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Abstract

Non-orthogonal multiple access (NOMA) with successive interference cancellation (SIC) is a

promising technique for next generation wireless communications. Using NOMA, more than one user

can access the same frequency-time resource simultaneously and multi-user signals can be separated

successfully using SIC. In this paper, resource allocationalgorithms for subchannel assignment and

power allocation for a downlink NOMA network are investigated. Different from the existing works,

here, energy efficient dynamic power allocation in NOMA networks is investigated. This problem is

explored using the Lyapunov optimization method by considering the constraints on minimum user

quality of service (QoS), the maximum transmit power limit.Based on the framework of Lyapunov
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optimization, the problem of energy efficient optimizationcan be broken down into three subproblems.

Two of which are linear and the rest can be solved by introducing Lagrangian function. The mathematical

analysis and simulation results confirm that the proposed scheme can achieve a significant utility

performance gain and the energy efficiency and delay tradeoff is derived as[O(1/V ),O(V )] with

V as a control parameter under maintaining the queue stability.

Index Terms

NOMA, Lyapunov optimization, power allocation, subchannel assignment

I. INTRODUCTION

In the past decade, orthogonal frequency division multipleaccess (OFDMA) has been widely

studied and has been adopted in 4th generation (4G) mobile communication systems [1], [2].

However, orthogonal channel access in OFDMA is becoming a limiting factor of spectrum

efficiency since each subchannel can only be used by at most one user in each time slot. With

the explosive growth of smart mobile devices and the increasing demands for higher spectral

efficiency, non-orthogonal multiple access (NOMA) has beenproposed to mitigate the consequent

heavy loading at the base station (BS) [3]–[5]. NOMA is a promising technique to realize

the massive connectivity in 5th generation (5G) mobile networks because NOMA can achieve

significant improvement in spectral efficiency with a lower receiver complexity by allowing

multiple users to share the same subchannel in the power domain [6]–[8].

The use of NOMA will result in inter-user interference sincemultiple users will share

the same resources [9]. Successive interference cancellation (SIC) can be applied at the end-

user receivers to mitigate this interference [10]. NOMA canachieve a capacity region that

significantly outperforms orthogonal multiple access schemes by power domain multiplexing

at the transmitter and SIC at the receivers [11]. The outage performance of NOMA was

evaluated in [12], while in [13], the authors investigated the system sum-rate of multiuser

NOMA single-carrier systems as well as proposing a suboptimal power allocation and presenting

a precoder design. Moreover, the authors addressed fairness considerations and posed a max-

min fairness problem for NOMA. In [15], an optimal power allocation strategy for the energy-

efficiency maximization of NOMA in single-carrier systems was investigated. The authors in

[16] investigated the subchannel assignment and power allocation using the difference of convex
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programming method. A suboptimal algorithm was proposed tosolve an uplink scheduling

problem with fixed transmission power for uplink NOMA in [17]and a greedy-based algorithm

was proposed to improve the throughput in uplink NOMA in [18]. In [19], a new spectrum

and energy efficient mmWave transmission scheme which integrates the concept of NOMA with

beamspace MIMO was proposed to break the fundamental limit.In [20], a hierarchical power

control solution to improve the spectrum and energy efficiency in NOMA-enabled vehicular

small cell networks was proposed by performing the joint optimization of cell association and

power control. In [21], a novel resource allocation design was investigated for NOMA enhanced

heterogeneous networks. However, the study of energy efficient subchannel assignment and

power allocation in multiple small cells with NOMA under theconstraints of minimum QoS

requirements and cross interference has not been well studied.

On contrary to the typically full buffer assumptions and snapshot-based models, delay is a

key metric to measure the QoS. The congestion performance for delay-tolerant services and the

stochastic and time-varying features of traffic arrivals should be considered in realistic wireless

networks. By utilizing Lyapunov optimization, which is an useful method for handling queue-

aware radio resource allocation problems, [22], [23] considered the impacts of stochastic traffic

arrivals and time-varying channel conditions on the systemperformance to stabilize the queues

of networks when optimizing performance metrics. In [22], the authors applied the framework of

Lyapunov optimization to balance the average throughput and average delay in energy efficient

OFDMA heterogeneous cloud networks. The authors in [23] adopted the Lyapunov optimization

framework in a two-tier OFDMA heterogeneous network under the hybrid access mode to

solve the dynamic optimization problem of resource allocation. In [24], an energy efficient

resource allocation algorithm was proposed to provide fairness among different small cell base

stations(SCBSs) based on the Nash bargaining solution. However, most of the existing works

considered resource allocation using Lyapunov optimization only in OFDMA systems. And to

the best of the authors’ knowledge, energy efficient resource allocation for time-varying NOMA

networks has not been well studied in the previous works.

