative variables λ � {λk, ∀k} are associated with constraints Eh [gk (h,π (h;ω))]−Gk.

The dual function Dπ (λ) of problem (12) is defined by

Dπ (λ) = min
ω
L (ω,λ) , (18)

The dual function D (λ) is written as

max
λ
D (λ)

s.t.λk � 0 k = 1, ..., K.
(19)

The primal variables can be updated by

ωt = ωt−1 + η∇ωL
(
ωt−1,λt−1)

= ωt−1 + η (Eh [∇ωf (h,π (h;ωt−1))]

+
∑K

k=1 λ
t−1
k (Eh [∇ωgk (h,π (h;ωt−1))]−Gk) .

(20)

The dual variables λtk is updated by the subtracting the gradients and projecting onto the positive

orthant:

λtk =
(
λt−1k − η∇λk

D (
λt−1))

+

=
(
λt−1k − η (Eh [∇ωgk (h,π (h;ωt−1))]−Gk)

)
+
.

(21)

The gradients ∇ωf (h,π (h;ω)) and ∇ωgk (h,π (h;ω)) are calculated by the chain rule:

∇ωf (h,π (h;ω)) = ∇πf (h,π (h;ω)) · ∇ωπ (h;ω) ,

∇ωgk (h,π (h;ω)) = ∇πgk (h,π (h;ω)) · ∇ωπ (h;ω) .

(22)

However, the updates of primal variables ωt and dual variables λt need the perfect knowledge

of observations from other base stations. Practically, The knowledge of the global CSI can not

be available.
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Algorithm 1 Iterative Unsupervised Learning Optimization Algorithm

1: Input Initialize Tmax, parameters of DNNs ω0 := {ω0
k, ∀k} and dual variables λ0 :=

{λ0k, ∀k}, set t = 0.

2: repeat

3: a) Sample a mini-batch set S ⊂ H;

4: b) The gradients ∇ωf (h,π (h;ω)) and ∇ωgk (h,π (h;ω)) are calculated by (22);

5: c) Update parameters of DNNs ωt through (20);

6: d) Update dual variables λt through (21);

7: e) The step size updates t→ t+ 1.

8: until Convergence or t = Tmax

Notably, the pseudocode of the iterative unsupervised learning optimization algorithm is sum-

marized in Algorithm 1. In the stage of initialization, the maximum number of iterations Tmax,

parameters of DNNs ω0 := {ω0
k, ∀k} and the corresponding dual variables λt are initialized.

Then the algorithm steps into iterations. The mini-bath gradient method is deployed for more

efficient training. Subsequently, the gradients of performance function and constraint function

are calculated by formula (22). The parameters of DNNs are updated in formula (20). The

corresponding dual variables are also updated by formula (21). The algorithm does not end until

the convergence is obtained or t = Tmax. The analytical results would be verified in Section

Simulation Results and Discussions.

C. Transfer Learning Optimization for Transmit Beamforming

With the emergence of more and more application scenarios of machine learning wireless com-

munication networks, the data in ISAC systems can be used to guide power control, bandwidth

allocation, and beamforming, and if the existing data and model training can be used to solve

different resource allocation problems, transfer learning has obtained more and more attention.

Transfer learning can be implied in the hardware heterogeneity for different settings. In other

words, if an resource allocation algorithm is well designed, the related resource allocations also

can be solved efficiently by the transfer learning method.
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14

Transfer learning applies knowledge or patterns learned in a domain or task to different but

related domains or problems. Deep learning requires a large amount of high-quality labelled

data, the technique of pre-training combined with fine-tuning is now a very popular trick in

deep learning, especially in the field of images, many times will choose pre-trained ImageNet

to initialize the model. Interference management of ISAC systems can be obtained through

power control, but in functions of communication and sensing, it is necessary to extend power

control to beamforming in the complex domain. While power control and beamforming are

related, the combination of DNN networks and transfer learning ideas under existing interference

management can further realize the beamforming strategy under optimal spectral efficiency [35].

In the scheme of transfer learning, there exist a domain D = {F, P (X)} and a task T =

{Y, f (·)}. F represents feature and P (X) is distribution. Let Y and f (·) denote the label and

predict function, respectively.

