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Abstract

With the development of internet of things (IoT), latency-sensitive applications such as telemedicine

are constantly emerging. Unfortunately, due to the limited computation capacity of wireless user devices

(WUDs), the real-time demands can not be met. Multi-access edge computing (MEC), which enables the

deployment of edge access points (E-APs) to support computation-intensive applications, has become an

effective way to meet the real-time demands. However, the number of WUDs that E-APs can serve are

limited. To increase system capacity, the unmanned aerial vehicle (UAV) assisted computation offloading

architecture in the terahertz (THz) band is proposed. In this paper, the problem of UAV placement

optimization, resource allocation, and computation offloading is investigated considering the quality of

service and resource constraints. The joint optimization problem is non-convex and hard to be solved

in time by using traditional algorithms, such as successive convex approximation. Therefore, deep

reinforcement learning (DRL) based approach is a promising way to solve the formulated non-convex

problem of minimizing latency. Double deep Q-learning (DDQN) and deep deterministic policy gradient

(DDPG) algorithms are provided to search for near-optimal solutions in highly dynamic environments.

The effectiveness of the proposed algorithms is proved by simulation results in different scenarios.
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Index Terms

MEC, resource allocation, UAV, THz frequency band, DRL

I. INTRODUCTION

With the advancement of internet of things (IoT), numerous computation-sensitive applications

such as telemedicine, autonomous driving, virtual reality (VR), and augmented reality (AR), are

gradually ingrained into our daily lives, which brings exponentially increasing traffic load and

stringent latency requirements [1]. The number of wireless user devices (WUDs) will rise to 75

billion by 2025 [2]. Unfortunately, most of WUDs have limited computing resources and battery

capacity. Computation-intensive tasks can not be completed independently by WUDs, which

makes it difficult to support the implementation of the above computation-sensitive applications

[3].

To solve the problem of insufficient computing resources and battery capacity, cloud com-

puting technology is employed to transfer computation-intensive tasks to central cloud server

for processing [4]. However, with the development of IoT, the number of computation-intensive

tasks is increasing exponentially. Transferring the large amount of data generated by WUDs to

central cloud server will result in significant network resource consumption [5]. As a result,

traditional cloud computing is no longer sufficient to match the instantaneous computing of

such huge scale data volume. To make up for the shortage of cloud computing, multi-access

edge computing (MEC) is proposed. MEC transfers functions from the core network to the edge

of mobile network. Deploying edge access points (E-APs) with communication and computing

capabilities on the WUDs side, it not only decreases network operations and delays, but also

promotes the quality of service (QoS). Additionally, the substantial growth of computation-

intensive tasks impose a huge link load on the backhaul link and core network [6]. With the

deployment of E-APs, the distance between WUDs and servers is greatly reduced, decreasing

the bandwidth requirements on the backhaul link [7].

Traditional E-APs are deployed at fixed locations. The coverage of E-APs and the number of

WUDs that E-APs can serve are limited. With the rapid breakthrough and improvement of UAV

technology, equipping edge servers to UAV has become a promising way to increase system

capacity. When the number of WUDs to be served exceeds the E-APs capacity limit or WUDs
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exceed the coverage area, UAVs can be equipped with servers to provide services for WUDs.

Compared with traditional architectures, UAV-assisted architecture is more efficiently due to the

scalability and flexibility [8].

To better support computation-intensive applications, it is necessary to reduce the transmis-

sion delay from WUDs to UAV servers. Advanced modulation schemes and signal processing

techniques can improve transmission rate [9]. However, due to the spectrum limitation, it is

still difficult to significantly increase the transmission rate. The other solution is to employ the

higher carrier frequency such as terahertz (THz) to increase channel bandwidth and provide

sufficient transmission capacity. The THz band is located between infrared and microwave, and

the frequency range is 0.1 THz-10 THz. THz communication can obtain tens of Gb/s wireless

transmission rate, which is significantly better than the current ultra-wideband technology [10].

As a result, THz communication technology has attracted much attention and become a key

wireless technology to meet the demand for real-time traffic in mobile heterogeneous network

systems [11]. Due to the sensitivity to channel congestion of THz band, deploying servers on

UAV can effectively reduce the impact of obstacles on the communication link. Therefore, the

UAV-assisted computation offloading architecture in the THz band is promising.

