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Abstract

Non-orthogonal multiple access (NOMA) with successiveeiifédrence cancellation (SIC) is a
promising technique for next generation wireless commatioas. Using NOMA, more than one user
can access the same frequency-time resource simultagemusimulti-user signals can be separated
successfully using SIC. In this paper, resource allocasilgorithms for subchannel assignment and
power allocation for a downlink NOMA network are investigdt Different from the existing works,
here, energy efficient dynamic power allocation in NOMA netiks is investigated. This problem is
explored using the Lyapunov optimization method by comsidethe constraints on minimum user

quality of service (QoS), the maximum transmit power linBased on the framework of Lyapunov
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optimization, the problem of energy efficient optimizaticemn be broken down into three subproblems.
Two of which are linear and the rest can be solved by intratytagrangian function. The mathematical
analysis and simulation results confirm that the proposderae can achieve a significant utility

performance gain and the energy efficiency and delay trédedderived as[O(1/V), O(V)] with

V' as a control parameter under maintaining the queue stabilit

Index Terms

NOMA, Lyapunov optimization, power allocation, subchahagsignment

I. INTRODUCTION

In the past decade, orthogonal frequency division multggdeess (OFDMA) has been widely
studied and has been adopted in 4th generation (4G) mohifencmication systems [1], [2].
However, orthogonal channel access in OFDMA is becomingmatitig factor of spectrum
efficiency since each subchannel can only be used by at mestiggr in each time slot. With
the explosive growth of smart mobile devices and the inéngademands for higher spectral
efficiency, non-orthogonal multiple access (NOMA) has beeposed to mitigate the consequent
heavy loading at the base station (BS) [3]-[5]. NOMA is a ping technique to realize
the massive connectivity in 5th generation (5G) mobile weks because NOMA can achieve
significant improvement in spectral efficiency with a loweceiver complexity by allowing
multiple users to share the same subchannel in the poweridd6ja[8].

The use of NOMA will result in inter-user interference sinowmultiple users will share
the same resources [9]. Successive interference cameelig@IC) can be applied at the end-
user receivers to mitigate this interference [10]. NOMA chieve a capacity region that
significantly outperforms orthogonal multiple access stbe by power domain multiplexing
at the transmitter and SIC at the receivers [11]. The outagdopnance of NOMA was
evaluated in [12], while in [13], the authors investigatde tsystem sum-rate of multiuser
NOMA single-carrier systems as well as proposing a subaitpower allocation and presenting
a precoder design. Moreover, the authors addressed fainwssiderations and posed a max-
min fairness problem for NOMA. In [15], an optimal power a&iion strategy for the energy-
efficiency maximization of NOMA in single-carrier systemagsvinvestigated. The authors in

[16] investigated the subchannel assignment and powesaditn using the difference of convex
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programming method. A suboptimal algorithm was proposeddlve an uplink scheduling
problem with fixed transmission power for uplink NOMA in [1@hd a greedy-based algorithm
was proposed to improve the throughput in uplink NOMA in [1B] [19], a new spectrum
and energy efficient mmWave transmission scheme whichraieg) the concept of NOMA with
beamspace MIMO was proposed to break the fundamental im{20], a hierarchical power
control solution to improve the spectrum and energy effijein NOMA-enabled vehicular
small cell networks was proposed by performing the joiniroation of cell association and
power control. In [21], a novel resource allocation desigriswvestigated for NOMA enhanced
heterogeneous networks. However, the study of energy esfficsubchannel assignment and
power allocation in multiple small cells with NOMA under tlenstraints of minimum QoS
requirements and cross interference has not been wellestudi

On contrary to the typically full buffer assumptions and gsteot-based models, delay is a
key metric to measure the Qo0S. The congestion performamagefay-tolerant services and the
stochastic and time-varying features of traffic arrivaleitdtd be considered in realistic wireless
networks. By utilizing Lyapunov optimization, which is asaful method for handling queue-
aware radio resource allocation problems, [22], [23] cdesd the impacts of stochastic traffic
arrivals and time-varying channel conditions on the syspemiormance to stabilize the queues
of networks when optimizing performance metrics. In [2BE authors applied the framework of
Lyapunov optimization to balance the average throughpdtaerage delay in energy efficient
OFDMA heterogeneous cloud networks. The authors in [23pt&&tbthe Lyapunov optimization
framework in a two-tier OFDMA heterogeneous network unde hybrid access mode to
solve the dynamic optimization problem of resource allocatin [24], an energy efficient
resource allocation algorithm was proposed to providenésis among different small cell base
stations(SCBSs) based on the Nash bargaining solution.ekaywmost of the existing works
considered resource allocation using Lyapunov optinopatnly in OFDMA systems. And to
the best of the authors’ knowledge, energy efficient resoatiocation for time-varying NOMA
networks has not been well studied in the previous works.

