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Abstract

As revolutionary technologies that can actively change the communication link signal, intelligent

reflecting surface (IRS) and unmanned aerial vehicle (UAV) have emerged as reliable, economical

and convenient wireless communication solutions for a variety of practical scenarios. Therefore, this

paper focuses on an IRS empowered UAV downlink communication network, where the dynamic UAV

establishes a cascade link via IRS to provide signal enhancement services for multiple users. Considering

constraints of transmit power, flight speed and area at the UAV and the reflecting constraints at the IRS,

the block coordinate descent (BCD) method based on resource allocation, reflecting design and trajectory

optimization is adopted to maximize the sum-rate of all users. The proposed problem is converted by

using quadratic transformation and Lagrangian dual transformation. Then applying for the approximate

linear method and Iterative Rank Minimization (IRM) to optimize the transmit power of UAV and

phase shift of IRS respectively. Since additional reflection propagation paths by IRS, the complexity

of the channel model makes the trajectory design difficult. To tackle this problem, this paper proposes

a UAV trajectory optimization method based on enhanced reinforcement learning with the fixed initial

location and destination. In the end, the convergence of the proposed scheme is effectively verified
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by simulations. Moreover, abundant simulation comparisons between the proposed scheme and other

benchmark schemes demonstrate the validity and high performance gains of the proposed algorithm.

Index Terms

IRS, UAV, resource allocation, reflecting design, trajectory optimization, BCD, IRM, reinforcement

learning.

I. INTRODUCTION

In recent years, UAV and IRS have become two promising technologies to facilitate the devel-

opment of wireless communication networks by actively changing communication link signals

through maneuver control and intelligent signal reconstruction respectively [1] [2]. Nevertheless,

due to their limitations and great challenges in practice, their future applications have been

seriously hindered [3]. To meet the strict service requirements of future networks, it is significant

to make full use of the complementary advantages of IRS and UAV [4] [5].

A. Related Works and Motivation

With the gradual maturity of UAV technology and the decreasing cost, UAV communication

is widely employed in environmental monitoring, agricultural production, news reporting, film

shooting, electrical inspection and other fields. On account of the agility and maneuverability

of UAVs, UAVs can be quickly deployed in target areas to establish reliable communication

links [6]. Moreover, the high mobility, flexible deployment and agility of UAVs enable it to be

deployed quickly and effectively establish on-demand communications in emergency situations

[7]. Specifically, as a complement to the existing wireless network, UAVs can provide additional

capabilities for hotspots and provide coverage of remote areas in poor conditions [8]. In addition,

when an emergency occurs, the UAV base station is not limited by the basic communication

facilities, and can quickly provide a large range of reliable communications for the disaster

area [9]. Compared with traditional communication infrastructure, the deployment of UAVs is

more affordable. Utilizing the UAV communications to improve wireless network coverage is a

cost-effective choice [10].

At present, the trajectory optimization and placement design in the UAV communication

network have received extensive attention [11]. For example, in [12], the authors established
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a system network of UAV wireless power transmission, where the asymptotic optimal solution

of UAV trajectory design is derived. In [13], an alternate optimization algorithm for maximizing

energy efficiency based on resource allocation and trajectory optimization is proposed. Fur-

thermore, the authors proposed a dual UAV system consisting of a communication UAV and

a jamming UAV, where achieved the maximization of the secrecy energy efficiency based on

resources, trajectory and artificial noise through successive convex approximations [14]. In [15],

the authors focused on a UAV-assisted wireless power transfer network while considering the

nonlinear energy harvesting process. In the case of the maximum speed limit of the UAV, the

trajectory design aiming at maximizing the minimum capture energy between ground equipment

was studied. In [16], the authors concentrated on the multi-UAV Internet of Things (IoT) system

under the uplink NOMA communication. Through reasonable design of UAV flight height, the

sub-channel allocation, uplink transmit power and device node are jointly designed to maximize

the system capacity. To minimize the energy consumption, authors of [17] proposed to design

the UAV placement while meeting the system throughput requirements of each user. The authors

in [18] optimized the 3D trajectory of the UAV by leveraging the proximal difference-of-convex

algorithm with extrapolation method, and extended to an online optimization. In [19], Capitalizing

on the successive convex approximation method, the author proposed an effective iterative method

to find feasible solutions that satisfy the Karush-Kuhn-Tucker condition, and achieved the goal

of optimizing the trajectory of the UAV to minimize the energy consumption.

However, while the development of UAVs’ communication is promising, they have strict size,

energy constraints and load limits which make their flight time or endurance difficult, as well

as their communication performance [3]. In addition, for densely built-up areas, it is usually

necessary to rasie the altitude of the UAV and the transmit power of the base station to construct

a line-of-sight (LOS) connection with users. However, this operation usually leads to greater

path loss and energy loss, and physical signal blocking and interference of tall buildings and

other obstacles will lead to frequent occurrence of high packet loss rate during transmission.

As an emerging wireless transmission technology of 6G, IRS can be used to complement

and enhance the quality of signal transmission in wireless communication networks [20]. Spe-

cially, IRS has excellent features of portable and low-cost. By constructing an intelligent and

controllable wireless environment, IRS will bring a new communication network paradigm to

6G and meet future wireless communication needs. The simplified version of IRS will have
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4

the opportunity for initially commercial deployment and standardization in the 5G-Advanced

stage, especially to improve the 5G millimeter wave coverage problem [21], [22]. The authors

of [23] studied a communication system based on IRS-assisted SWIPT under QoS constraints

by jointly designing active and passive beamforming. In [24], the author jointly optimized the

minimum total transmit power of the system by designing active and passive beamforming,

significantly improving network energy consumption and increasing the achievable rate. The

paper [25] developed an energy-saving design through IRS phase design and transmit power

optimization. Aiming at imperfect channel information, a novel algorithm based on penalty

binary decomposition was proposed to achieve the amplitude control of the IRS in wireless

communication [26]. Consider perfect setting of channel state information (CSI) as well as

imperfect CSI, the joint design of the AP beamforming and the reflecting phase shift of IRS

is separately studied to make the weighted sum-rate of multiusers maximize [27]. To maximize

the security rate, considering various QoS requirements, the problem of joint beamforming and

reflection beamforming and numerical analysis was carried out with deep reinforcement learning

by the authors of [28]. In [29], a machine learning method with implicit channel estimation was

proposed, which can directly optimize the reflection coefficient of the IRS.