The latency can be effectively reduced by the joint optimization of the UAV placement,

resource allocation, and computation offloading. However, the channel state and resource re-

quirements of each WUD are highly time-varying. It is extremely difficult to search for a near-

optimal solution in time [12]. Existing conventional optimization algorithms such as successive

convex approximation (SCA) and particle swarm optimization (PSO) are feasible for solving the

joint optimization problem. However, SCA algorithm obtain local solution by iteratively solving

a series of convex optimization problems similar to the original problem, and PSO algorithm

evaluate the quality of the solution by fitness and iteratively find the optimal solution from a

random solution. Each of these algorithms requires many iterations, which are not suitable for

systems with high real-time requirements.

With the continuous improvement of artificial intelligence (AI), reinforcement learning (RL)

and deep learning (DL) will play an essential role in wireless communications [13][14]. The

traditional RL algorithm such as Q-learning employs a Q table to approximate the Q value.

However, real-world networks have massive WUDs involving a large number of different actions,
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4

which makes it impractical to evaluate every possible combination of actions. To solve the above

problem, DL and RL can be combined as deep reinforcement learning (DRL). Deep neural

networks (DNNs) are employed to approach the Q value, which are more scalable and flexible

[15][16].

In this paper, the key point is the joint optimization of the UAV placement, resource allocation,

and computation offloading. Based on the formulated model, value iteration-based RL algorithms,

namely DDQN and DDPG, are provided to determine the joint policy of UAV deployment,

resource allocation, and computation offloading. The main contributions are as follows.

• To support computation-intensive applications such as autonomous driving, E-APs with

computing and communication capability are deployed at the edge of network. The UAV-

assisted computation offloading architecture in the THz band is proposed to further increase

system capacity and reduce transmission delay. Then, the physical channel model for THz

link is provided.

• Based on the proposed model, the UAV placement optimization, resource allocation, and

computation offloading are formulated as a joint optimization problem with the goal of

minimizing total time delay. The environmental dynamics such as the highly time-varying

channel state, resource requirements, and the computation capabilities of different WUDs

are taken into account.

• To overcome the inability of traditional algorithms such as SCA and PSO to meet real-time

requirements, DRL is applied to search for near-optimal solutions in the highly dynamic

environments. Based on the markov decision process (MDP), DDQN and DDPG algorithms

are supplied to transform the non-convex issue into the learning issue, which can adopt the

highly dynamic environment and gain near-optimal solutions effectively.

• The provided DDQN and DDPG algorithms are compared with local computing and full

offloading method under different scenarios. Simulation results verify the proposed DDQN

and DDPG algorithms are effective in reducing total time delay in different scenarios.

The remainder of this paper is organized as follows. Section II introduces the related work.

In Section III, the system model and problem formulation are described. The DRL approach

is proposed in Section IV. Then, the simulation results are provided in Section V. Finally, the

paper is concluded in Section VI.
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II. RELATED WORK

UAVs aided with servers are capable of providing services for WUDs more efficiently due

to the mobility and flexibility. Therefore, the optimization problem of UAV providing services

for WUDs has been widely studied. Zhou et al. investigated a UAV-enabled MEC wireless-

powered system in [17]. The computation rate maximization problems are studied under both

partial and binary computation offloading modes, subject to the energy-harvesting constraint

and UAV speed constraint. In [18], the problem of UAV deployment, power allocation, and

bandwidth allocation is investigated for the UAV-assisted wireless system operating at THz

frequency. The work in [19] investigated a UAV-based computation and relay system where a joint

computation offloading, bandwidth, and computing resource management issue was formulated to

promote energy efficiency. Then, the block continuous upper-bound minimization algorithm was

used to design reasonable strategies. The authors in [20] intended to promote energy efficiency

while meeting the QoS requirements. The problem of jointly optimizing uplink and downlink

communication bit allocation and UAV computing resource management with the delay and

energy constraint was solved by SCA algorithm. In [21], the service request rate was maximized

by optimizing the UAV placement, task offloading, and resources management while meeting

tight latency as well as dependability demands. The scenario using UAVs and satellites for task

offloading was considered in [22]. To reduce the latency between devices, associative control,

computation task distribution, user power control, and communication resource management are

achieved through block coordinate descent (BCD) and SCA algorithms. Although the above

algorithms can effectively improve the system performance, they all require multiple iterations

to search for a near-optimal solution. Therefore, the above algorithms are not applicable to the

highly dynamic environment.