In this paper, we investigate the subchannel and power allocation respectively in a multiple

downlink NOMA network by considering energy efficiency, quality of service (QoS) require-

ments, power limits, and queue stability. The main contributions of this paper are summarized

as follows:
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• Development of a novel energy efficient NOMA network optimization framework: This

framework jointly considers energy efficiency maximization, QoS requirements, queue

stability and power limits in the optimization of NOMA. Moreover, the queue stability, utility

and average queue length performance are studied through both analytical and simulation

results.

• Design of a subchannel assignment algorithm based on matching theory: We model

the subchannel-user matching problem as a two-sided matching process and propose a

subchannel assignment algorithm based on matching method.

• Design of a power allocation algorithm with multiple constraints: We formulate a power

allocation problem for NOMA as a mixed integer programming problem. A minimum QoS

requirement is employed to provide reliable transmission for users. The energy efficiency

optimization problem is decomposed into three subproblemswith time-averaged variables

and instantaneous variables. We solve the three subproblems and propose a power allocation

algorithm using Lyapunov optimization, where the convergence of the proposed algorithm

is also demonstrated via simulations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Basic Notation

As shown in Fig. 1, we consider a time-varying downlink multiple cell NOMA network in

which N SCBSs exist and each SCBS transmits the signals to each set ofmobile users denoted

by U = {1, 2, ..., U}. The available bandwidth is divided by BS into a set of subchannels which

is denoted byN = {1, 2, ..., N}. The NOMA system is assumed to operate in a slotted time

mode with unit time slotst ∈ {0, 1, 2....}, where the time slott refers to the time interval

[t, t + 1). We assume that the BSs have full knowledge of the channel state information and

denote bygk,u,n(t) the channel gain between thekth SCBS and useru on subchanneln at time

slot t. We setak,u,n(t) = 1 when the subchanneln of SCBSk is allocated to useru at time slot

t; otherwise,ak,u,n(t) = 0. [x]+ means the larger one betweenx and zero and denotexT as the

transpose ofx. E {·} denotes the expectation.
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Fig. 1. The architecture of the NOMA network.

B. System Model

In NOMA, one user can receive signals from the BS through multiple subchannels and one

subchannel can be allocated to multiple users at the same time slot t. Since the userj on

subchanneln causes interference to the other users on the same subchannel, each userj adopts

SIC after receiving the superposed signals to demodulate the target message. As shown in [25],

without constraints on the specific power split, one user’s data can be successfully decoded

by another user whose channel gain is better via superposition coding with SIC. Since useru

with higher channel gain can only decode the signals of useri with worse channel gain, the

interference signals caused by userj whose channel gain is better than useru cannot be decoded

and will be treated as noise. Thus, after SIC, the interference for useru caused by other users

of same SCBSk on the same subchanneln is given by

Ik,u,n(t) =
∑

i∈{Sk,n|gk,i,n>gk,u,n}
ak,i,n(t)pk,i,n(t)gk,u,n(t) (1)

whereSk,n is the set of users of SCBSk on subchanneln. Modeling this residual interference

as additional AWGN, we can use the Shannon’s capacity formula to write the capacity of user
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u ∈ U = {1, 2, ..., U} of SCBSk on thenth subchannel at time slott as

Rk,u,n(t) =
B

N
ak,u,n(t)log2

(
1 +

pk,u,n(t)gk,u,n(t)

σ2
k,n + Ik,u,n(t) + Ĩk,u,n(t)

)
, ∀k ∈ K, u ∈ U , n ∈ N . (2)

whereB andσn
2 are the bandwidth of the system and the noise variance respectively. Ĩk,u,n(t) is

the total of the co-tier interference caused by other SCBSs to SCBSk and cross-tier interference

caused by macro BS to SCBSk which is given by:

Ĩk,u,n(t) =

K∑

l 6=k

U∑

u=1

al,u,npl,u,ngl,k,u,n +

U∑

u=1

pMu,ng
M
k,u,n, ∀k ∈ K, u ∈ U , n ∈ N . (3)

wheregl,k,u,n as the channel gain on subchanneln of useru in SCBS l to SCBSk. pMu,n and

gMk,u,n are the power allocation and channel gain on subchanneln of useru in macro BS to SCBS

k respectively. The capacity of useru of SCBSk at time slott can be written as

Rk,u(t) =
N∑

n=1

Rk,u,n(t), ∀k ∈ K, u ∈ U . (4)