Although the combination of IRS and UAV is in its infancy, some of their researches have

attracted great attentions. IRS empowered UAV communication network can not only enhance

the reliability of the communication link, but also improve the system performance gain. When

the user or the IoT device is in a blind spot, IRS establishes line-of-sight links through intelligent

reflection to bypass obstacles and solve the problem of signal coverage dead zone. In view of

the above advantages, through joint optimization phase shift and UAV scheduling and trajectory,

the weighted bit error rate minimization was explored in [4]. The authors of [30] investigated

the joint design of resource allocation, beamforming and UAV placement of IoT devices under

the constraint of finite block length. By means of jointly designing the speed, trajectory of each

UAV and phase shift, the goal of minimizing the total transmit power was studied in [31]. In

[32], the authors considered the worst-case secrecy rate minimum through a reliable joint design

of beamforming, UAV’s transmit power as well as trajectory. In [33], the authors studied the

joint optimization of UAV trajectory, transmit beamforming and IRS passive beamforming to

maximize the average achievable rate of the relay network by equipping the IRS on a UAV. By

optimizing the UAV movement and IRS design, the energy consumption minimization problem
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was proposed in [34].

According to the above investigations, although researchers have done a handful of researches

on the IRS-aided UAV communication system, this research is still in a fledging period. As

far as we know, the optimization problem of IRS empowered UAV wireless network under

the maximum sum-rate requirements has not been solved yet, and it is still an extremely

attractive research. As the IRS-assisted UAV communication network has been proven by several

researchers to bring excellent performance improvements, actively exploring new optimization

methods to carry out this work is our motivation. Different from the above research, the reflecting

design algorithm of the IRS employed in this paper is first used in the related research of UAV

wireless networks. In addition, the trajectory optimization algorithm proposed in this paper is

also a groundbreaking work in the scenario involving IRS.

B. Contributions

This paper investigates an IRS empowered UAV wireless communication network considering

the optimization problem of joint resource allocation, reflecting design and trajectory optimization

to maximum sum-rate of multiusers. The main contributions are listed below.

• First of all, this paper proposes an IRS empowered UAV system communication model,

in which the UAV performs flight tasks at specified initial location and destination within

a certain area and the IRS is fixed to a tall building. The system model can not only

takes full advantage of the high mobility of the UAV, but also provides more reliable,

individualized communication services for multiusers by virtue of IRS enhanced links. Based

on the transmit power limits and the reflecting constraints of the IRS, a joint optimization

problem of resource allocation, IRS reflecting design and UAV trajectory optimization to

maximize the sum-rate of multiusers is proposed.

• Secondly, this paper exploits an iterative method based on BCD, which decomposes the

complexly coupled joint optimization problem into three subproblems. For the first sub-

problem, the problem of power control is transformed through quadratic transformation and

Lagrangian dual transformation, and approximate linear algorithm is employed to solve the

proposed subproblem. While an IRM method is effectively applied to solve the second

subproblem for the reflecting design of IRS. Due to the deployment of IRS introduces
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additional reflection propagation paths, to tackle this problem, an enhanced reinforcement

learning method is employed to carry out the third subproblem skillfully.

• Finally, abundant simulations unveil the remarkable performance of the proposed joint opti-

mization scheme, and the proposed scheme converges with fewer iterations. Compared with

several benchmark schemes, the scheme can markedly promote the sum-rate of multiusers

and prove the superiority of the scheme. Moreover, the deployment of IRS has a significant

effect on improving the communication quality. The reflecting numbers and phase shift

design of IRS can also greatly promote the sum-rate. What is more, the reinforcement

learning algorithm for trajectory optimization in the joint problem plays a notable role.

C. Organization and Notations

The remainder of this paper is organized as follows. Section II first introduces the system

model of IRS empowered UAV downlink communications network. Based on the system model

and channel model, the problem of maximizing the cumulative sum-rate of all the users is

formulated. In Section III, a BCD algorithm is proposed to solve the joint design problem.

Section IV provides plentiful simulation analysis, which are compared with other benchmark

schemes to demonstrate the validity of the scheme. In the end, Section V makes a conclusion

for this paper.

Notation: b∗ and bH mean the transpose and conjugate transpose of vector b respectively. ‖b‖
represents the Euclidean norm. trace(B) and rank(B) represent the trace and rank of matrix

B, respectively. B �0 denotes B as a positive semi-definite matrix. |x| is the absolute value

of the complex number x, while Re{x} is the real part. 〈·〉 represents the inner product of two

matrices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model and channel model of the IRS empowered UAV downlink

communications network are presented, and then the joint optimization problem is formulated

under multiple constraints.

A. System Model

Fig. 1 exhibits a dynamic UAV which assumes the role of a base station in the air, and it

will provide downlink communication services for K single-antenna user equipment (UE) in a
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Trajectory
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Fig. 1. IRS empowered UAV downlink communications network.

certain area. It is assumed that the movement of UE is static or low mobility, and the horizontal

location of UE i is expressed as ui = [xUE
i , yUEi ]T , i ∈ K. In addition to the direct link between

UAV and UE, the system establishes a cascade link to enhance the UE’s received signal with

the aid of M reflecting elements in IRS. In general, the IRS are deployed on the tall buildings

with good sight conditions. Therefore, the IRS is fixed in a specific location and represented as

I = [xIRS, yIRS, hIRS]T .

To maintain the consistency of UAV flight time, the total flight time T is divided into N

equal time intervals. The 3D location of the UAV in time slot n can be expressed as q[n] =

[xUAV [n], yUAV [n], hUAV ]T , n∈N , and hUAV denote the flying altitude of the UAV. For simplicity,

the height is assumed to be constant in this paper. The task of the UAV is to fly between a

predetermined set of initial location and destination, which are denoted by qI and qF respectively.

q[0] = qI ,q[N ] = qF . (1)

In addition to flying in accordance with the initial location and destination, it is assumed that

there is a no-fly zone restriction, which is expressed as (2). It is worth mentioning that the no-fly

zone is interpreted as an area where obstacles exist at the height of the UAV (such as a tall

building), or an area listed as a no-fly zone by regulatory affairs.

q[n] ∈ C\Cno−fly, ∀n ∈ N. (2)

In each time slot, even if the UAV reaches the maximum speed Vmax, as long as the time

slots δn = T
N

is divided into sufficiently small, the location of the UAV can be regarded as
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approximately constant. Taking into account the maximum speed Vmax which the UAV can

achieve, the UAV mobility constraints in a time slot is as follows

‖q[n]− q[n−1]‖ ≤ VmaxT

N
, ∀n ∈ N. (3)

In actual application scenarios, the IRS is usually equipped with an intelligent controller to

configure the reflection coefficient and exchange information between the IRS and the UAV.