To obtain near-optimal solutions timely in the highly dynamic environment, some scholars

have started to use the DRL algorithm. The authors in [23] took advantage of DRL to propose

an algorithm for joint server selection, cooperative offloading, and handover in the multi-access

edge wireless network. In [24], the authors proposed a multi-agent deep reinforcement learning

based small base station state selection scheme for joint optimization of resource allocation and

massive access in the ultra-dense network. In [25], Huang et al. investigated the wireless-powered

network based on the binary offloading strategy. To promote the weighted sum transmission rate,
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an offloading and resource management algorithm employing DRL was proposed. To address the

privacy issue, DRL-based decentralized computation offloading algorithms are proposed without

the information about network bandwidth and preference in [26]. The authors in [27] proposed a

NOMA-based computation offloading system, and a joint optimization issue about NOMA and

computing resource management was formulated. Considering the dynamic channel state, the

DRL was used to search for the near-optimal offloading solution. In summary, the DRL algorithm

has been widely used in MEC and has a good performance. To the best of our knowledge, the

existing literature does not jointly consider the UAV placement optimization, resource allocation,

and computation offloading in the THz band under highly time-varying environment. Therefore,

the joint optimization problem of minimizing latency is formulated and solved by provided

DDQN and DDPG algorithms.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. UAV-assisted Computation Offloading System Model

1) Computation Task Model: The system model is shown in Fig. 1. Owing to the limited

computation and battery capacity, WUDs can upload part of tasks to E-APs for processing.

However, the coverage of E-APs is restricted, and the number of WUDs that can be served

simultaneously is limited. Additionally, malfunction might occur in the E-APs, making it unable

to provide services for WUDs. When the above situation occurs, UAV can be equipped with

servers to provide services for WUDs. The set of WUDs that need to be served by UAV server

is denoted by N = {1, 2, 3......n}.
Without loss of generality, the tasks for the ith WUD can be denoted as ζi � {di, ci, oi, ti,max}.

Let di and ci denote the size of the ith computation task and the number of CPU cycles required

to process the ith task, respectively. di and ci can be converted to each other, depending on the

type of task. oi denotes the size of the ith computation result, which is usually much smaller

than di. ti,max represents the tolerable delay of the ith WUD, which means that the total time

delay Ti can not be greater than ti,max.

2) Local computing model: When WUDs chooses to execute the task locally, the task com-

pletion process is independent of the UAV server. Define αi as the percentage of the ith WUDs’

tasks uploaded to the server. A = {α1, α2, α3, ......, αn} denotes the computation offloading

Page 18 of 38IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7

TABLE I

NOTATION DEFINITION

Parameter Definition

di The size of the ith WUD computation task

ci The number of CPU cycles required to process the ith WUD task

oi The size of the ith WUD computation result

ti,max The tolerable delay of the ith WUD

tli The local computation latency of the ith WUD

fi The computation capacity of the ith WUD

El
i The local computing energy consumption of the ith WUD

ri The uplink transmission rate of the ith WUD

B The bandwidth of the wireless channel

Gt The antenna gain of the transmitter

Gr The antenna gain of the receiver

N0 The variance of Gaussian white noise

tupi The transmission delay for the ith WUDs to transfer task to the UAV server

Eup
i The transmission energy consumption for the ith WUD to transfer task to the

UAV server

toi The server processing delay of the ith WUD task

fuav The computation capacity of the UAV server

Eo
i,w The energy consumption of the ith WUD in standby mode

r′ The downlink transmission data rate

Ti The total time delay of the ith WUD

Ei The total energy consumption of the ith WUD

k The computation energy efficiency coefficient

αi The percentage of the ith WUDs’ tasks uploaded to the server

βi The percentage of the computing resource allocated to the ith WUD

vector. The local computation latency tli is given by

tli =
(1− αi)ci

fi
, (1)

Page 19 of 38 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

Fig. 1. UAV-assisted computation offloading system model

where fi denotes the computation capacity of the ith WUD. Each WUD has different computation

capacity.

Furthermore, the corresponding local computation energy consumption of the ith WUD can

be expressed as

El
i = k(fi)

2(1− αi)ci, (2)

where k denotes the computation energy efficiency coefficient [25].

3) Edge computing model: WUDs can upload tasks to UAV servers for processing to reduce

computing stress. The uplink transmission rate of the ith WUD is given by

ri =
B

N
log2(1 +

GrGtpi|hi|2
N0B/N

), (3)

where B denotes the bandwidth, N denotes the total number of WUDs. Gt and Gr are antenna

gains of transmitter and receiver, respectively. pi represents the transmission power of the ith

WUD. hi denotes the wireless channel gain of the ith WUD, and N0 is variance of Gaussian

white noise.