In this paper, we investigate the subchannel and poweraitot respectively in a multiple
downlink NOMA network by considering energy efficiency, &tyaof service (QoS) require-
ments, power limits, and queue stability. The main contrdms of this paper are summarized

as follows:
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« Development of a novel energy efficient NOMA network optiatian framework: This
framework jointly considers energy efficiency maximizaticdQoS requirements, queue
stability and power limits in the optimization of NOMA. Maseer, the queue stability, utility
and average queue length performance are studied throughahalytical and simulation
results.

« Design of a subchannel assignment algorithm based on magtdieory: We model
the subchannel-user matching problem as a two-sided magtgbriocess and propose a
subchannel assignment algorithm based on matching method.

. Design of a power allocation algorithm with multiple comstts: We formulate a power
allocation problem for NOMA as a mixed integer programmimglgpem. A minimum QoS
requirement is employed to provide reliable transmissmmusers. The energy efficiency
optimization problem is decomposed into three subproblesitis time-averaged variables
and instantaneous variables. We solve the three subprslaethpropose a power allocation
algorithm using Lyapunov optimization, where the convamgeof the proposed algorithm

is also demonstrated via simulations.

[I. SYSTEM MODEL AND PROBLEM FORMULATION

A. Basic Notation

As shown in Fig. 1, we consider a time-varying downlink nplki cell NOMA network in
which N SCBSs exist and each SCBS transmits the signals to each seiloe users denoted
by U = {1,2,...,U}. The available bandwidth is divided by BS into a set of subde#s which
is denoted byNV = {1,2,..., N}. The NOMA system is assumed to operate in a slotted time
mode with unit time slotg € {0,1,2....}, where the time slot refers to the time interval
[t,t + 1). We assume that the BSs have full knowledge of the channtd stBormation and
denote byy; ..»(t) the channel gain between ti¢h SCBS and usex on subchannet at time
slott. We setay,,,(t) = 1 when the subchannel of SCBSk is allocated to user at time slot
t; otherwise,ay. .. ,(t) = 0. [x]* means the larger one betweerand zero and denote’ as the

transpose ofc. F {-} denotes the expectation.
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Subchannels

Co-tier interference ) > Cross-tier interference

Fig. 1. The architecture of the NOMA network.

B. System Model

In NOMA, one user can receive signals from the BS through ipialisubchannels and one
subchannel can be allocated to multiple users at the sane diat¢. Since the user on
subchanneh causes interference to the other users on the same subtheawteuser; adopts
SIC after receiving the superposed signals to demodulat¢atiget message. As shown in [25],
without constraints on the specific power split, one usedtadcan be successfully decoded
by another user whose channel gain is better via superositding with SIC. Since user
with higher channel gain can only decode the signals of useith worse channel gain, the
interference signals caused by ugevhose channel gain is better than userannot be decoded
and will be treated as noise. Thus, after SIC, the interf@dor useru caused by other users

of same SCBS: on the same subchannelis given by

k,u,n(t) Zie{sk,n|gk,¢,n>gk,u,n} ak,l,n(t>pk,z,n (t)gk,u,n(t> ( )

where S}, ,, is the set of users of SCBS on subchanneh. Modeling this residual interference

as additional AWGN, we can use the Shannon’s capacity fartwhwrite the capacity of user
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ueld =A{1,2,...U} of SCBSk on thenth subchannel at time slotas

Ry un(t) = —ajun(t)lo 1+ = S NkeKueld,neN. 2
penlt) =yt g2< o+ Tunlt) + Do) “

whereB ando,? are the bandwidth of the system and the noise variance rkiaﬁjgcfkyu,n(t) is

the total of the co-tier interference caused by other SCBSBSk and cross-tier interference

caused by macro BS to SCBSwhich is given by:

K U U
]k,u,n(t) - Z Z al,u,npl,u,ngl,k,u,n + Zpﬁ/,[ngljc\?u,n7 Vk S lC) u e u7 nec N (3)
I#k u=1 u=1

where g, .., as the channel gain on subchannebf useru in SCBS! to SCBSk. p{fn and
g, are the power allocation and channel gain on subchannéuseru in macro BS to SCBS

k respectively. The capacity of userof SCBSk at time slott can be written as
N
Riu(t) = Riun(t),Vk € K,u €U, (4)
n=1

In order to specify the QoS of users, we }Qtu be the QoS requirement in terms of the minimum

capacity of user which is thus given as
C1: Rpy(t) > Ry, Vhk € K,u el (5)