Due to the large channel fading of the UAV-IRS-UE link, the reflective link requires numerous

reflective components to make up path loss. The reflection coefficient of the IRS is regarded as

approximately unchanged over the whole signal bandwidth. Then the IRS reflecting matrix is

expressed as θ = [θ1, · · · , θm, · · · , θM ]H , where θm = ejϕm , ϕm is the reflecting phase shift of

the m-th unit corresponding to IRS. The distance of UAV-UE(i) and UAV-IRS in time slot nis

respectively expressed as

DUE
i [n] = ‖q[n]− ui‖ , (4)

DUR[n] = ‖q[n]− I‖ . (5)

Since the movement of the UAV during δ is far less than DUR[n] and DUE
i [n], DUR[n] and

DUE
i [n] are constant in each time slot n. Moreover, the distance of IRS-UE(i) is expressed as

(6), which can be treated as fixed in the model.

DRE
i = ‖I− ui‖ . (6)

In virtue of the substantial path fading and reflection loss, signals that are reflected twice or

more by IRS can be ignored [2].

B. Channel Model

In this paper, di[n] represents the equivalent baseband channel vector of UAV-UE link in the

time slot n of the IRS empowered UAV downlink communication network. In time slot n, the

equivalent baseband channel vector of IRS-UE link is denoted by ri[n]. G[n] represents the

channel gain vector of the UAV-IRS link. Since UAVs fly in the air with a certain height, IRS

is usually deployed at tall buildings to avoid signal blocking, as shown in Fig. 1. It is assumed

that the channels di[n] and ri[n] follows the Rician channel model. Considering large-scale and
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small-scale fading, the path loss is composed of LOS and non-line-of-sight (NLOS) link, which

can be respectively represented as

di[n]=

√
ρ0

(DUE
i [n])

αd

(√
κd

κd + 1
di[n] +

√
1

κd + 1
di[n]

)
, (7)

ri[n]=
√

ρ0

(DRE
i )

αr

(√
κr

κr + 1
ri +

√
1

κr + 1
ri[n]

)
, (8)

where ρ0 is the path loss when the reference distance is 1 meter. κd and κr are Rician factors.

αd and αr are the path loss exponents of UAV-UE and IRS-UE links. di[n] = 1 and ri

denote deterministic LOS components, di[n] and ri[n] are random Rayleigh distribution NLOS

components, which conform to cyclic symmetric complex Gaussian (CSCG) distribution with

zero mean and unit variance.

It is assumed that the IRS consists of uniform linear array (ULA) reflection elements, which

ri can be represented as

ri=
[
1,e−j

2πd
λ

cosφi , ..., e−j
2π(M−1)d

λ
cosφi

]T
, (9)

where d is the IRS unit spacing, λ represents the carrier wavelength, cosφi =
xUE
i −xIRS

DRE
i

denotes

the cosine of the angle of departure (AoD) from the IRS to UE i.

Moreover, the equivalent baseband channel vector of UAV-IRS link can be denoted as

G[n]=

√
ρ0

(DUR[n])2
Gi[n] , (10)

Gi[n]=
[
1,e−j

2πd
λ

cosϕ[n], ..., e−j
2π(M−1)d

λ
cosϕ[n]

]T
, (11)

where cosϕ[n] = xIRS−xUAV [n]
DUR[n]

denotes the cosine of the angle of arrival (AoA) from the UAV to

the IRS.

Let si[n] represents the data symbol sent to UE i in time slot n, and si[n] is an independent

random variable with zero mean and unit variance. Furthermore, the transmit power of UAV

satisfies
K∑
i=1

N∑
n=1

pi[n] ≤ PUAV , where pi[n] denotes the transmit power vector of the UAV at UE

i in time slot n, PUAV represents the maximum transmit power of the UAV. Thus the transmitted

signal at the UAV can be represented as

x[n] =
K∑
i=1

√
pi[n]si[n]. (12)
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Compared with the traditional communication network, the UE received signal in this paper

is composed of two parts, namely signals of direct link (UAV-UE link) and reflecting link (UAV-

IRS-UE link). Therefore, the ith UE receives the signal in time slot n as

yi(n) = dH
i [n]

√
pi[n]si[n]︸ ︷︷ ︸

UAV−UElink

+θH [n]Ri[n]
√

pi[n]si[n]︸ ︷︷ ︸
UAV−IRS−UElink

+τi, (13)

where Ri[n]=diag(rHi [n])G[n]. τi represents the additive white Gaussian noise (AWGN) with

zero mean and variance σ2
0 . Then the corresponding received signal-to-noise ratio (SINR) of UE

i in time slot n is represented as

SINRi [n] =

∣∣(dH
i [n] + θH [n]Ri [n])

∣∣2pi [n]
K∑

j=1,j �=i

|(dH
i [n] + θH [n]Ri [n])|2pj [n] + σ2

0

.
(14)

The data rate of UE i in time slot n is represented as

Ri[n] = log(1 + SINRi[n]). (15)

Since the optimal solution has nothing to do with the base of the logarithmic function, the

natural logarithm is used.

C. Problem Formulation

In this subsection, the goal of maximizing the sum-rate of total UE throughout the flight of

the UAV is proposed. Then, convert the multiple variable optimization problem considered in

this paper to the following formula

P : max
P,θ,Q

f(P,θ,Q) =
K∑
i=1

N∑
n=1

Ri[n]

s.t C1 :
K∑
i=1

N∑
n=1

pi[n] ≤ PUAV

C2 : |θm[n]| = 1, ∀m = 1, ...,M

C3 : ‖q[n]− q[n−1]‖ ≤ VmaxT

N
, ∀n ∈N

C4 : q[0] = qI ,q[N ] = qF

C5 : q[n] ∈ C\Cno−fly, ∀n ∈ N

, (16)

where P= {pi, ∀i ∈ K} denotes the UAV transmit power, Q={q[n], ∀n ∈ N} is the trajectory

coordinate of the UAV, θ={θm, ∀m ∈M} represents the IRS phase shift matrix. C1 represents the
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11

Algorithm 1 BCD-based for solving problem P

1: Initialize {P0,θ0,Q0}, and set t = 0.
2: repeat
3: Solve PA for given {θt,Qt} by employing Algorithm 2, and update Pt+1.
4: Solve PB for given {Pt+1,Qt} by employing Algorithm 3, and update θt+1.
5: Solve PC for given {Pt+1,θt+1} by employing Algorithm 4, and update Qt+1.
6: Update t = t+ 1.
7: until t = tmax

UAV transmit power constraint, C2 represents the IRS phase shift constraint, and C3 guarantees

that the UAV is equivalent to the approximately constant location in a time slot, C4 specifies

the initial location and destination of the UAV. C5 denotes that the UAV is not allowed to fly

over the no-fly zone.