Correspondingly, Dp is denoted as real-domain power control parameter and Dw is denoted

as complex-domain beamforming parameter. The transfer learning is utilized to solve transmit

beamforming as follows:

argmin l
(
fw

(
X t

w, D
t
p, T

t
p

)
, Y t

w

)
s.t.Dt

p �= Dt
w, T

t
p �= T t

w.
(23)

where f t
w is the predict function of transmit beamforming, and it can be represented by spectral

efficiency. And fw
(
X t

w, D
t
p, T

t
p

)
is calculated by the existing domain Dt

p and task T t
p .

f t
w =

∑K

k=1
log(1 + γk). (24)

Tracing back to the initial optimization problem (14), we can change the local output layer

through the power-control DNNs to obtain further control of transmit beamforming.

max
F,τ

Eh

[∑K
k=1 fw (t) τk

K∏
k �=l

(1− τl)

]
s.t. τk|Fk|2 ≤ Pmax,

Lr (R) ≤ ε.

(25)

For the corresponding algorithm implementation, we still use the original dual learning opti-

mization, and the same allocation strategy will change accordingly on the original basis π (h;ω)

πw (h;ω;φ) = ψR (ξR−1 (...ξ1 (ξ0 (h;ω0) ;ω1) ...;ωR−1) ;φR) . (26)
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15

The output of trained DNNs is replaced by N×2 transmit beamforming policy πw (h;ω), rather

than N × 1 power control policy π (h;ω).The last output layer is changed with φR and ψR (·).
The transfer learning can reduce the overhead of training, because the power control and transmit

beamforming have relationship. The developed model is suitable for the transmit beamforming,

which is oriented to power control.

Fig. 2. The principle of the transfer learning for interference management.

As shown in Fig. 2, the interference management for transmit beamforming can be obtained

by two solutions. The one is direct unsupervised learning and the other one is transfer learning.

There are no obvious differences between power control and transmit beamforming in direct

unsupervised learning. A new optimizer is constructed and its output will change from one-

dimension power control to two-dimension transmit beamforming. The shortcoming of Solution

1 is that it can not learn more complicated CSI efficiently. To overcome this problem and

make full use of the occupied knowledge, the transfer learning is adopted to solve the transmit

beamforming. In the simulation results, the last output layer is replaced by a new linear layer,

in which the number of elements is set as 2MK. The rest of settings are in accordance with

the interference management in terms of power control. In this context, the beamforming in
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ISAC systems is obtained to avoid unnecessary training cost. The analytical result implies that

the transfer learning method can obtain the same performance under the less training cost,

compared with the direct unsupervised learning method.

IV. DISTRIBUTED UNSUPERVISED LEARNING WITH THE LOCAL CSI

The distributed unsupervised learning in the ISAC systems will be introduced in this section. In

many cases, a kind of imperfect local CSI should be considered, since the quantitative information

of neighbors can save the distributed computing power of individual base stations. To minimize

the overhead of the total systems, each base station can only obtain local CSI, and then quantifies

its information status and passes it to its neighboring base stations through a link with limited

capacity. This quantitative information from other base stations can further save the distributed

power consumption of individual base stations. The set of base stations is represented by J =

{1, 2, ..., J} and the index of base station is denoted as j. In distributed architecture, each edge

base station is equipped with the function of communication and sensing. Meanwhile, due to

the distributed computation nature, each base station has the local process capacity.

The proposed distributed framework consist of a stochastic binarization quantizer and a

distributed learning optimizer in each base station. As it is shown in Fig. 3, a base station

is equipped with two DNNS, including a quantizer and a optimizer. Let ωQ,j and ωD,j denote

the parameters of quantizer and optimizer, respectively. The channel state hj imported to the

quantizer and optimizer of the base station. The quantizer produces the quantify information qj

to concatenate the channel state hj to the optimizer. In Section III, the unsupervised learning

algorithm and its transfer learning algorithm can be applied into the distributed framework. The

difference between these two modes lies on the quantify operation.