In order to specify the QoS of users, we letR̂k,u be the QoS requirement in terms of the minimum

capacity of useru which is thus given as

C1 : Rk,u(t) ≥ R̂k,u, ∀k ∈ K, u ∈ U . (5)

When the queue stability of the SCBS is guaranteed, we can only focus on the performance

optimization with queue stability. This is because the SCBScan be assumed to be fixed over a

longer duration than the scheduling slot of subchannels. Inthis NOMA network, the separate

buffering queueQk,u(t) is maintained for each userU of SCBSk. The random traffic arrivals for

Qk,u(t) are denoted byAk,u(t) whose peak arrival isAmax
k,u at time slott. Ak,u(t) is independent

and identically distributed (i.i.d.) over slots with the constant expectation. The exogenous arrival

rates may be outside of the network capacity region in practice for the reasons that the statistic

of Ak,u(t) is usually unknown to SCBSs and the achievable capacity region is usually difficult

to estimate. Then, a transport flow control mechanism is needed to keep the traffic queues be

stabilized. Denoterk,u(t) as the admitted data rate out of the potentially substantialtraffic arrivals

for useru of SCBSk which satisfy0 ≤ rk,u(t) ≤ Ak,u(t) obviously. Therefore, we denote the

traffic buffering queues for useru as

Qk,u(t+ 1) = [Qk,u(t)−Rk,u(t)]
+ + rk,u(t), ∀k ∈ K, u ∈ U . (6)
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The time averaged throughput in terms of the data arrivals for users in SCBSk is defined as

r̄k,u = lim
T→∞

1
T

T∑
t=0

rk,u(t).

Denote bypk,u(t) andptot(t) the instantaneous power of useru of SCBSk at time slott and

the total power consumption of all the SCBSs at time slott respectively, which can be written

as

pk,u(t) =

N∑

n=1

pk,u,n(t) + pCk (7)

and

ptot(t) =

K∑

k=1

U∑

u=1

pk,u(t) (8)

where pCk accounts for the circuit power of SCBSk. The average and instantaneous power

constraints of useru of SCBSk are denoted byPk,u and P̂k,u, which can be written as

p̄k,u = lim
t→∞

1

t

t∑

τ=0

pk,u(τ) ≤ Pk,u, ∀k ∈ K, u ∈ U (9)

pk,u(t) ≤ P̂k,u, ∀k ∈ K, u ∈ U . (10)

We define the functiongR(·) as the revenue obtained by the throughput which is a non-

decreasing concave utility function. LetηEE denote the energy efficiency (EE) which is defined as

the ratio of the profit brought by the long-term utility of average throughput to the corresponding

long-term total power consumption. It can be written as

ηEE =

K∑
k=1

U∑
u=1

gR (r̄k,u)

p̄tot
. (11)

wherep̄tot = lim
T→∞

1
T

T∑
t=0

ptot(t).

C. Optimization Problem Formulation

In this subsection, when considering all constraints, the utility function is expressed as

max
P

ηEE =

K∑
k=1

U∑
u=1

gR(r̄k,u)

p̄tot

s.t.C1

C2 : p̄k,u = lim
t→∞

1
t

t∑
τ=0

pk,u(τ) ≤ Pk,u, ∀k ∈ K, u ∈ U

C3 : pk,u(t) ≤ P̂k,u, ∀k ∈ K, u ∈ U

C4 : R̃k,u = lim
T→∞

1
T

T∑
t=0

Rk,u(t) ≥ r̄k,u, ∀k ∈ K, u ∈ U .

(12)
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whereP denotes the power allocation policy and the constraintC1 ensures the QoS of users;

C2 is limit of the maximum average transmit power of useru of SCBSk; C3 is the maximum

instantaneous transmit power of useru of SCBSk; andC4 ensures the stability of useru in

SCBSk. We define the optimal EEηoptEE as

ηoptEE =

K∑
k=1

U∑
u=1

gR (r̄k,u(P∗))

p̄tot(P∗)
= max

P

K∑
k=1

U∑
u=1

gR (r̄k,u(P))

p̄tot(P)
(13)

whereP∗ denotes the optimal power allocation policy that yieldsηoptEE. We can classify the utility

function in (12) as a nonlinear fractional program. We introduce Theorem 1 as follows.