There are three unknown variables in the system model. Obviously, the objective function

and the multiple constraints are non-convex problems. Therefore, the above problems are NP-

hard and hard to carry out. To address this problem, an iterative algorithm is adopted to find a

sub-optimal solution by invoking the BCD method in the next section .

III. PROPOSED SCHEME

In this section, the BCD method [35] is used to alternately optimize the three subproblems.

Specifically, the variables that need to be optimized are decomposed into several blocks, other

block parameters are fixed, and each block is updated according to specific rules. The detailed

process is as follows.

Firstly, for given IRS phase shift θ and UAV trajectory Q, UAV transmit power P alloca-

tion is optimized based on an approximate linear algorithm by solving a linear programming

problem. Secondly, fix P and Q, θ is optimized based on IRM algorithm. Finally, an enhanced

reinforcement learning method is adopted to optimize the UAV trajectory. The joint optimization

process is as algorithm 1.

A. Resource Allocation

As for the solution of the resource allocation in IRS aided UAV network, the problem is

transformed through the Lagrange dual transformation and quadratic transformation [36], and

an approximate linear method is applied to solve the transmit power control of UAV. Therefore,
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12

fixing the phase shift of the IRS and the trajectory of the UAV, the problem of power control

can be transformed into P(A) as follows

P (A) : max
P

fA(P) =
K∑
i=1

N∑
n=1

Ri[n]

s.t
K∑
i=1

N∑
n=1

pi[n] ≤ PUAV

. (17)

It can be seen that the above formula is a multidimensional and complex fractional pro-

gramming (FP) problem [36]. To trakle the problem, the closed-form FP method is applied to

equivalently convert the logarithm of the ratio problem into a more manageable form. According

to the Lagrangian dual transformation proposed in [37], the objective function fA is as follows

fA1(P,μ) =
K∑
i=1

N∑
n=1

log(1 + μi[n])−
K∑
i=1

N∑
n=1

μi[n] +
K∑
i=1

N∑
n=1

(1 + μi[n])SINRi[n]

1 + SINRi[n]
, (18)

where the auxiliary variable μ refers to [μ1, ..., μi..., μK ]
T , μi[n] ≥ 0, ∀i = 1, ..., K.

Aiming at the multiple-ratio FP problem in formula (18), the quadratic transformation proposed

in [37] is employed to transform the problem. Formula (18) can be rewritten as a biconvex

optimization problem in (19), where the auxiliary variables ω refers to [ω1, ..., ωi..., ωK ]
T .

fA2(P,μ,ω) =
K∑
i=1

N∑
n=1

(log(1 + μi[n])− μi[n])

+
K∑
i=1

N∑
n=1

2
√
(1 + μi[n])pi[n]Re{ω∗i [n](dH

i [n] + θH [n]Ri[n])}

−
K∑
i=1

N∑
n=1

|ωi[n]|2(
K∑
j=1

N∑
n=1

∣∣(dH
i [n] + θH [n]Ri[n])

∣∣2pj[n] + σ2
0)

. (19)

Then problem P(A) can be rewritten as

̂P (A) : max
P,μ,ω

fA2(P,μ,ω)

s.t
K∑
i=1

N∑
n=1

pi[n] ≤ PUAV

μi[n] ≥ 0, ∀i = 1, ..., K

. (20)

For the problem (20), the variables p, μ, ω are updated circularly through iteration and

alternation. The specific update process by the approximate linear method is as algorithm 2.

Considering the parameters p and ω as constants, solve the formula ∂fA2/∂μi[n]=0 as follows

∂fA2

∂μi[n]
=

K∑
i=1

N∑
n=1

(
−μi[n]

1 + μi[n]
+

√
pi[n]Re{ω∗i [n](dH

i [n] + θH [n]Ri[n])}√
(1 + μi[n])

)
,
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13

let ∂fA2/∂μi[n] = 0, the following equation can be obtained

μi[n]

1 + μi[n]
=

√
pi[n]Re{ω∗i [n](dH

i [n] + θH [n]Ri[n])}√
(1 + μi[n])

let χi[n] =
√

pi[n]Re{ω∗i [n](dH
i [n] + θH [n]Ri[n])}. Then solve equation μ2

i [n] − χ2
i [n]μi[n] −

χ2
i [n] = 0 to get μi[n] as follow

μi[n] =
χ̈2
i [n] + χ̈i[n]

√
χ̈2
i [n] + 4

2
, (21)

where χ̈ represents the updated value of the parameters χ.

Similarly, solve ∂fA2/∂ωi[n]=0 in the following

∂fA2

∂ωi[n]
=

K∑
i=1

N∑
n=1

√
(1 + μi[n])pi[n]

∂(ωH
i [n](dH

i [n] + θH [n]Ri[n]) + (dH
i [n] + θH [n]Ri[n])

H
ωi[n])

∂ωi[n]

−
K∑
i=1

N∑
n=1

∂(ωi[n]ω
H
i [n])

∂ωi[n]
(

K∑
j=1

N∑
n=1

∣∣(dH
i [n] + θH [n]Ri[n])

∣∣2pj[n] + σ2
0)

=
K∑
i=1

N∑
n=1

√
(1 + μi[n])pi[n](0+ (dH

i [n] + θH [n]Ri[n])
H)

−
K∑
i=1

N∑
n=1

ωH
i [n](

K∑
j=1

N∑
n=1

∣∣(dH
i [n] + θH [n]Ri[n])

∣∣2pj[n] + σ2
0)

,

let ∂fA2/∂ωi[n] = 0, the following equation can be obtained

K∑
i=1

N∑
n=1

ωH
i [n](

K∑
j=1

N∑
n=1

∣∣(dH
i [n] + θH [n]Ri[n])

∣∣2pj[n] + σ2
0)

=
K∑
i=1

N∑
n=1

√
(1 + μi[n])pi[n](d

H
i [n] + θH [n]Ri[n])

H

,

then update ωi[n] as

ωi[n] =

√
p̈i [n] (1 + μ̈i[n])(d

H
i [n] + θ̈H [n]Ri [n])

K∑
j=1

∣∣∣(dH
i [n] + θ̈H [n]Ri [n])

∣∣∣2p̈j [n] + σ2
0

.
(22)

Introducing the dual vector β constrained by the UAV transmit power, then the dual function of

fA2 is

fD
A2(P, μ, ω) =

K∑
i=1

N∑
n=1

(log(1 + μi[n])− μi[n])

+
K∑
i=1

N∑
n=1

2
√

(1 + μi[n])pi[n]Re{ω∗i [n](dH
i [n] + θH [n]Ri[n])}

−
K∑
i=1

N∑
n=1

|ωi[n]|2(
K∑
j=1

N∑
n=1

∣∣(dH
i [n] + θH [n]Ri[n])

∣∣2pj[n] + σ2
0)