A. Stochastic Binarization Quantizer

The quantizer of base station j employs a vector qj (·) to quantize the information from

neighbouring base stations. qj (·) is regarded as a quantization noise and the length is Lj .

vj = qj (hj) , j = 1, ...,J . (27)
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Fig. 3. The DNNs’ structure of base station in the ISAC systems.

vj
Δ
= [vj,1, ..., vj,L] ∈ {−1,+1}Lj , which is produced by the hyperbolic tangent function tanh(·).

This is because the output of the quantizer DNN is activated by the tanh(·). However, the output

vj is not discrete. We should transform continuous vj into the discrete state. Thus, an affine

function β (x) = 1+x
2

is introduced to guarantee that the value of the output is in the two

possibilities of −1 and 1. A scalar qj,i is the i-th quantize result in base station j.

qj,i =

⎧⎨⎩ 1− vj,i, (β (vj,i)).

−1− vj,i, (1− β (vj,i)).
(28)

Formula (28) is a binarization operation. The relationship between qj in (27) and qj,i in (28) is

qj
Δ
= [qj,1, ..., qj,L]. Following obtaining the reasonable qj,i, a discrete output for the quantizer

v̂j can be obtained by

v̂j = vj + qj. (29)

Subsequently, according to the status information hj and calculation rules cj of the transmission,

the transmission of the channel state hj to the tipping point is obtained. Let zD,j (·) denote the

distributed policy optimization of base station j, which is the output of the optimizer of the base

station. The function of zD,j in (30) is a multi-layer fully-connected DNN.

πj = zD,j (cj) , j = 1, ...,J , (30)
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where cj is concatenation of the channel state hj and the neighbour association information vj,i.

The subscript of zD,j (·) means distributed optimizer. It can be calculated by

cj = hj ⊕ v̂j,l, (31)

where ⊕ is the concatenation operation. v̂j,l
Δ
= v̂j, ∀j �= l is discrete the quantize result between

base station j and base station l 2. Since formula (29) requires the local CSI observation and

global learning optimization, it can be regarded as a distributed approach. The developed cj is

imported to the distributed optimizer, similar to h in the centralized scenario.

B. Distributed Learning Optimizer

By utilizing the quantize operation and concatenation, a distributed mode is designed by the

each base station’s local CSI. This distributed approach is given by

max
F,τ

Eh [f (hj, zD,j (cj))]

s.t. Eh [gk (hj, zD,j (cj))] ≤ Gk,

j = 1, .., J, k = 1, ..., K.

(32)

Each base station can be equipped with an optimizer to learn and take charge of updating primal

and dual variables. The corresponding updating rules can be given by

ωt
j = ωt−1

j − η∇ωL
(
ωt−1

j , λt−1j

)
= ωt−1

j − η
(
Eh

[∇ωf
(
hj,πj

(
cj;ω

t−1
j

))]
+

∑K
k=1 λ

t−1
j.k

(
Eh

[∇ωgk
(
hj,πj

(
cj;ω

t−1
j

))]−Gj,k

)
.

(33)

λt
j,k =

(
λt−1

j,k + η∇λj,k
D (

λt−1
j

))
+

=
(
λt−1

j,k + η
(
Eh

[∇ωgj,k
(
hj,πj

(
cj;ω

t−1
j

))]−Gj,k

))
+
.

(34)

If we trace back to the proposed problem, the Lagrangian function of problem (11) can be given

by

L (ω,λ,μ) = Eh

[∑K
k=1 log (1 + γk)

]
+

∑K
k=1 λj,k (‖wj,k‖ − Pmax) +

∑K
k=1 μj,k (Lj,r (Rj)− ε).

(35)

2The indexes j ∈ J and l ∈ J denote the base station. The index j denote the current base station, the index l represent the

neighbour base stations.
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Due to two constraints in the designed problem (11), μj is introduced to act as Lagrangian

multiplier, just like λj . Similar to formula (20), the primal variable ωj in each base station is

updated by

ωt
j = ωt−1

j − η
(
Eh

[
∇ω

∑K
k=1 log (1 + γj,k)

]
+

∑K
k=1 λ

t−1
j,k (‖wj,k‖ − Pmax)

+
∑K

k=1 μ
t−1
j,k (Lj,r (Rj)− ε) .