The transmission delay for the ith WUDs to transfer task to the UAV server is given by

tupi =
di

B
N
log2(1 +

GrGtpi|hi|2
N0B/N

)
. (4)
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The transmission energy consumption for the ith WUD to transfer task to the UAV server is

given by

Eup
i =

pidi
B
N
log2(1 +

GrGtpi|hi|2
N0B/N

)
. (5)

The UAV server processing delay of the ith WUD task is given by

toi =
αici
βifuav

, (6)

where fuav denotes the computation capacity of the UAV server, βi denotes the percentage of

the computing resource allocated to the ith WUD, and B = {β1, β2, β3, ......, βn} denotes the

resource allocation vector.

In addition, WUD is in standby mode while the UAV server processes the uploaded tasks.

Thus, the energy consumption of the ith WUD can be expressed as

Eo
i,w = Pi,wt

o
i =

Pi,wαici
βifuav

. (7)

The UAV server sends the data to WUD after the task has been processed. The transmission

delay is expressed as

tdown
i =

oi
r′
, (8)

where r′ denotes the transmission rate of UAV server to WUDs. According to [28], oi is much

smaller than di. Therefore, the transmission delay of the UAV server sending the calculation

results to WUD is always negligible.

Accordingly, the total time delay of the ith WUD is given by

Ti = max
{
(tupi + toi ) , t

l
i

}
. (9)

The total energy consumption of the ith WUD can be expressed as:

Ei = El
i + Eup

i + Eo
i,w = k(fi)

2(1− αi)ci +
pidi
ri

+
Pi,wαici
βifuav

. (10)

4) THz channel model: With the electromagnetic wave frequency increases, the THz band has

disparate channel characteristics from the low frequency channel [9]. The THz channel model

consists of LoS propagation, reflection, scattering, and diffraction path. Due to the lower power,

scattering and diffraction path can be negligible. Furthermore, the appropriate antenna gain can
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10

avoid the influence of reflection [29][30]. Therefore, the LoS propagation path is only took into

consideration in the THz band.

The coordinates of the UAV and the ith WUD can be expressed as (xuav, yuav) and (xi, yi),

respectively. Thus, the distance between UAV and the ith WUD is given by

Di =

√
(xuav − xi)

2 + (yuav − yi)
2 +H2, (11)

where H denotes the flight height of UAV.

The wireless channel gain between UAV server and WUDs is given by

hi(f,D) =

√
1

PL(f,D)
, (12)

where PL(f,D) denotes the pathloss. Within the frequency range 0.1 THz to 1 THz, the LoS

propagation path is given by the combination of the molecular absorption loss Labs(f,D) and

the free-space expansion loss Lspread(f,D) [32]. Therefore, the LoS propagation path can be

expressed by

PL (f,D) = Labs (f,D)× Lspread (f,D)

=

(
4πfD

c

)2

ekabs(f)d,
(13)

or in dB:

PL (f,D) [dB] = Labs (f,D) [dB] + Lspread (f,D) [dB]

= 20log10

(
4πfD

c

)
+ 10kabs (f) dlog10e,

(14)

where kabs(f) is denoted as the absorption coefficient and c is denoted as the speed of light.

B. Problem formulation

In this paper, the target is to minimize the total time delay of all WUDs while satisfying the

resource and energy constraint. The computation offloading vector A = {α1, α2, α3, ......, αN},
resource allocation vector B = {β1, β2, β3, ......, βN}, and the coordinates of UAV (xuav, yuav)
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are the variables to be optimized. The corresponding optimization issue can be expressed as

min
A,B,xuav ,yuav

N∑
n=1

Tn,

s.t. C1 : Ti � ti,max, ∀i ∈ N ,

C2 : xuavmin � xuav � xuavmax, y
uav
min � yuav � yuavmax,

C3 : 0 � βi � 1, ∀i ∈ N ,

C4 :
N∑
i=1

βi � 1,

C5 : 0 � αi � 1, ∀i ∈ N ,

C6 : El
i + Eup

i + Eo
i,w � Ei,max, ∀i ∈ N .