− β

(
K∑
i=1

N∑
n=1

pj[n]− PUAV

)
.
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14

Decompose fD
A2 as follows

fD
A2 = const(μi[n]) + f1 + f2 + f3,

f1 =
K∑
i=1

N∑
n=1

2
√
(1 + μi[n])pi[n]Re{ω∗i [n](dH

i [n] + θH [n]Ri[n])},

f2 = −
K∑
i=1

N∑
n=1

|ωi[n]|2(
K∑
j=1

N∑
n=1

∣∣(dH
i [n] + θH [n]Ri[n])

∣∣2pj[n] + σ2
0),

f3 = −β
(

K∑
i=1

N∑
n=1

pj[n]− PUAV

)
,

the partial derivative can be obtained as follows

∂f1

∂
√

pi[n]
=

K∑
i=1

N∑
n=1

√
(1 + μi[n])

[(
di[n] + θ[n]RH

i [n]
)
ωi[n]

]∗
,

∂f2

∂
√

pi[n]
= −

K∑
i=1

N∑
n=1

|ωi[n]|2
[(
dH
i [n] + θH [n]Ri[n]

) (
di[n] + θ[n]RH

i [n]
)]T(√

pi[n]
)∗
,

∂f3

∂
√

pi[n]
= −β

K∑
i=1

N∑
n=1

(√
pi[n]

)∗
.

Solve the equation ∂fA2

/
∂
√

pi[n] = 0 to obtain the solutions of parameters pi[n] as follows

pi[n] = (1 + μ̈i[n])ω̈
2
i [n]Äj [n] (B̈i [n] B̈

H
i [n])ÄH

j [n] , (23)

where p̈, μ̈, ω̈ represent the updated value of the parameters p, μ, ω, respectively, Äj [n] and

B̈j [n] in formula (23) are expressed as

Äj [n]=

(
βEM +

K∑
j=1

|ω̈j[n]|2B̈j [n] B̈
H
j [n]

)−1
, (24)

B̈j [n]=dj [n] +RH
j [n] θ̈ [n] , (25)

where EM is the M -order unit matrix.
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Algorithm 2 Prox-linear algorithm for solving problem PA

1: Initialize {P0,μ0,ω0}, and set iteration index tA = 0.
2: repeat
3: Update ω by (21).
4: Update P by (22).
5: Update μ by (19).
6: Update ω by (21).
7: Update tA1 = tA1 + 1.
8: until tA = tAmax

B. IRS Reflecting Design

For IRS reflecting design, an IRM algorithm is proposed to design the phase shift. According

to the updated results from the last subsection, auxiliary variables X and α are introduced to

transform the problem P(A) into a non-convex quadratic constrained quadratic programming

(QCQP) problem. The new form P(B) for IRS phase shift optimization can be rewritten as

P (B) : min
θ

fB(θ)

s.t |θm| = 1, ∀m = 1, ...,M

, (26)

where fB(θ) = θHXθ − 2Re
{
θHα

}
, X and α are

X =
K∑
i=1

|ω̈i|2
K∑
j=1

λ̈j,iλ̈
H
j,i , (27)

α =
K∑
i=1

(√
(1 + μ̈i[n])ω̈

∗
i λ̈i,i − |ωi|2

K∑
j=1

τ̈ ∗j,iλ̈j,i

)
, (28)

where λ̈j,i = Ri

√
p̈j and τ̈j,i = dH

i

√
p̈j .

At first, a parameter t2 = 1 is introduced to transform the non-homogeneous function fB into

homogeneous form

θHXθ − 2Re
{
θHα

}
=

⎡
⎣ θ

t

⎤
⎦H ⎡

⎣ X −α
−αH 0

⎤
⎦
⎡
⎣ θ

t

⎤
⎦ = θ̃HX ′θ̃ , (29)

where X ′=

⎡
⎣ X −α
−αH 0

⎤
⎦, θ̃=

⎡
⎣ θ

t

⎤
⎦.

Therefore, only the equivalent homogeneous formula in (29) needs to be solved. Then, the

following method for non-convex QCQP problems only focus on the positive semidefinite matrix

of rank one in homogeneous QCQP.
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Finding a rank one matrix is computationally complex, especially for large-scale QCQP. This

paper first introduces a continuous function, and approximates the rank function of a matrix with

a given precision by designing appropriate parameters. Then the Rank Minimization Problems

(RMP) is transformed into a rank-constrained optimization problem. An IRM algorithm [38] is

employed to asymptotically approximate the constrained rank.

At present, in order to achieve computational efficiency, the existing methods usually bring in

approximate functions instead of rank functions to establish the relaxation optimization problem,

but this will sacrifice the optimality. In the following, an alternative method is proposed to re-

express RMP as a rank-constrained optimization problem.

Then a rank-one positive semidefinite matrix Φ = θ̃θ̃H is introduced, and the non-convex

QCQP problem is transformed into the semidefinite programming problem P(B1) as follows

P (B1) : min
Φ

〈Φ,X〉
s.t Φm,m = 1, ∀m = 1, ...,M

Φ�0
, (30)

where 〈Φ,X〉=trace(ΦTX). However, the rank one constraint on Φ is nonlinear, and it is

computationally complicated to find an accurate rank one solution. One of the present methods is

to relax the rank 1 constraint through the semi-definite constraint, denoted as Φ�θ̃θ̃H . Compared

with the linearized relaxation technique method, the semidefinite relaxation method usually

produces a stricter lower bound of the optimal value. Nevertheless, the relaxation method fails

to produce optimal solutions for unknown variables, and in most cases does not even produce

infeasible solutions. Thus this paper introduce a new scheme for RMPs in the following.

Since the dimensionality of the target space can be represented by the trace based on the

projection matrix as follows

P (Φ) = Φ(ΦHΦ)−1ΦH

trace(P (Φ)) = rank(Φ)
, (31)

where ΦHΦ is non-singular, the trace of the projection matrix is equal to the rank of Φ. Consider

the singular case, a auxiliary regularization parameter o is employed, and rewrite P (Φ) as

Po(Φ) = Φ(ΦHΦ+ oIn)
−1ΦH , (32)
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where trace(Po(Φ)) can be infinitely close to rank(Φ) and trace(Po(Φ)) for Φ is continuously

differentiable. Thus the problem P(B1) can be rewritten as

P (B2) : min
Φ,Y

trace(Y)

s.t Φm,m = 1, ∀m = 1, ...,M

Y�Φ(ΦHΦ+ oEm)
−1ΦH

, (33)

where Y∈Sm is the variable of the relaxed symmetric matrix. Introduce a new variable Z=ΦHΦ,

Z∈Sm, and exploit Schur complement to transform the nonlinear matrix inequality in P(B2) into

linear, which is converted to P(B3)

P (B3) : min
Φ,Y

trace(Y)

s.t Φm,m = 1, ∀m = 1, ...,M⎡
⎣ Y Φ

ΦH Z

⎤
⎦�0

. (34)

In the new formula, matrix inversion is needless. Meanwhile, the new transformation is

eliminated the regularization parameter o. Since Z=ΦHΦ is non-convex, it is necessary to

transform the RMP into a rank-constrained optimization problem.