When the queue stability of the SCBS is guaranteed, we canfoolis on the performance
optimization with queue stability. This is because the S@RS be assumed to be fixed over a
longer duration than the scheduling slot of subchannelghisnNOMA network, the separate
buffering queue?);. ,(t) is maintained for each usér of SCBSk. The random traffic arrivals for
Qr.(t) are denoted byl ., (t) whose peak arrival isl;';* at time slott. A, (t) is independent
and identically distributed (i.i.d.) over slots with thenstant expectation. The exogenous arrival
rates may be outside of the network capacity region in prador the reasons that the statistic
of A, (t) is usually unknown to SCBSs and the achievable capacitpmegi usually difficult
to estimate. Then, a transport flow control mechanism is eded keep the traffic queues be
stabilized. Denote ,(t) as the admitted data rate out of the potentially substainstiic arrivals
for useru of SCBSk which satisfy0 < r,,(t) < A;.(t) obviously. Therefore, we denote the

traffic buffering queues for user as
Qru(t+1) = [Qrat) — Reu(D)]" +rpu(t), Yk € K, u € U. (6)
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The time averaged throughput in terms of the data arrivalugers in SCBS: is defined as
Thu = hm = Zrku( ).
Denote byp,m( ) andp;(t) the instantaneous power of useof SCBSk at time slott and

the total power consumption of all the SCBSs at time slogspectively, which can be written

as N
Pra(t) =Y Prun(t) + 1§ 7
and .
Prot(t Z Zpk ul (8)
k=1 u=1

where p{ accounts for the circuit power of SCBE The average and instantaneous power

constraints of uset of SCBSk are denoted by, , and 15,%, which can be written as
Dru = lim - Zp,w <P, VkeKuelU 9)

Pral(t) < P, Vk € K,u el (10)

We define the functionyz(-) as the revenue obtained by the throughput which is a non-
decreasing concave utility function. Letz denote the energy efficiency (EE) which is defined as
the ratio of the profit brought by the long-term utility of agge throughput to the corresponding
long-term total power consumption. It can be written as

S5 g (P

NErg = kzw:; . (11)
tot

T
Whel’eﬁwt = llm %Zptmﬁ(t)'
T—o0 t=0
C. Optimization Problem Formulation

In this subsection, when considering all constraints, thiéyufunction is expressed as

k21 21 9r(Pr.u)
MAXNEE = = u_ﬁtof
s.t.C1
t
C2: Py = tlim % > 0kw(T) < Pow, Ve € K,ue U (12)
=0 =0

04:1{%\;;— llm —ZR;W( ) > Tru VEk € K,u € U.
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whereP denotes the power allocation policy and the constralihtensures the QoS of users;
C2 is limit of the maximum average transmit power of useof SCBSE; C3 is the maximum
instantaneous transmit power of usef SCBS k; and C'4 ensures the stability of user in
SCBSk. We define the optimal EB}Y;, as

K U K U
> 22 9r (Thu(PY)) > 2 9r (Thu(P))
77%{7; _ k=1 uzl_ — max k=1 u:l_ (13)
Drot(P*) P Drot(P)

whereP* denotes the optimal power allocation policy that yiejds,. We can classify the utility
function in (12) as a nonlinear fractional program. We idtroe Theorem 1 as follows.

Theorem 1The optimal EE;%,, can be reached if and only if

K U
max > Y2 g (Tku(P)) — g ibro(P)
P Kk:(lju:l
= (Fru(P)) = i pPior(P*) = 0 (14)
—1u=
U
fOT’ Z Z 9dr (fk,u(,]))) Z O)ﬁtot(,})) >0
k=1u=1

Proof: Please refer to Appendix A.
According to Theorem 1, an equivalent objective functiosuibtractive form is existed for the
(non-convex) optimization problem (12) which can be cli@ésgias nonlinear fractional program.

Then, the formulation (12) can be rewritten in the more ahle form

K U
ngX Z Z 9dr (fk,u(,]))) - nEEﬁtot(P)
k=1u=1

s.t.01,02,C3,04.

(15)

I1l. ENERGY EFFICIENT OPTIMIZATION USING LYAPUNOV OPTIMIZATION

In this section, the subchannel assignment is investigateitie NOMA network and the

optimization problem in (15) is solved based on Lyapunovrogation.

A. Subchannel Matching

We assume that all the users of BS can transmit on the subehararbitrarily at time slot
t in a NOMA system. Considering the complexity of decoding #mel fairness of users, each
subchannel can only be allocated to at mbst users and each user can only occupy at most

D, subchannels at the same time. We assume f&hatD,, > U * D,. The dynamic matching
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between the users and the subchannels of SEBS considered as a many-many matching
process between the set 0 users and the set aV subchannels. Usex is matched with
subchanneh at time slott if a,,(t) = 1. Based on the channel state information, we assume
useru prefers channeh; overn, if and only if gi 4., > grun,.- Then, the preference lists of

the users of SCB% can be denoted by
Pref (K,U)=[Pref_U(1),...,Pref_U(u),...Pref_U(U)]" (16)

wherePref_(K,U)(u) is the preference list of user of SCBSk which is in the descending
order of channel gains of subchannels. To reduce the comyplexe propose a suboptimal
matching algorithm for subchannel allocation as AlgoritimFor each usern of SCBSk,
the matching request is send to its most preferred subchacoerding to its preference list.
Then the preferred subchannel decides whether accept #neousiot according to the users’s
channel gain. For each subchanneglthere is at mosiD,, number of accepted users who has
higher channel gain than the rejected users. The rejected ars subchanneh will remove
the subchanneh from its preference list and its most preferred subchanmelhanged. The
matching request is send again until all the users of eachSS@BtchedD,, subchannels and

the matching is achieved.