(15)

C1 ensures the completion time of each task can not be greater than the tolerable latency. C2

ensures that the UAV and each WUD are positioned within the specified limits. C3 and C4 are

constraints on available computing resources, i.e., the sum of the computing resources distributed

to each WUD can not exceed the total computing resources. C5 indicates that each WUD can

upload any percentage of tasks to the UAV server for processing, and the rest is processed by

WUD. C6 represents that the energy consumption of each WUD can not be greater than its

available energy.

IV. DRL APPROACH

In this section, the optimization problem is modeled as MDP. The state space, action space,

and reward function are defined. Based on this, DDQN and DDPG algorithms are provided to

reduce the total time delay in the highly dynamic environments.

A. DRL framework

In DRL, the definition of state, action, and reward function is critical and will directly affect

the optimization performance. Therefore, it is essential to define these elements according to the

system model and optimization objectives.
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1) State space: To accurately represent the state information of the system, task volume

information and placement information of each WUD need to be added to the state space. Thus,

the state space can be expressed as

F = [x1, y1, ..., xn, yn; d1, ..., dn; c1, ..., cn] . (16)

2) Action space: The objective is to minimize the total time delay by determining the policy

of UAV deployment, computation offloading, and resource allocation. Much literature considers

binary offloading, i.e., tasks are either all processed locally or all uploaded to the server. Although

the problem is simplified, binary offloading approach is not optimal. In this paper, the scope

of action space is expanded. WUDs can upload any percentage of tasks to the server and be

allocated any percentage of computing resources. The action space is defined as

G = [α1, α2, ..., αn; β1, β2, ..., βn; xuav, yuav] . (17)

3) Reward function: R(F,G) is a function depending on the state F and action G. The

reward function is used to measure the advantage and disadvantage of taking action G in state

F . In addition, the essence of the DRL algorithm is to take a reasonable action to maximize the

reward in any state F . Thus, the reward function is given by

R(F,G) = −
N∑

n=1

Tn. (18)

Any action of the agent need to satisfy the constraints in (15). If the restriction is violated, a

penalty value is assigned to the reward function. Based on the definition, the DDQN and DDPG

algorithms will be depicted detailedly in the next section.

B. Markov Decision Process

Define the history of state as Ht = {F1, F2, F3, ..., Ft}. State is Markov chain if p (Ft+1|Ft) =

p (Ft+1|Ht). Dynamic programming problems are usually modeled as MDP. π (G|F ) represents

the policy probability.

Reward is employed to evaluate the advantage and disadvantage of performing action Gt in

state Ft to reach the next state Ft+1. The reward of current moment and the reward of future
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moment are different. Therefore, the discount factor ψ needs to be introduced. The sum of

rewards can be expressed as

Rsum
t = Rt+1 + ψRt+2 + ...+ ψT−t−1RT , (19)

where ψ = 0 means that only care about the immediate reward and ψ = 1 means future reward

is equal to the immediate reward.

Different actions can be taken in state Ft. The state-value function V π (F ) is the expected

return in state F .

V π (F ) = E [Rsum
t |Ft = F ]

= E
[
Rt+1 + ψRt+2 + ...+ ψT−t−1RT |Ft = F

]
.

(20)

The action-value function Q (F,G) is the expected return taking action G in state F .

Q (F,G) = E [Rsum
t |Ft = F,Gt = G]

= E
[
Rt+1 + ...+ ψT−t−1RT |Ft = F,Gt = G

]
.

(21)

According to (20) and (21), V π (F ) and Q (F,G) can be converted to each other. The

relationship between V π (F ) and Q (F,G) is expressed as

V π (F ) =
∑
G

π (G|F )Q (F,G). (22)

In the Q-learning algorithm, the Q table is first initialized randomly and thus the action-value

function is inaccurate. Therefore, the Q table needs to be updated to guide the agent’s action.

According to the time difference method, the target value is given by

Qπ (F,G) = R + ψmax
G′

Q (F ′, G′) . (23)

The objective is to make the predicted value Q (F,G) gradually approximate the target value

Qπ (F,G). Thus, the update guideline is expressed as

Q (Ft, Gt)← Q (Ft, Gt) + α (Qπ (Ft, Gt)−Q (Ft, Gt)) , (24)

where α is learning rate, the value of the learning rate will directly affect the algorithm perfor-

mance.

As the number of updates increases, Q table become more and more accurate. However, real-

world networks have massive WUDs involving a large number of different actions, which makes
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it impractical to evaluate every possible combination of actions. To tackle the above problem,

the DDQN algorithm is provided.

C. DDQN algorithm

Inspired by DL, DDQN algorithm uses DNN to approximate action-value function as follows.