It is proved by [38] that when Z∈ Sm, Z=ΦHΦ is equivalent to rank(

⎡
⎣ Em Φ

ΦH Z

⎤
⎦) ≤ m

and

⎡
⎣ Em Φ

ΦH Z

⎤
⎦�0. Therefore, transform RMP into rank-constrained optimization problem as

follows

P (B4) : min
Φ,Y

trace(Y)

s.t Φm,m = 1, ∀m = 1, ...,M⎡
⎣ Y Φ

ΦH Z

⎤
⎦�0

rank(

⎡
⎣ Em Φ

ΦH Z

⎤
⎦) ≤ m

. (35)

The problem in (35) can be solved iteratively, and at rth iteration, the subproblem is expressed
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18

as

P (B5) : min
Φr,Yr,Zr,er

trace(Yr)+�rer

s.t Φm,m = 1, ∀m = 1, ...,M⎡
⎣ Yr Φr

ΦH
r Zr

⎤
⎦�0⎡

⎣ Em Φr

ΦH
r Zr

⎤
⎦�0

erEm −VH
r−1

⎡
⎣ Em Φr

ΦH
r Zr

⎤
⎦Vr−1�0

, (36)

where � > 1 is the weighting coefficient of er, Vr−1 is the eigenvector of the m smallest

eigenvalues corresponding to the solution of

⎡
⎣ Em Φr−1

ΦH
r−1 Zr−1

⎤
⎦ at the (r−1)th iteration.

In addition, in the first iteration r = 1, V0 needs to be initialized. Since the tracking heuristic

method is easy to implement, the method is adopted to obtain the trace heuristic method of RMP

represented in the initial input of V0 [39].

It can be seen that the solution at the convergence point satisfies the rank one constraint on

Φ and the other constraints proposed in the equivalent QCQP problem. On the basis of the

Karush-Kuhn-Tucker condition, at least one locally optimal linear convergence of the proposed

IRM method can be obtained. The proposed algorithm based on IRM is shown in Algorithm 3.

C. UAV Trajectory Optimization

According to the updated UAV transmit power P and IRS phase shift θ, the joint optimization

problem is expressed as a subproblem P(C) about UAV trajectory optimization. The subproblem

P(C) is represented as follows

P (C) : max
Q

f(Q) =
K∑
i=1

N∑
n=1

log(1 + SINRi [n])

s.t C3, C4, C5.

. (37)

For the subproblem P(C), applying for an enhanced reinforcement learning algorithm to update

the UAV trajectory.

The horizontal target space of UAV trajectory is divided into grids with (VmaxT/N)∗(VmaxT/N),

and different grids are converted into state space according to coordinates.
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Algorithm 3 IRM-based algorithm for solving problem PB

1: Initialize θ0.
2: repeat
3: Update X and α by (27) and (28) respectively.
4: repeat
5: Initialize set r = 0 and obtain V0.
6: r = r + 1.
7: while er > o do
8: solve problem (36) and obtain Φr,Yr,Zr, er.

9: Update Vr from

[
Em Φr

ΦH
r Zr

]
10: r = r + 1.
11: end while
12: until find Φ.
13: Update θ.
14: Update tB = tB + 1.
15: until tB = tBmax

In general, UAV can have multiple flight actions at a certain time slot in the permitted flight

service area. For the convenience of training, the action space of the UAV is approximately

divided into discrete action sets in multiple directions. In this paper, the 360-degree plane space

is divided into 8 action/flight directions according to the 45-degree turning angle, add the action

of the UAV that remain unchanged, the total action space of the UAV is 9.

Set the sum-rate of all the UE in a time slot as the reward function

R[n] = −c+
K∑
i=1

log(1 + SINRi [n]) + Penalty , (38)

where c represents a constant, used to guide the UAV to the destination. Specifically, c serves as

a reward for the punishment agent to take additional steps. Using this reward, it can motivate the

agent to complete the task as soon as possible. Penalty denotes the penalty coefficient, which

the agent will be punished when it takes action in the no-fly zone [40].

The value function iterative updating formula of trajectory optimization by reinforcement

learning is as follows

Qn+1(s[n], a[n]) = (1− u)Qn(s[n], a[n]) + u

[
R[n] + vmax

a∈A
Qn(s[n+ 1], a[n])

]
, (39)

where Qn(s[n], a[n]) is the value function, u is the learning rate factor, v is the discount factor,

a[n], s[n] represent the action taken by agent and the state in the time slot n.
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The artificial potential field method is applied to initialize the state space, so that the closer

to the target position, the larger the state value is. This will guide the agent to move towards

the target location and reduce a mass of invalid iterations caused by environmental exploration

in the initial stage of the algorithm. The artificial potential field function is

Uatt =
Δ

|d|+ η
, (40)

where Δ is a scale factor greater than 0, used to adjust the size of gravity. |d| is the distance

between the current location and destination, and η denotes a normal number to prevent the

gravitational value at the target point from appearing infinity. In the constructed artificial potential

field, the whole potential field shows a monotonically increasing trend from the start point to

the destination, and the destination has the maximum potential energy but is not infinite.

Consequently, during the initialization process the formula (39) is rewritten as

Qn(s[n], a[n]) = R[n] + v
∑

P (s[n+ 1] |s[n], a[n] )V (s[n+ 1]) , (41)

where V (s[n+ 1]) = Uatt, P (sn+1 |sn, an ) is the probability of transferring to the state s[n+1],

when the current state s[n] and action a[n] are determined, and V (s[n+ 1]) is the state value

function of the next state.

The balance between exploration and utilization is critical to reinforcement learning [41]. To

a certain extent, ε- greedy strategy balance the exploration and utilization. However, the agent

randomly selects actions in the action set with the probability of ε each time, and bad actions are

also selected with the same probability. Therefore, the convergence speed of the whole process

will be slow. Even if it converges at the end, the result will fluctuate due to the random selection

of actions with the probability of ε. In response to this problem, an improved ε-greedy strategy

is proposed to dynamically adjust the greedy factor as follows

ε =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εmax, if tanh(stdn/T ) > εmax

εmin, if tanh(stdn/T ) < εmin

tanh(stdn/T ), else

, (42)

where tanh(t) = et−e−t

et+e−t . When t>0, tanh(t) ∈ [0, 1]. stdn denotes the standard deviation of

steps for n consequent iterations. T is the coefficient which the larger the T , the smaller the

randomness. εmax and εmin is the maximum value and minimum value of the exploration rate

respectively.
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Algorithm 4 Enhanced RL algorithm for solving problem PC

1: Set Action space A, State space S, Maximum iterations tC1
max, Maximum trials tC2

max, learning
parameters v, u.