B. The Queues of Lyapunov Optimization

Becausgr(7 ) is related to the time averaged throughput, we define aunxiiariablesy; ,
for the traffic arrival of usemn in SCBS & which satisfiesy;, < 7, and0 < vy, < APSE

Therefore, the optimization problem in (15) can be rewniths

max Z Z gR(’yk,u) — NEEDPtot

ke K uelU

s.t.C1,C2,C3, C4 (17)
Ch: Wk,u S 77k,uu 0 S Vku S Al]r:zx

T T
where Wk:,u - jlgn % Z Wk,u(t) and gR('yk,u) — NEEPtot = qllj)n % Z (QR(%,u(t)) - nEEptot)-
o0 =0 o0 =0
The equivalent of problems (15) and (17) can be proved byragipd3. To satisfy the averaged
throughput constraint i'5, we denote byH, ,(t) the virtual queue for usex in SCBSk at

time slotz. We get
Hpu(t + 1) = [Hiu() — m0u(O)] + u(t),VE € K,u € U. (18)
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Algorithm 1 Suboptimal Matching Algorithm for Subchannel Allocation
1. Initialize the matched listS;,, and S;, to denote the number of users matched with

subchanneln (vn € {1,2,...,N}) and the number of subchannels matched with user
u (Vn € {1,2,...,U}) in SCBSE, respectively;

2: Initialize preference list®ref_U(k,u) for all the users of SCB% according to channel
state information;

3: Initialize the set of not fully matched use$$ r(k,u) to denote users of SCBSwho have
not been matched witlh,, subchannels;

4: while Sy p(k,u) # ¢ do

5 foru=1toU do

6: if Sk < D, then

7: User v of SCBS k£ sends a matching request to its most preferred subchannel
according toPref U(k,u);

8: if Spa < Dys then

9: Setayun =1, Spu = Sku + 1 and Sy 5 = Sk + 1,

10: elseif Sy = Dy then

11: Find the minimum channel gain of usegs;» on channeln in SCBS k£ and

compare it withgy, ., 7;

12: if gran < grua then

13 Setayun =1, aran =0, Sku=Sku+1, andS;s = Spa — 1;

14: else

15: Remove subchannel from thePref U(k,u) and find the next: of useru in
SCBSk according toPref_U(k, u).

16: end if

17: end if

18: end if

19:  end for

20: end while
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Similarly, in order to satisfy the constraint2, virtual power queues for the userin SCBS

k are defined. We denotg; ,(¢) as the queue arrival with the transmit power,(¢), and get

Zialt +1) = [Ziw(t) — Peu)™ + pru(t),Vk € K,u € U. (19)

C. The Formulation of Lyapunov Optimization

Denote®(t) = [Q(t), H(t), Z(t)] as the matrix of all the queues. We define the Lyapunov

function as a scalar metric of queue congestion

L@ (1) =5 {Z S (@ealt)’ + Healt)? + zk,u<t>2)} . (20)

We introduce a Lyapunov drift in this subsection for pushihg Lyapunov function to a lower

congestion state and keep both the actual and virtual qustabke
A(@(t) = E{L(Q(t +1)) — L(2(1))} - (21)

According to Lyapunov optimization, by subtractiiigt { > 9r(Vew) — nEEptot} from both
ueld
sides of (21), we get

< C+k§1 §1E Hie)Vew = Var (Ve
+VE (UEE kf:l{ Z Pru(t) + j }}) (22)
=3 3 (i)~ Qua(0} B (110} — 3 X Qual)B {Realt)

- Z Zl Zk:,u(t)E {Pk:,u(t) - pk,u(t)}
k=1u=
where V' is an arbitrarily positive control parameter which représethe emphasis on utility
maximization compared to queue stability afids a finite constant that satisfies

> E{K 5 <mu<t>2+Rk,u<t>2>}

=1lu=1

K U (23)
#4835 3 10000 = a0 + () = a7}
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1) The solution of virtual variablesThe optimal choice ofy, to minimize (22) can be made

by solving
max Vor(Vew) — Hiu () Ve (24)
5.4.0 <y < AP
and the solution is
(t) = min v AP (25)
Vk,u - Hkm(t) ] k,u .

2) The solution of actual traffic arrivalin order to minimize (22), the optimal actual traffic

arrival can be achieved by maximizing the expression asvsi

max { Hy,.,(t) — Qru(t)} E {rru(t)}

(26)
$.1.0 < 1p(t) < Agu(t).
We get the optimal solution as
Apu(t),if Hyu(t) — Qrult) =0
ro(t) = (), 0f Hieu (1) — Qreu(t) 27)

0, else.