Q̂ (F,G,w) ≈ Qπ (F,G) , (25)

where w denotes the parameters of the DNN and Q̂ (F,G,w) is denoted as the predicted action-

value function.

Fig. 2. The training process of DDQN

The DDQN algorithm contains two key techniques, which are experience replay and fixed

targets [31]. Since the observed data are ordered, the data is dependent. It would be problematic

to use such data to update the parameters. Therefore, experience replay is employed in DDQN,

i.e., a memory bank is used to store the experienced data. The correlation between the data

is broken by randomly selecting some data from the memory bank to modify the parameters.

Each time the neural network is updated, the target is also updated, which can easily lead to
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non-convergence of the algorithm. To improve stability of the algorithm, fixed target values are

needed. Thus, the DDQN algorithm requires two DNNs, main network and target network. The

target network is employed to output the target action-value functions Qπ (Ft, Gt, w
′), where the

parameters are denoted by w′. The target action-value function can be expressed by

Qπ (Ft, Gt, w
′) = Rt+1 + ψQπ (Ft+1, Gt+1, w

′) . (26)

To make the reasonable decision for the agent, the mean-square error (MSE) between the

predicted action-value function and the target action-value function needs to be minimized as

follows

Loss (w) =
(
Q̂ (F,G,w)−Qπ (F,G,w′)

)2

. (27)

Algorithm 1 DDQN Algorithm

1: Initialize the initial network parameters w and w′, the number of episodes Ne, the number
of steps Nt, the learning rate α, the exploration rate ε, the discount factor ψ, the update
interval C, the capacity of replay memory N , and the batch size v.

2: for episode = 1 to Ne do
3: Initialize channel state and resource requirements.
4: for step = 1 to Nt do
5: Obtain the state st.
6: Choose action Gt with the random probability δ as
7: if δ � ε then
8: Choose an action Gt stochastically.
9: else

10: Choose an action Gt = argmax
Gt

Q (Ft, Gt, w).

11: end if
12: According to Gt, determine the UAV placement (xuav, yuav), computation offloading

vector A, and resource allocation vector B.
13: Execute corresponding strategy to gain next state Ft+1 and reward Rt.
14: Save transition (Ft, Gt, Rt, Ft+1) in memory bank.
15: Sample v batches of transition from memory bank stochastically.
16: Determine target action-value function Qπ (Ft, Gt, w

′) according to (26).
17: Minimize the loss function in (27) and update the main network parameters w according

to (28).
18: Update the target network parameters w′ every C steps.
19: end for
20: end for

Subsequently, the stochastic gradient descent method is used to reduce the MSE in (27) as
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follows

w ← w − α
∂Loss (w)

∂w
. (28)

In addition, the DDQN algorithm uses the ε-greedy algorithm to select actions, i.e., actions are

selected randomly with probability ε. The ε-greedy algorithm motivates the agent to explore and

prevents the strategy from getting trapped in local optimum. The DDQN algorithm is summarized

in Algorithm 1 and presented in Fig. 2.

D. DDPG algorithm

The DDQN algorithm outputs an action-value function for each discrete action. Therefore, the

algorithm can not be applied to continuous control problems. For this reason, DDPG algorithm

is provided to expand the action space from the discrete domain to the continuous domain.

The DDPG algorithm contains four DNNs, which are actor network μ (F, ω), critic network

Q (F,G, λ), target actor network μ′ (F, ω′), and target critic network Q′ (F,G, λ′). The function

of actor network is to generate action G based on the current state F to obtain the maximum Q

value. The critic networks are employed to evaluate the advantage and disadvantage of executing

action G in the state F .

The action Gt in state Ft is given by

Gt = μ (Ft, ω) +Nt, (29)

where Nt is exploration noise. Adding the appropriate noise can prevent local optimum.

As with the DDQN algorithm, two target networks are employed to fix target value and

improve stability. The target action-value function Qtarget
i can be expressed as

Qtarget
i = Ri + ψQ′ (Fi+1, μ

′ (Fi+1, ω
′) , λ′) . (30)

To promote the accuracy of the critic network, the gradient descent method is employed

to reduce the MSE between the target action-value function Qtarget
i and critic network output

Q (F,G, λ). The loss function is given by

Loss (λ) =
1

N

N∑
i=1

(
Qtarget

i −Q (Fi, μ (Fi, ω
′) , λ′)

)2
, (31)

where N is the size of sampled batches.
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Fig. 3. The training process of DDPG

The core of the actor network is to generate the appropriate action G in any state F , so

as to gain maximum state-action value function Q (F,G). Therefore, the loss function of actor

network can be expressed by

Loss (ω) = − 1

N

N∑
i=1

Q (Fi, Gi, λ). (32)

The sampled policy gradient can be obtained by minimizing the loss function in (32).