2: Initialize S by (36).
3: repeat
4: repeat
5: Update strategy by (42).
6: Choose action from the available actions in the current state s[n].
7: Take action a[n], and update s[n+ 1] by (39).
8: Update tC1 = tC1 + 1.
9: until Convergence or tC1 = tC1

max.
10: Update tC2 = tC2 + 1.
11: until Convergence or tC2 = tC2

max.

Due to the algorithm does not converge in the initial stage and the stdn is large, the agent

randomly chooses actions with the probability of εmax. As the algorithm progresses, the stdn

decreases so that ε takes a value in the range of (εmin, εmax). The greater the stdn, the greater

the difference in the number of steps between iterations, the more the environment needs to be

explored, and the greater the value of ε. When stdn is small, it indicates that the algorithm tends

to converge, and ε is stable at εmin. It can be seen from the above analysis that the dynamic

adjustment strategy of the greed factor designed by this algorithm enables the environment to be

explored with a greater probability in the early stage. As the algorithm progresses, it gradually

tends to be utilization, which can better balance the exploration and utilization [42].

In addition, apply for Eligibility Traces (ET) mechanism to the constructed reinforcement

learning framework, the learning speed of the proposed algorithm can be significantly improved.

Specifically, the algorithm can record the number of times the state is accessed, and when the

state value function is updated at the previous moment, the previous state value function can

also be updated [43]. The incremental ET is calculated as follows

en(s) =

⎧⎨
⎩ λven−1(s), if s �= s[n]

1, if s = s[n]
. (43)

Finally, after several explorations, the value function gradually approaches to the optimal value

function, and finally the trajectory optimization of the UAV is realized. The whole process is

updated iteratively to achieve convergence conditions. The proposed algorithm based on enhanced

reinforcement learning is shown in Algorithm 4.
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D. Complexity Analysis

In this subsection, the computational complexity of the joint optimization algorithm is given

in the following. For Algorithm 2, the complexity to update ω, μ, and P are O (KM), O (KM),

andO (K), respectively. Thus the asymptotic time complexity can be expressed asO (2KM +K).

For Algorithm 3, the sub-problem based on the SDP can be solved by the interior-point method,

the order of complexity for a SDP problem with m SDP constraints which includes an n×n pos-

itive semi-definite matrix is given by O (
√
n log (1/o) (mn3 +m2n2 +m3)), where o > 0 is the

solution accuracy. For problem P (B5), with n = M +1, m = 1, the approximate computational

complexity for solving P (B5) can be written as O (
log (1/o)

(
2(M + 1)3.5 + (M + 1)2.5

))
.

As for Algorithm 4, the complexity includes two parts: computational complexity O (
tC1
max

)
and training complexity O (

tC1
maxt

C2
max

)
. The asymptotic time complexity can be expressed as

O (
tC1
max + tC1

maxt
C2
max

)
. Therefore, the complexity of the overall joint optimization algorithm is

O (
tAmax

(
2KM +K + tBmax

(
log (1/o)

(
2(M + 1)3.5 + (M + 1)2.5

)))
+ tC1

max + tC1
maxt

C2
max

)
.

IV. SIMULATION RESULTS

This section gives simulation analysis to demonstrate the validity of the proposed scheme.

The simulation parameters are set in the following. The fixed location of IRS is (100,0,20). The

number of IRS reflection elements can be flexibly set along with the needs of each experiment.

The referenced channel power gain is set to ρ0 = −50dB, and the noise power σ2 = −80dB.

The path loss index of the UAV-UE link is set to 2.5, and the corresponding Rician factor is 10

dB. The path loss index and Rician factor of the IRS-UE link are 2.2 and 10 dB, respectively.

The maximum transmission power is set to 10dB and the height of the UAV is 30m. Within

range of [0, 2π], the phase shift of the reflection unit is randomly and uniformly generated.

Finally, this paper considers K = 4 users, who are randomly and evenly distributed in an area

of 200 × 200m2. The simulation parameters for applying reinforcement learning for trajectory

optimization are as follows: the learning rate u is 0.02, the discount factor v is 0.9, the maximum

number of iterations is 20000, the scale factor Δ is 0.6, and the constant η is 1. The greedy

factor dynamically adjusts the strategy parameters as follows, εmax=0.5, εmin=0.01. The no-fly

zone simulated in this paper refers to any place outside the rectangular area where users are

evenly distributed.

In Fig. 2, the convergence of the proposed scheme versus different UAV maximum transmit
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Fig. 2. The convergence of the proposed scheme for different cases.

power, Pmax and the reflecting elements number of IRS, M is presented. This paper considers

the following three schemes: 1) M = 20, Pmax = 10 dBm; 2) M = 20, Pmax = 0 dBm; 3)M =

10, Pmax = 10 dBm. Uniformly, the proposed algorithm for the three cases converges with the

increase of iterations. For these three schemes, the convergence times of the proposed algorithm

in this paper is all approximately around 5 times. Moreover, it can be discovered that the sum-

rate increase as the number of IRS increases, since the proposed phase shift design can realize

the enhancement of passive beamforming gain. Specifically, compared with scheme3, scheme2

shows an increase in the number of IRS by 10, and the user’s sum-rate gain has increased by

78%. Increasing the transmit power of UAV can also improve sum-rate of the system. Fig. 2 also

presents that compared with scheme 1 and scheme 2, when Pmax is increased by 10dBm, the

sum-rate gain is increased by 55%. From the above analysis, it can be seen that the system gain

brought by increasing the number of IRS is significant compared with increasing the transmit

power of UAV. Due to the convenience and cheapness of IRS deployment, the deployment of

IRS has played a cost-saving effect to a large extent compared to the method of increasing

system capacity by significantly increasing expensive transmit power resources.

Fig. 3 presents the changes in cumulative sum-rate under different methods verus different

UAV flight times. Compared the proposed scheme with the initial trajectory scheme, it can be

concluded that the trajectory optimization algorithm based on enhanced reinforcement learning in

this paper elevates the system performance gain by 32%. The effectiveness and high performance
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Fig. 4. The different methods versus the maximum transmit power of UAV.

gains of the proposed UAV trajectory optimization scheme are proved. Similarly, only change

the phase shift optimization scheme in the joint optimization scheme, without changing the

power control and trajectory optimization methods, and the performance gain of the system has

increased by an astonishing 81%. It proves that our proposed phase shift optimization scheme

is excellent. Finally, compared the proposed scheme with the benchmark scheme without the

deployment of IRS, the performance gains are noteworthy. Last but not least, the performance

gain of the random phase shift scheme is negligible compared to the proposed phase shift

optimization scheme. This verifies the importance of IRS phase shift design.