3) Power allocations:In order to minimize (22), we first obtain the optimal solutiof the
virtual variables and the actual traffic arrival, then we cainimize the remaining part of (22)

and denote it as

—VE <77EE 5 {i 5 ak,u,n<t)pk,u,n<t)} +p;§}) (28)

Let Wi un(t) = g un(t)Prun(t), ¥k € K,u € U,n € N; then we can get

wk,u,n(t)gk,u,n<t) . (29)
a'k,u,n(t) (0-]3771 + Ik,u,n(t) + ]k,u,n(t)>

B
Riun(t) = Nakﬂhn(t)logQ 1+
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Then, we can rewrite (28) as follows

winVE (e { 3 £ pral)}) = 5 { £ Qual0B a0} + X ZuaOpial®)}

—VE (77EE { é g :f;l Wi () ) §=1§:1 Zyou(t) {nZl wk,u,n(t)} (30)

Wk,u,n(t)gk,u,n(t)

K U N
_ B
Z Z Qk,u(t)E {N Z ak,u,n(t)logg (1 + ak,u,n(t)(Ui’nJrIk,u,n(t)Jrfk,um(t)))}

Since (30) is convex, to satisfy the series of constraitis,Ltagrange function of the problem

(30) can be expressed by

k=1u=1n=1 k=1u=1
L X B Wi ()91 n (1)
k; 1;1 QralD)E 721 Nak’u’n@)lOgQ 1+ i () (02 Tk )+ Tk un (£)) (31)
K U N ~
£35S At {z whn(t) — P
1u=1

L - Wk un (DG .0 (1)
+ 20> Brult) {R Z Nakun<t)10g2 ( + ak’u’n(t)(oi’nJrlk,u,n(t)Jrfk’u’n(t))) }a
where \ , § are the Lagrange multiplier vectors for the constraints 1id)( Taking the first

order derivation ofF'(\, 5) with respect tavy ., ,(¢), we can get the optimal power allocation as

follows
D) — haunl) _ B (Qua) + Brea(®) 0t Tn) + Tran(t) )
uyn apun(t)  M2(Vnee + Ziu(t) + Aeu(t)) Grun(t) :
Based on the subgradient method [27], the master dual proinig32) can be solved by
. N +
A== (Pru — 3 win(1)] L VE € K u € U;
n=1
- (33)

N
= = [Bhw — 62(2_: Riwn — Riw)| Vk e K,ueU.

After the time intervall’, we get the average queue lengthtotal average capacity®’¢, average

power consumptiorP**¢ and the average energy efficient BE; as

T K U
Q=533 S Q) (34)
t=1 k=1 u=1
1 T
R™ = > Usa(t) (35)
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Algorithm 2 Lyapunov Optimization based Resource Allocation Algarith
Initialize the ay, ., ,,(t) using suboptimal Algorithm 1,

N

. Initialize py ., ,(t) using equal power allocation;
Initialize the value ofA}'s* and Q. .(1);
4: For each time slot, calculate the auxiliary variablgs,(t) for each time slot and admitted
traffic 7 ,,(t) by solving (25), (27) respectively;
repeat
6: Obtain the optimal allocation of power in the current timetsccording to (32);
Update Lagrangian multipliers of, 5 by solving (33);
8:  Solve (12) using the Dinkelbach method in [1] to get the optivalue of g In an
iteration way;
until Convergence or certain stopping criteria is met
10: Calculate the traffic queu@, ,(t) and the virtual queues di, ,(¢) andZ; ,(t) of next time
slot by solving (6), (18), (19) respectively.

T K U
PSS ) (36)

1
NEE = T Z NEE- (37)

The above proposed approach based on Lyapunov optimiZatieolving the EE optimization

problem in (19) can be summarized in Algorithm 2.

D. Complexity Analysis

The complexity of the proposed algorithms is analyzed i gubsection. The worst-case
complexity of proposed suboptimal Algorithm 1 &(KUN+1/2K|U/D,]?) in which the
finding of preference lists i©)(KUN). The optimal algorithm of subchannel matching can

only be obtained by searching over all possible combinatiohusers whose computational

[U!]Du
DN

proposed suboptimal subchannel matching Algorithm 1 hasehrfower polynomial complexity

complexity can be approximated &3(K ). It can be found from the analysis above,

than the exhaustive search. In Algorithm 2, the calculatib¢82) for each user in each SCBS on
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each subchannel entailSU N operations. Then the complexity of Algorithm 2@§TLKUN)
where L is the number of iterations each time slot. As the compleaftAlgorithm 2 increases
with the number of users and the convergencé’ éf is influenced by the control parametér
the Algorithm 2 may be practical for a middle-scale realtinetwork and the value df" should

be well chosen. Furthermore, cellular users are alwaysiltlistd in a cluster-way. Therefore,
the cellular users in a cell can be divided into several elgstand the proposed algorithm can be
used in each cluster. Subchannels are not shared betwéerelifclusters. Since the number of

users in each cluster is small, the complexity of the prog@dgorithms will be further reduced.

IV. PERFORMANCEANALYSIS

In this section, we analyze the performance bounds of thpgsed Algorithm 2 based on

the Lyapunov optimization.