(36)

The dual variables λj and μj are given as

λtj,k =
(
λt−1j,k + η (‖wj,k‖ − Pmax)

)
+
, (37)

μt
j,k =

(
μt−1
j,k + η (Lj,r (Rj)− ε)

)
+
. (38)

C. Algorithm Analysis

In this subsection, the procedures of the algorithm’s implementation are provided. Meanwhile,

the analysis of the proposed algorithm is elaborated.

Note that in Algorithm 2, the policy is first initialized, such as initial power p0. Meanwhile

the corresponding policy parameters ω0 := {w0;b0} are generated. The weight factors w0 are

derived from the truncated Gaussian distribution and the initial bias b0 is set as a constant.

Then the iteration begins and each base station quantizes its local CSI hj in formula (29). The

obtained local CSI and the neighboring base stations’ association information vj,i are concated.

The output cj is transformed to each base station’s optimizer input to conduct iterative primal-

dual learning optimization, which is elaborated in Algorithm 1. After the performance function

f (hj, zD,j (cj)) is obtained, the corresponding base station j’s optimizer is saved. The transfer

learning for transmit beamforming launches. Firstly, the trained optimizer is loaded and the

structure of original DNN is modified in formula (26). Secondly, the last layer’s parameters of

DNN φt
j are updated. Finally, the step size updates t→ t+1. The optimized power control p∗,

transmit beamforming F∗ and system performances f ∗0 (x
∗) are obtained.

Finally, two algorithm analyses are discussed, in terms of space and time computational

complexity. The calculation for Algorithm 1 entails Tmax iterations. Besides, the size of mini-

batch set is S. In each iteration, the mini-batch is traversed. Therefore, the time complexity

analysis is O(S × Tmax). It can be seen that the proposed Algorithm 1 takes a longer time to
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converge. The space complexity depends on the the number of base station’s antennas M and

the number of users K. The channel state h is complex number so the input of DNNs is 2MK.

If the interference management in the real-number power control, the output of DNNs is MK. If

the interference management in the complex-number transmit beamforming, the output of DNNs

is 2MK. The number of hidden layers is fixed and the number of neurons in each layer is cK.

c is a constant. Additionally, the scale of DNN is related to the number of user K [34]. In short,

the space complexity of Algorithm 1 is O((M + c)×K).

Algorithm 2 Distributed Unsupervised Learning Interference Management in ISAC Systems

1: Input Initial transmit power p0, policy parameters ω0, Lagrange multipliers λ0,μ0.

2: Iteration begins

3: For t = 1, 2, ..., T do:

4: For base stations j = 1, 2, ..., J do:

5: a) Quantize the base station j’s channel state hj through (28);

6: b) Concate the local CSI hj and the neighbor association information vj,i;

7: Iterative Unsupervised Learning Optimization

8: c) Sample a mini-batch set S ⊂ H;

9: d) The gradients ∇ωf (h,π (h;ω)) and ∇ωgk (h,π (h;ω)) are calculated by (22);

10: f) Update parameters of DNNs ωt
j through (20);

11: g) Update dual variables λt through (21);

12: h) Save the trained model for power control;

13: Transfer Learning for Transmit Beamforming

14: i) Load the trained model and modify the output layer through (26);

15: j) Update parameters of DNN’s last layer φt
j ;

16: k) The step size updates t→ t+ 1.

17: Execute step a) to k) until convergence or reach the number of iteration T ;

18: End for

19: End for

20: Iteration ends

21: Output Power control p∗, transmit beamforming F∗, and system performances f ∗0 (x
∗).
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Algorithm 2 is the distributed version of the Algorithm 1. The number of the base station

is J . Thus, the calculation for Algorithm 2 entails O(J × S × T ) iterations. To distinguish the

Algorithm 1, the number of iterations of Algorithm 2 is set as T . In terms of spatial complexity

in Algorithm 2, the main difference lies in the quantizer added in the base station. The scale

of optimizer is related on the number of users K and the length of dimensional square box Lj .

Therefore, the space complexity of Algorithm 2 is O((Lj +M + 2c)×K × J). The algorithm

analysis is summarized in Table 1.