∇Loss(ω) ≈ 1

N

N∑
i=1

[∇ωQ (F,G, λ) |F=Fi,G=μ(Fi|ω)
]

=
1

N

N∑
i=1

[∇GQ (F,G, λ) |F=Fi,G=μ(Fi|ω)∇ωμ (F, ω) |F=Fi

]. (33)

After updating the parameters of the actor network and critic network, the parameters of two

target networks also need to be updated as follows

λ← τλ+ (1− τ)λ′

ω ← τω + (1− τ)ω′
(34)

where τ is the soft update coefficient. The DDPG algorithm is summarized in Algorithm 2 and

presented in Fig. 3.
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Algorithm 2 DDPG algorithm

1: Initialize the DNNs parameters ω, ω′, λ and λ′, the number of episodes Ne, the number of
steps Nt, the learning rate α, the exploration noise Nt, the discount factor ψ, the soft update
coefficient τ , the learning rate αa and αc, the capacity of replay memory N , and the batch
size v.

2: Let ω′ ← , λ′ ← λ.
3: for episode = 1 to Ne do
4: Initialize channel state and resource requirements.
5: for step = 1 to Nt do
6: Obtain the state Ft.
7: Choose action Gt = μ (Ft|ω) +Nt.
8: According to Gt, determine the UAV placement (xuav, yuav), computation offloading

vector A, and resource allocation vector B.
9: Execute corresponding strategy to gain next state Ft+1 and reward Rt.

10: Save transition (Ft, Gt, Rt, Ft+1) in memory bank.
11: Sample v batches of transition from memory bank stochastically.
12: Determine the target action-value function Qtarget

i according to (30).
13: Minimize the loss function in (31) to update the critic network parameters λ.
14: Update the actor network parameters ω employing the gradient in (33).
15: Update the target actor network parameters ω′ and the critic network parameters λ′

according to (34).
16: end for
17: end for

V. SIMULATION RESULTS AND DISCUSSION

In this section, the simulation results of the DDQN algorithm and the DDPG algorithm are

presented. To prove the advantage of the proposed algorithms, they are compared with the full

local computing method and the full offloading method.

WUDs are stochastically distributed in the 10m × 10m area. The flight area of the UAV is

20m×20m, and the flight altitude is set to H = 10m. The transmission power and standby power

of the ith WUD are set to pi = 500mW, psi = 100mW, respectively. The computation energy

efficiency coefficient k is set to 10−26. The size of task di is uniformly distributed in [300kbits,

500kbits], and ci is uniformly distributed in [900 Megacycles, 1100 Megacycles]. To reduce the

path loss, the carrier frequency is set to 0.55 THz. According to [32], the absorption coefficient

kabs is 6.7141 × 10−4. Both the transmitter antenna gain Gt and the receiver antenna gain Gr

are set to 20 dBi, which enables a high degree of directionality in the THz band. In the DDQN

algorithm, the learning rate α and the discount factor ψ are set to 0.05 and 0.01, respectively.
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The number of episodes Ne is 500 and the number of steps Nt is 20. The exploration rate ε is

set to 0.99 and the update interval C is set to 100. The capacity of replay memory is 1000 and

the batch size is 64. The parameters of the DDPG algorithm are given by Table II.

TABLE II

PARAMETERS OF DDPG ALGORITHM

Parameter Explanations Value

Ne The number of episodes 500

Nt The number of steps 20

N The capacity of the replay memory 1000

v The batch size 64

ε The exploration noise 0.1

ψ The discount factor 0.01

αa The learning rate of actor network 0.001

αc The learning rate of critic network 0.002

τ The soft update coefficient 0.01
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a
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Fig. 4. The convergence of the proposed algorithms

In Fig. 4, the number of WUDs is 4 and the computation capacity of the UAV server is 5

GHz. The horizontal coordinate represents the episodes and the vertical coordinate represents
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the sum of the rewards of each episode. As the time of training sessions grows, the sum reward

gradually improves, indicating that the agent take action that resulted in higher rewards. The