A. Stability of Queues

In this work, all the actual queu€$; () and virtual queues off;. ,(¢) and Z ,(t) are mean
rate stable. We assume the expectatiorPgf(t) and U, (t) are bound by

Pmin S E {Ptot(t)} S Pmax (38)
Rmin S E {Utot(t)} S Rmax (39)

where Pin, Puax, Rmin @nd Ry, are finite constants. From the boundedness assumptions, the
is positive constant’ satisfying
A(D(t) < C. (40)

It can be written as

E{L(®(t+1))} — E{L(®(t))} < C. (41)
Considering telescoping sums ovee {0,1,...,T — 1} in above inequality, we can get
E{L(®(T))} — E{L(®(0))} <TC. (42)
Using (20), we can rewrite (42) as
E{Z,.(T)*} <2TC + 2E {L(®(0))} . (43)
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Given D(|Zu(T)) = E(|Zxu(T)) = [E(1Zru(T)D]? = 0, we get E(|Zy(T)]) =
|[E(|Zku(T)])]?. Thus we get

E(1Zu(T)|) < \/2TC + 2E{L(®(0))}. (44)

Taking the limit7 — oo and dividing7 at the same time, we have
E(|Zg (T
L E(Zi(T))

Therefore, the queues df; ,(7") are mean rate stable. Similarly, we can also prove the queues

Qr.(T) and H, (1) are mean rate stable.

B. The Utility and Average Queue Length Performance

The EE performance and the average queue length perfornudntamed by Algorithm 2 is
given in Theorem 2.

Theorem 2 Utilizing the proposed optimization solutiongg is bounded by
B

NEE > Np — VB (46)
The performance of the average network queue length is lealbyl
A B max ~ o Pmin

3

wheren??, is the theoretical maximum achievable utility of all actible solutions.

Proof: Please refer to Appendix C.

With the consideration ofizz < 1%, which naturally holds from (13), the bound of EE is

Ny — 72— < npp < nps. Thereforeyzy can arbitrarily approachy, by setting large enough

min

V' to make va< arbitrarily small. The bound of average queue backipgncreases linearly

in V" according to (47). Theorem 2 shows that there exist$Cdn/V), O(V)] utility-backlog

tradeoff that leads to Little’s Theorem.

V. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are given to evaluae performance of the proposed
algorithms. In the considered NOMA network, there dfe SCBSs which consist§/ users
distributed randomly in a circular with radius 86 m and the SCBSS are distributed randomly

in the circular of MBS whose radius 800 m. The noise power spectral density 4s174
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dBm/Hz. We consider a normalized bandwidth whichBs= 1 Hz. For the simulation, the
maximum average transmit power and the maximum instantengansmit power of usér in
SCBSk is set a.5/U Watts and2.505/U Watts respectively. We assume the circuit power
of useru is 1 Watt. The time intervall’ is set as5000 slots which means traffic arrival rates is
15 bps/H z. We assume that each user can access only one subchanrel@FBMA scheme.
In Fig. 2, the average queue length versus tinseevaluated under different values of control
parameterl’. The user QoS requirement is set Ag = 2 bps/Hz and the maximum number
of matched subchannels of each useDis = 2 with the maximum number of matched users
of each subchannel iB,, = 2. It is shown that, the value of the average queue length ase®
with time ¢ and gradually fluctuates around a certain fixed value. AndHersame value of,
a smaller value ofl” leads to a smaller value of average queue length which yatigh the

Theorem 2. This conclusion can also be obtained in Fig. 9.

2000

1800

=
[e2]
o
o

1400

1200

1000

800

600

Average queue length (bps/Hz)

400

200

0 Il Il Il Il
0 200 400 600 800 1000

time t (slot)

Fig. 2. Average queue length versus simulation time length.

Fig. 3 shows the EE performance versus titneith the same constraints of Fig. 2 except
the QoS constraint i, = 1 bps/Hz instead. It can be observed that the EE performance
will gradually fluctuates around a certain fixed value witk thcrease ot which illustrates the

convergence of EE with time And the larger value ot/ lead to smaller convergence &fE.
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Fig. 3. EE performance versus simulation time length.

This is because the need of subchannels will increase withnitrease of user number which

lead to the decrease of bandwidth of each subchannel.

As shown in Fig. 4, the EE performance is evaluated with tmeukition time slott. In
each time slot, the algorithms in Fig. 4 have the equal total power consionpfThat is, the
total power consumption is time varied for each algorithmthWhe increase of time, the
EE will gradually fluctuates around a certain fixed value.nfrbig. 4, we observe that the
performance of” = 100 which is the proposed resource allocation algorithms with ¢ontrol
parametel/ = 100, including subchannel assignment and power allocatiomush better than
the algorithm of NOMA-EQ in [16]. This is because the algomit of NOMA-EQ is limited of
equal power allocation of each subchannel in NOMA systemditerent subchannel allocation
schemes, the EE performance using exhaustive search whiastetl as NOMA-Opt is better

than using the suboptimal algorithm we proposed.