TABLE I

SUMMARY OF ALGORITHM ANALYSIS.

Algorithms Space Complexity Time Complexity

Algorithm 1 O((M + c)×K) O(S × Tmax)

Algorithm 2 O((L+M + 2c)×K × J) O(J × S × T )

V. SIMULATION RESULTS AND DISCUSSIONS

Simulation results are presented to verify the communication and sensing performances,

including spectral efficiency, MSE, and beam pattern. We deploy Python v3.9.0 to conduct

the simulations and compile them with PyTorch v1.11.0. In the simulation results, the learning

rate of each model is set as 1 × 10−4 and the optimizer is Adam. The mini-batch gradient

descent method is utilized and the batch size is 32. The channel state in the ISAC systems is

generated from Rayleigh distribution, which is generated by the complex Gaussian distribution.

Concerning the parameters ω := {w;b} of DNNs, the initial weight matrices w are generated

from zero-mean truncated Gaussian distribution, while all DNNs of the initial bias vectors b are

fixed to 0.01. The step size of dual variables η equals the learning rate of DNNs. The structure

of DNNs consists of three layers. The first layer is 2K. The second layer is 3K. The third layer

is 2K. The number of users is set as 5 and the number of targets is set as 3 in the simulation

results. There are 12 radar antennas and 12 communication antennas, respectively.

The unsupervised learning simulation results are presented and discussed. Based on this

discussions, the performance of distributed unsupervised learning method are evaluated further.
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Fig. 4. The spectral efficiency with respect to the power control.

Fig. 4 presents the convergence of different algorithms in terms of system performance function

f(x). Besides the proposed unsupervised learning method, the supervised learning method,

WMMSE, random method, and equal power are listed. Concerning other five methods, their

introductions are listed as follows:

• Unsupervised learning method (No dual): The cost function is consistent with the unsuper-

vised learning method. However, the dual variables are not added to optimize the primal

problem.

• WMMSE: A locally optimal solution is calculated by the conventional iterated optimization

[5].

• Supervised learning method: The DNN is trained to use supervised learning with the training

set, which is provided by the WMMSE algorithm.
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• Equal power: The transmitters deploy the equal transmit power pk = 0.1.

• Random method: The transmit power pk follows the uniform distribution [0, 0.1].

Obviously, the proposed unsupervised method has excellent performance and convergence. The

unsupervised learning method and the supervised learning method obtain the same performance

as the WMMSE. It can be seen that the unsupervised learning method is superior to the supervised

learning method. These simulation results agree with the analytical results. Without the developed

training set, the proposed unsupervised learning method can reach the equivalent performance of

the supervised learning method. The conventional methods such as WMMSE, random method,

and equal power do not have learning tendency with the iteration increases.
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Fig. 5. The spectral efficiency vs different SINRs.

The system performance function f(x) with respect to different SINRs is presented in Fig.

5. The gain of SINR increases from 5 dB to 10 dB. On the basis of Fig. 3, the methods except

unsupervised learning method (without dual) are listed to compare the performance. Note that
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with the increase of SINR, the spectral efficiencies among five methods increase simultaneously.

And the proposed unsupervised learning method has better performance function f(x) than the

supervised learning method. Compared with the supervised learning method, there exists 0.5

bit/Hz upgrade in the unsupervised learning method.
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Fig. 6. The spectral efficiency with respect to the beamforming.

To evaluate the performance of interference management discussed in Section III. C. The

transfer learning method is compared to the mentioned direct unsupervised learning method

and supervised learning method. To utilize the developed model derived from the unsupervised

learning method sufficiently, the model is transformed from the original power control into

beamforming. The output also extends from the real region into complex region through modi-

fying some layers of former DNNs. Fig. 6 illustrates the advantage of transfer learning method

discussed in Section III. C. The policy of the unsupervised learning method and supervised

learning method also change into interference management in terms of the beamforming. To
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observe directly, the learning rate η changes from 1×10−4 to 1×10−3. The unsupervised learning

method will converge after 20 iterations and the supervised learning method can not obtain

a better learning effect under the same circumstance. Compared with the direct unsupervised

learning and supervised learning, the transfer learning does not cost too much train time to

manage interference in terms of beamforming. This method can obtain the same convergence

performance as the direct unsupervised learning method.
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Fig. 7. Transmit beam pattern and its MSE in the ISAC systems.