DDQN algorithm converges at about 40 episodes and DDPG algorithm converges at about 80

episodes, which proves the proposed algorithms converge simply. The convergence of sum reward

indicates the end of the training process, and the agent can take appropriate action to reduce

the total time delay according to the state. The convergence value of the DDQN algorithm is

about -46, and the convergence value of the DDPG algorithm is about -38. From the previous

definition of reward, it is clear that delay is inversely proportional to reward. Thus, the DDPG

algorithm outperforms the DDQN algorithm.
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α= 0.2

Fig. 5. The convergence of the DDQN algorithm in different learning rate

Fig. 5 and Fig. 6 show the impact of the learning rate on the DDQN and DDPG algorithm. The

number of WUDs is 4 and the computation capacity of the UAV server is 5 GHz. The horizontal

coordinate represents the episodes and the vertical coordinate represents the total time delay of

each step. It is observed that an inappropriate learning rate will cause the algorithm to converge

to a larger value. Therefore, choosing the right learning rate is very important for DDQN and

DDPG algorithm. which can affect algorithm performance directly.

In Fig. 7, the effectiveness of the DDQN algorithm and DDPG algorithm are compared

with local computing method and full offloading method for different numbers of WUDs. The
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Fig. 6. The convergence of the DDPG algorithm in different learning rate
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Fig. 7. The total time delay versus the number of WUDs

computation capacity of the UAV server and each WUD are 5 GHz and 1 GHz, respectively.

With the increase in the number of WUDs, the total time delay under the four methods also

increases. This is because that the computing resources of the UAV server are restricted, the

latency of the full offloading method will be higher than the local computing method when the
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number of WUDs is greater than 5. The total time delay of the DDQN and DDPG algorithms

is less than the full offloading method and local computing method for different numbers of

WUDs, which proves the better performance of the proposed algorithms.

1 2 3 4 5 6 7 8

Computation capacity of MEC server(GHz)

2

4

6

8

10

12

14

16
To

ta
l 
ti

m
e
 d

e
la

y
(s

)
local computing

full offloading

DDPG

DDQN

Fig. 8. The total time delay versus the computation capacity of UAV server

In Fig. 8, the effectiveness of the DDQN algorithm and DDPG algorithm is in contrast to the

local computing method and full offloading method for different computation capacities of UAV

server. The number of WUDs is 4 and the computation capacity of WUDs is 1 GHz. It is observed

that as the computation capacity of UAV server grows, the total time delay gradually decreases.

The increase of computation capacity of UAV server results in a corresponding increase in the

computation resources allocated to each WUDs, which results in the reduction in total time

delay. In addition, the total time delay of DDQN and DDPG algorithms in different cases is less

than other methods, which proves the effectiveness of the proposed algorithm.

In Fig. 9, the effectiveness of the proposed algorithms is verified by varying the amount of

tasks to be processed. The horizontal coordinate indicates the mean value of the task volume,

i.e., when the horizontal coordinate is 900, ci is uniformly distributed in [800 Megacycles, 1000

Megacycles]. As the task size grows, the total time delay increases. However, the DDQN and

DDPG algorithms correspond to lower delays than the other two methods, which proves the

effectiveness of the proposed algorithm.
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Fig. 9. The total time delay versus the amount of tasks to be processed
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Fig. 10. The total time delay versus the computation capacity of WUDs

In Fig. 10, the horizontal coordinate represents the computation capacity of WUDs and the

vertical coordinate represents the total time delay. The number of WUDs is set to 4, and the

computation capacity of UAV server is set to 5 GHz. It can be clearly seen that the DDQN

and DDPG algorithms are superior to other two methods for different computation capacity of
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WUDs.

VI. CONCLUSION

In this paper, the UAV-assisted computation offloading architecture in the THz band was

proposed to enhance the system capacity and QoS of WUDs. To support latency-sensitive

applications, the optimization target was to minimize the total time delay. Considering the highly

dynamic environment and limited resources, the DDQN and DDPG algorithms were provided

to optimize the UAV placement, computation offloading, and resource allocation based on the

UAV-assisted computation offloading architecture. The simulation results have shown that the

proposed algorithm has good convergence performance and lower latency compared to full local

computing method and full offloading method. Future work can be summarized as follows:

1) Consider more realistic scenarios, such as collaborative computation offloading of multiple

UAVs and channel estimation errors. 2) Investigate the interpretability of reinforcement learning

to further improve the algorithm performance.
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