In Fig. 5, the performance of average EE is evaluated vetsiparametei” with different
values ofD,, which is the number of users matched with each subchanneband 1 represents
it's in a OFDMA scheme. The user QoS requirement is set,as- 2 bps/H z and the maximum

number of matched subchannels of each usép,js= 1. It is shown that, with the increase in
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the parametel/, the value of average EE increases and converges to a cediai@ both in
NOMA at the same value ab, and in OFDMA. It is seen that the average EE in NOMA is
better than the average EE in OFDMA. And for the same valug,dd larger value ofD,, leads

to a larger value of average EE. This is because our propdgedthm provides more freedom
in the bandwidth allocation of assigned subchannels. Fosime set of users under same value

of D,, the more larger of the valuse &1, is, the bandwidth of each subchannel is more larger.

155
15 V=100 i
NOMA-EQ
14.5 NOMA-Opt| 7
14 l
o
3 135 E
2
N
L 13 |
2
S 125 i .
L
L
12
115} : : .
11+ : : i
10.5 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000

time t (slot)

Fig. 4. EE performance versus simulation time length witffedént algorithms.

Fig. 6 shows the performance of average EE versus the paametith different values
of D, where the user QoS requirement is set/as= 2 bps/Hz and the maximum number
of matched users of each subchanneDis = 2. It is seen that, for arbitrary value db,, the
value of average EE Arbitrary increases and converges totaic@alue with the increase in the
parameter/. For the same value of parametér a larger value ofD, leads to a larger value
of average EE due to the various selection of subchannels.

Fig. 7 illustrates the convergence of the total average appaersus the parametér with
different values ofD,,. Different from the trend of average EE, for the same valuégf the
value of the total average transmit capacity decreases@mekrges to a value with the increase

of V. For the same value df, a larger value ofD, results in a larger value of total average
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Fig. 5. Average EE performance versus the paramétevith different values ofD,,.

transmit capacity. This is because every user has moretisglein subchannel to guarantee the

QoS requirement.

Fig. 8 shows average power consumption versus the pararvieteith different values of
D,. The set of constraints is as Fig. 5 and Fig. 6. We see thatwl@age power consumption
decreases steadily with increasivigFor the same value df, different from the trend of the total
average capacity, a larger value bf, results in a lower value of average power consumption.

The average power consumption Bf, = 3 is 3% smaller than that ab, = 1 whenV' = 120.

Fig. 9 depicts the average queue length versus the parametgth different values ofD,.
The user QoS requirement is setRas= 2 bps/H z and the maximum number of matched users
of each subchannel iB,, = 2 in the NOMA scheme. With different values f@,,, the average
gueue length grows steadily with increasiig For the same value df, a larger value ofD,
leads to a lower value of average queue length. It illustréte users goes steadily faster with

a larger value ofD, and this result also satisfy with the Theorem 2.

In Fig. 10, the average EE versuswith different QoS requirements is illustrated. We set the
maximum number of allocated subchannels of each usér,is- 2 and the maximum number

of matched users of each subchanneDis = 2. As shown in Fig. 10, for the same value of
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Fig. 6. Average EE performance versus the param@étevith different values ofD,,.

V, a larger value of the QoS requirement results in a smallaverged value of average EE.
A smaller value of QoS requirement leads to a larger valuebtiie to the fact that a smaller
value of QoS requirement enlarges the feasible region obfinizing variable.

Fig. 11 shows the average power consumption vevsugth different QoS requirements. The
maximum number of allocated subchannels of each usér,is- 2 and the maximum number
of matched users of each subchanneDis= 2. As the parameteV’ increases, average power
consumption continues to decrease. From Fig. 11, we camabt®t for the same value of,

a larger value of the QoS requirement results in a largerevafuaverage power consumption.
In Fig. 12, the total average transmit capacity is evaluatexsusl” with different QoS
requirements. The mean traffic arrival rate= 15 bps/H z and has the same constraints of Fig.
11. It can be observed that, the trend of this curve is simidahe average power consumption
curves in Fig. 11. For the same paramétera larger value of the QoS requirement results in

a larger value of the total average transmit capacity.

VI. CONCLUSION

We have investigated dynamic resource allocation in downNOMA networks. We have

proposed a suboptimal subchannel assignment algorithedhmsthe two-side matching method.
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Fig. 7. The total average transmit capacity versus the pateniy with different values ofD,,.

We have formulated the power allocation as a mixed integggnamming problem by considering
a minimum QoS requirement, and maximum power constrainkeBaon the framework of
Lyapunov optimization, the problem of energy efficient apaation was broken down into three
subproblems, two of which are linear and the rest of whichdbeesl via Lagrangian optimization.
The mathematical analysis and simulation results have dstraied the effectiveness of the

proposed algorithms.

APPENDIX A

The proof of Theorem 1 is similar to the method in [26]. For ade of notational simplicity,

we define® as the set of of feasible solutions of the optimization peablin (12) andygzr =

K U ~
k;zz:l uZ::IQR(Tk,u> _ G(P)

Ptot T(P)’
the optimal energy efficiency and the optimal power allarapolicy of the original objective

respectively. Without loss of generality, we defiffg, and {P*} € © as

function in (12), respectively. We can get the optimal egezfjiciency as

opt __ G(P*) G(P) G(P) - U?EPET(P) <0
e =7 2 7p) " PHEO T Gy o) — o (48)
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Fig. 8. The average power consumption versus the pararieteith different values ofD,,.