Theorem 1: The optimal EEηoptEE can be reached if and only if

max
P

K∑
k=1

U∑
u=1

gR (r̄k,u(P))− ηoptEEp̄tot(P)

=
K∑
k=1

U∑
u=1

gR (r̄k,u(P∗))− ηoptEE p̄tot(P
∗) = 0

for
K∑
k=1

U∑
u=1

gR (r̄k,u(P)) ≥ 0, p̄tot(P) ≥ 0.

(14)

Proof: Please refer to Appendix A.

According to Theorem 1, an equivalent objective function insubtractive form is existed for the

(non-convex) optimization problem (12) which can be classified as nonlinear fractional program.

Then, the formulation (12) can be rewritten in the more tractable form

max
P

K∑
k=1

U∑
u=1

gR (r̄k,u(P))− ηEEp̄tot(P)

s.t.C1, C2, C3, C4.

(15)

III. ENERGY EFFICIENT OPTIMIZATION USING LYAPUNOV OPTIMIZATION

In this section, the subchannel assignment is investigatedin the NOMA network and the

optimization problem in (15) is solved based on Lyapunov optimization.

A. Subchannel Matching

We assume that all the users of BS can transmit on the subchannel n arbitrarily at time slot

t in a NOMA system. Considering the complexity of decoding andthe fairness of users, each

subchannel can only be allocated to at mostDn users and each user can only occupy at most

Du subchannels at the same time. We assume thatN ∗Dn ≥ U ∗ Du. The dynamic matching

May 23, 2018 DRAFT



9

between the users and the subchannels of SCBSk is considered as a many-many matching

process between the set ofU users and the set ofN subchannels. Useru is matched with

subchanneln at time slott if ak,u,n(t) = 1. Based on the channel state information, we assume

useru prefers channeln1 over n2 if and only if gk,u,n1
> gk,u,n2

. Then, the preference lists of

the users of SCBSk can be denoted by

Pr ef (K,U) = [Pr ef U(1), ...,Pr ef U(u), ...Pr ef U(U)]T (16)

wherePr ef (K,U)(u) is the preference list of useru of SCBSk which is in the descending

order of channel gains of subchannels. To reduce the complexity, we propose a suboptimal

matching algorithm for subchannel allocation as Algorithm1. For each useru of SCBS k,

the matching request is send to its most preferred subchannel according to its preference list.

Then the preferred subchannel decides whether accept the user or not according to the users’s

channel gain. For each subchanneln, there is at mostDn number of accepted users who has

higher channel gain than the rejected users. The rejected user on subchanneln will remove

the subchanneln from its preference list and its most preferred subchannel is changed. The

matching request is send again until all the users of each SCBS matchedDu subchannels and

the matching is achieved.

B. The Queues of Lyapunov Optimization

BecausegR(r̄k,u) is related to the time averaged throughput, we define auxiliary variablesγk,u

for the traffic arrival of useru in SCBSk which satisfies̄γk,u ≤ r̄k,u and 0 ≤ γk,u ≤ Amax
k,u .

Therefore, the optimization problem in (15) can be rewritten as

max
P

∑
k∈K

∑
u∈U

gR(γk,u)− ηEEptot

s.t.C1,C2,C3,C4

C5 : γ̄k,u ≤ r̄k,u, 0 ≤ γk,u ≤ Amax
k,u

(17)

where γ̄k,u = lim
T→∞

1
T

T∑
t=0

γk,u(t) and gR(γk,u)− ηEEptot = lim
T→∞

1
T

T∑
t=0

(gR(γk,u(t))− ηEEptot).

The equivalent of problems (15) and (17) can be proved by appendix B. To satisfy the averaged

throughput constraint inC5, we denote byHk,u(t) the virtual queue for useru in SCBSk at

time slot t. We get

Hk,u(t + 1) = [Hk,u(t)− rk,u(t)]
+ + γk,u(t), ∀k ∈ K, u ∈ U . (18)
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Algorithm 1 Suboptimal Matching Algorithm for Subchannel Allocation
1: Initialize the matched listSk,n and Sk,u to denote the number of users matched with

subchanneln (∀n ∈ {1, 2, ..., N}) and the number of subchannels matched with user

u (∀n ∈ {1, 2, ..., U}) in SCBSk, respectively;

2: Initialize preference listsPr ef U(k, u) for all the users of SCBSk according to channel

state information;

3: Initialize the set of not fully matched usersSU F (k, u) to denote users of SCBSk who have

not been matched withDu subchannels;