Fig. 4 exhibits the relationship between cumulative sum-rate of different schemes versus
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Fig. 5. The trajectory of UAV under different schemes.

different Pmax is explored. The results show that for all the schemes, the sum-rate of users

improve with the growth of the maximum transmit power. It is also clear that deploying IRS

in the system is significantly better than without IRS, especially if Pmax is relatively large.

According to the comparison between random phase shift scheme and the joint optimization

scheme based on IRM algorithm, it can be concluded that the phase shift design proposed in

this paper is remarkable to improve performance. The gain curves of the joint optimization

scheme based on random phase shift and without IRS tend to be close in the whole process,

even if the transmit power of the UAV continues to increase. Therefore, there are sufficient

reasons to prove that if the phase shift optimization design is not carried out, the deployment of

IRS will not be able to show its original huge performance gains.

Fig. 5 shows the trajectory of UAV under three different schemes. When the UAV commu-

nicates with K = 4 users, and there is no IRS in the environment, the UAV tends to fly to

the place where the users are concentrated to reduce the path loss. As for the scenarios where

IRS is deployed, the UAV tends to the nearby area where the IRS is deployed for keeping a

high system gain. Due to the task of flying to the destination, the UAV slowly leave the vicinity

of the IRS deployment area and fly towards the destination. Obviously, the deployment of IRS

brings a significant increase in the sum-rate of users, IRS can effectively help any user in need,

and its related performance gains even exceed the corresponding performance gains brought by

UAV trajectory optimization, which can be seen in the Fig. 3.
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The choice of network parameters determines the convergence speed and efficiency of learning

usually. We take the learning rate of reinforcement learning network as an example to illustrate the

importance. Fig. 6 shows a comparison of system gains brought by trajectory optimization under

different learning rates. obviously, different learning rates play different roles in the performance

of the reinforcement learning algorithm. It can be discovered that when the learning rate is set

to 0.1, its reward gain is much lower than the learning rate of 0.02. This is because when the

learning rate is too large, behavior oscillations will be occurred. In addition, if the learning rate

is set too small, such as 0.01, it will take longer time to reach convergence, which can be seen in

Fig. 7(a). Due to the concept of learning rate, it helps to achieve a compromise between training

speed and the convergence. Apparently, the learning rate which is set to 0.02, the model learns

the problem well. Therefore, we can choose an appropriate learning rate, which is neither too

large nor too small, in our abundant experiments, the learning rate can be setting around 0.02.

Fig. 7 shows the convergence of the reward, iterations and standard deviation based on

reinforcement learning. Fig. 7(a) first compares the reward convergence brought by the trajectory

optimization with different learning rate. Apparently, the higher the learning rate, the faster the

reward convergence speed. For instance, when the learning rate is 0.1, the algorithm convergence

only needs 215 times. However, Fig. 6 exhibits that the higner the learning rate does not always

lead to greater rewards. This is because setting the learning rate too large may cause the agent

to explore the environment incompletely, and get sub-optimal results in the end. Similarly, if the
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Fig. 7. The convergence of rewards, iterations and standard deviation.

learning rate is set too small, such as 0.01, it will take a lot of time to converge the algorithm, for

about 1826 times. In addition to the above experiments, Fig. 7(a) also compares the convergence

of the agent’s reward with different M . It can be seen from the figure that for the same learning

rate of 0.02, the bigger the M , the more the number of convergence times the algorithm needs,

which are 950 and 1200 respectively in the case of M=20 and M=40. At last, Fig. 7(b) shows the

convergence of iterations and standard deviation in the process of UAV trajectory optimization

when M=40. It can be seen that the UAV finally reached the convergence target of the specified

step number 20 and standard deviation 0.25 at approximately 1200th training episodes.

Fig. 8 shows the impact of changing the number of users on the performance gain of the

proposed scheme. Obviously, when the number of users increases, the sum rate brought by the

proposed scheme increases significantly. It can be seen from the figure that in the case of the

same number of IRS reflecting elements, the greater the maximum transmit power of the UAV,

the greater the sum-rate of the system. In the case of the same transmit power, the increase in

the number of IRS elements also leads to a larger performance gain. This is because that with

the increase number of users enables the UAV to fly from the n-th slot to the (n+ 1)-th slot to

serve more users, thereby improving the sum-rate of the system. This means that the proposed
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algorithm is more suitable for scenarios with more users, and it is in this scenario that UAV

make more economic sense.

Fig. 9 exhibits the relationship between the sum-rate of the users and the number of IRS

reflecting elements. It can be seen that the performance gain of the proposed scheme increases

with the number of IRS reflecting elements, because the more reflecting elements, the higher

the passive beamforming gain the system can obtain. Furthermore, the IRS random phase shift

scheme has very poor performance and only a small performance gain is obtained, while as M

increases, both the proposed scheme and the initialization trajectory have significant performance

gains. It can also be seen from the figure that under the condition of the same number of IRS
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reflecting elements, the effect of the trajectory optimization scheme of the proposed algorithm

is very obvious compared with the performance gain under the initialized trajectory.

V. CONCLUSION

This paper focuses on the transmit power, IRS phase shift design and UAV trajectory opti-

mization of IRS empowered UAV communication network, and investigates the maximum user

sum-rate. Specifically, the BCD method is used to decompose the proposed problem block by

block, and two variables are fixed to optimize the third variable for alternate optimization. Firstly,

the quadratic transformation and Lagrange dual transformation is used to transform the problem,

and the approximate linear algorithm is adopted to optimize the UAV transmit power. Secondly,

aiming at the QCQP problem of IRS phase shift, IRM method is brought up to optimize the

phase shift. Finally, an enhanced reinforcement learning algorithm is employed to optimize

UAV trajectory. In numerous simulation experiments, the proposed method is compared with

the benchmark method to verify the superiority, and the user sum-rate is analyzed at different

flight altitudes of UAV. The simulation results also show that the deployment of IRS has a

remarkable performance on improving system gains. The reflective elements numbers and phase

shift design of IRS can also greatly influence the sum-rate. Future works can be summarized

as follows: 1) Study a robust optimization with channel estimation error. 2) Consider energy

efficiency of UAV wireless networks based on uniform rectangular array for the IRS. 3) Employ

DRL-based beamforming design for IRS.
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