Therefore, we can conclude thaiax G(P) — n%,T(P) = 0 is achievable by power allocation
p

policy {P*} which completes the forward implication.
Then, the converse implication of Theorem 1 is proved asvbeBupposeP; is the optimal
power allocation policy of the equivalent objective fulctisuch that

G(P;) = ngpT(P;) =0 (49)
Then, for any feasible power allocation poli¢$} € ©, we can obtain the following inequality
G(P) —ggT(P) < G(Py) — T (P;) = 0. (50)

The above inequality implies
G(P) opt

m < UEEvv{P} €0 (51)
and
G(P:) ___opt
T(P?) = NeE (52)

It implies the optimal power allocation policyP:} for the equivalent objective function is also

the optimal resource allocation policy for the original etijve function.
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Fig. 9. The average queue length versus the paraméteith different values ofD,,.

APPENDIX B

We denoteY; and Y; be the optimal utility of problems (15) and (17), respedtivd he
optimal solutions that achiev®, andY; are denoted byX; and X,, respectively. Since the
utility functions of (15) and (17) are non-decreasing caectunction which can be expressed

asU (-), by Jensen’s inequality, we have
U(Xz) 2U(Xz) = Yo (53)
Due to the the solutiotX, satisfies the constrairdt5, we can get
U (X)) > U (Xa) (54)
Moreover, sinceX, also satisfies the constraints of the problem (15), then we ha
Vi>U (X)) >Ys (55)

For X is an optimal solution to the problem (15), it also satisfies tonstraints®1 — C4. By
choosingX, = X; at each slot, then we get

Yo >U(Xo) =U (71) =Y (56)

Therefore,Y; = Y5 is proved and we can further conclude the equivalence of tbielgms (15)
and (17).
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Fig. 10. Average EE performance versus the paraniéterth different QoS requirements.

APPENDIX C

PROOF OFTHEOREM 2

To prove the bounds on the EE and the average queue lengtméadms introduced below.

Lemma 1 For arbitrary arrival rates, a randomized stationary wmmolicy IT exists and it
chooses feasible control decision independent of curraffict queues and virtual queues. We
get the following steady state values:

E[ri®) = (57)

E[R, ()] > Elr,(t)] +e =1} +¢ (58)
E[P, = pll(t)] <6 (59)
EUsgy(t)] > Elplo, ()] — 9)- (60)

Proof: The proof of Lemma 1 is similar to one found in [28].
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Fig. 11. The average power consumption versus the pararieteith different QoS requirements.

Substituting (57)-(60) into (22) and taking a limit— 0, we can get

2@(0) - VE{ T gnon) ~ neep

ueU
< B —Vn¥LE(pit, (1)) + Vs E(pjy, (1)) (61)
—c EE;J Qu(t).

For Q.(t) > 0, the inequality (61) can be further simplified to

A@() - VE{ S an) ~ neius

weld
< B - Vy B (1) (62)
VB (1).

Using telescoping sums overe {0, 1...,7 — 1} and taking iterated expectation, we have

E{L(®(T))} — E{L(®(0))}
—VEA{Uot — Nep(t)Diot }
< T[B = VigpE(pik(t)}

+VE<pgt<t>>§E{nEE}.

(63)
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Fig. 12. The total average transmit capacity versus thenpetex 1V with different QoS requirements.

Dividing (63) by VT, we get

T-1 T—1
% t;) E{npe(t)pior} — % t—ZO E{Usot}
< By B ) (64)

0oy 1 B{L(®(0))}
+E (Do () 7 ;O E{npp} + =57

Taking the limitT — oo, one has

T-1 T-1
lim [% Z E{nEE(t)ptot} - % Z E{Utot}]
T—o00 =" =0

(65)
- Utot - Utot =0.
We obtain
B,
7~ e EPi(t) + nep B (1) > 0. (66)
Rearranging (66), we get
Nep > N0 — ————— > P — B . (67)
P VE(@pi(t) T " VB

Similarly, taking iterated expectation and applying tetgsng sums ovet € {0,1,...,7 — 1}
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to (61), we get
E{L(®(T))} — E{L(®(0))}
—VE {Utot — 77EE(t>ptot (t>}
< T[B ViigaE ()]

=Y [T T B{QubY

t=0 keK ucl
T—1
+VE(pi,(t)) ZO E{nge}.
=

Dividing (68) by ¢T" and taking a limit asl" — oo, we obtain

Q= Jm L3 [T B{Qu0)]

t=0 ueld
i o
B— V770p (ptot(t))

c (69)
+¥ hm Z EA{nee(t)puw(t)}

B+V(Rmax noEg'Pmm)
= .

(68)

IN
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