Fig. 7 depicts the beam patterns in the proposed unsupervised learning method and transfer

learning method. The desired detection angle is set as {−70◦, 0◦, 40◦}. The purpose of this

asymmetric settings is to evaluate the training effects of the unsupervised learning method and

transfer learning method. Notably, both of beam patterns of these two proposed methods are in

accordance with the desired power approximately. The subgraph also is added in Fig. 7, which

depicts the MSEs between the desired power and the beam pattern derived from the designed
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two methods. It can be concluded that the loss function can converge to the constraints and

the good sensing performances can be obtained. The MSE in transfer learning method is more

stable than in unsupervised learning method. This is because the developed DNNs are utilized

efficiently.
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Fig. 8. The comparison between unsupervised learning method and transfer learning method vs different numbers of transmit

antennas.

To verify the sensing performances of these two proposed methods, the MSEs are compared

with the increasing of the number of the radar transmit antennas Mr. The number of radar

antennas ranges from 10 to 20. As shown in Fig. 8, both of MSEs of these two learning methods

decrease. And it is obvious that the MSE of transfer learning method can achieve the performance

of the unsupervised learning method approximately. It is the consensus of the analytical result

discussed before. Although the gap between these two MSEs increases with the large number

of transmit radar antennas, the slight gap can be tolerable.
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Fig. 9. Spectral efficiency vs different numbers of users.

Fig. 9 illustrates that the proposed unsupervised learning method which is superior to the

existing supervised learning method with the increasing number of users. The DNNs’ settings

are identical to the initial settings. And the supervised DNNs’ structures are the same as the

unsupervised learning method. It is obvious that with the increasing number of users, the

conventional optimized WMMSE method has stable performance. The proposed unsupervised

learning method also maintains the well performance. However, the supervised learning method

has poor spectral efficiency as the number of users increases. This is because the bigger size

of input data results in higher training complexity. The proposed unsupervised learning method

only has a slight decrease and it is superior to the training effect of the supervised learning

method.
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Fig. 10. The different learning performances of different ISAC base stations.

Fig. 10 shows three base stations’ cost functions (i.e. spectral efficiency in this paper). The

distributed interference management is considered among three base stations with local CSI.

The iteration steps are set as 2000 and the learning rate of each base station’s DNNs is set as

1 × 10−4, uniformly. It can be seen that each base station can utilize its local CSI to obtain

interference management. With the aid of the combination between optimizer and quantizer,

the spectral efficiency can converge after 1000 iterations. Obviously, the proposed distributed

interference management can obtain stable performance through enough training iterations.
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Fig. 11. The different beam patterns of different ISAC base stations.

Fig. 11 depicts the sensing performances of different ISAC base stations. Similar to the settings

of Fig. 10, three base stations need to deal with different targets. Base station 1 require to detect

the azimuth angle of {−40◦, 0◦, 40◦}. Base station 2 is required to detect the azimuth angle of

{−70◦, 0◦, 40◦} and base station 3 is required to detect the azimuth angle of {−50◦, 0◦, 70◦}.
The different azimuth angles settings ensure the flexibility of the proposed method. It can be

seen that the unsupervised learning method can obtain stable performance in terms of distributed

mode. It is similar to the centralized scenario, which is consistent with the analytical result.
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VI. CONCLUSION

A distributed interference management is provided in the ISAC systems, considering power

control and transmit beamforming. An ISAC system cooperating with edge intelligence is pro-

posed to coordinate interference with a unsupervised learning method. The problem is trans-

formed into a functional optimization with stochastic constraints. A unsupervised learning method

is proposed to allocate power for interference management. Furthermore, a transfer learning

technique is introduced to deal with interference management in terms of transmit beamforming.

Then the distributed management is obtained by the local CSI in the multi-user MISO scenario.

Each base station is equipped with the individual DNNs. Simulation results demonstrate the

effectiveness of the designed methods, in the aspect of distributed interference management in

the ISAC systems.
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