4: while SU F (k, u) 6= φ do

5: for u = 1 to U do

6: if Sk,u < Du then

7: User u of SCBS k sends a matching request to its most preferred subchanneln̂

according toPr ef U(k, u);

8: if Sk,n̂ < Dk,n̂ then

9: Setak,u,n̂ = 1, Sk,u = Sk,u + 1 andSk,n̂ = Sk,n̂ + 1;

10: else if Sk,n̂ = Dk,n̂ then

11: Find the minimum channel gain of usersgk,û,n̂ on channeln̂ in SCBS k and

compare it withgk,u,n̂;

12: if gk,û,n̂ < gk,u,n̂ then

13: Setak,u,n̂ = 1, ak,û,n̂ = 0, Sk,u = Sk,u + 1, andSk,û = Sk,û − 1;

14: else

15: Remove subchannel̂n from thePr ef U(k, u) and find the next̂n of useru in

SCBSk according toPr ef U(k, u).

16: end if

17: end if

18: end if

19: end for

20: end while
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Similarly, in order to satisfy the constraintC2, virtual power queues for the useru in SCBS

k are defined. We denoteZk,u(t) as the queue arrival with the transmit powerpk,u(t), and get

Zk,u(t + 1) = [Zk,u(t)− Pk,u]
+ + pk,u(t), ∀k ∈ K, u ∈ U . (19)

C. The Formulation of Lyapunov Optimization

DenoteΦ(t) = [Q(t), H(t), Z(t)] as the matrix of all the queues. We define the Lyapunov

function as a scalar metric of queue congestion

L (Φ (t)) =
1

2

{
K∑

k=1

U∑

u=1

(
Qk,u(t)

2 +Hk,u(t)
2 + Zk,u(t)

2)
}
. (20)

We introduce a Lyapunov drift in this subsection for pushingthe Lyapunov function to a lower

congestion state and keep both the actual and virtual queuesstable

∆(Φ(t)) = E {L(Φ(t + 1))− L(Φ(t))} . (21)

According to Lyapunov optimization, by subtractingV E

{∑
u∈U

gR(γk,u)− ηEEptot

}
from both

sides of (21), we get

∆(Φ (t))− V E

{
K∑
k=1

U∑
u=1

gR (γk,u)− ηEEptot

}

≤ C +
K∑
k=1

U∑
u=1

E {Hk,u(t)γk,u − V gR (γk,u)}

+V E

(
ηEE

{
K∑
k=1

{
U∑

u=1

pk,u(t) + pCk

}})

−
K∑
k=1

U∑
u=1

{Hk,u(t)−Qk,u(t)}E {rk,u(t)}−
K∑
k=1

U∑
u=1

Qk,u(t)E {Rk,u(t)}

−
K∑
k=1

U∑
u=1

Zk,u(t)E {Pk,u(t)− pk,u(t)}

(22)

whereV is an arbitrarily positive control parameter which represents the emphasis on utility

maximization compared to queue stability andC is a finite constant that satisfies

C ≥ 1
2
E

{
K∑
k=1

U∑
u=1

(
rk,u(t)

2 +Rk,u(t)
2)
}

+1
2
E

{
K∑
k=1

U∑
u=1

[
(rk,u(t)− γk,u(t))

2 + (Pk,u(t)− pk,u(t))
2]
}
.

(23)

May 23, 2018 DRAFT



12

1) The solution of virtual variables:The optimal choice ofγu to minimize (22) can be made

by solving

max V gR(γk,u)−Hk,u(t)γk,u

s.t.0 ≤ γk,u ≤ Amax
k,u

(24)

and the solution is

γk,u(t) = min

{
V

Hk,u(t)
, Amax

k,u

}
. (25)

2) The solution of actual traffic arrival:In order to minimize (22), the optimal actual traffic

arrival can be achieved by maximizing the expression as follows:

max {Hk,u(t)−Qk,u(t)}E {rk,u(t)}

s.t.0 ≤ rk,u(t) ≤ Ak,u(t).
(26)

We get the optimal solution as

rk,u(t) =





Ak,u(t), ifHk,u(t)−Qk,u(t) ≻ 0

0, else.
(27)

3) Power allocations:In order to minimize (22), we first obtain the optimal solution of the

virtual variables and the actual traffic arrival, then we canminimize the remaining part of (22)

and denote it as

min





V E

(
ηEE

{
K∑
k=1

{
U∑

u=1

pk,u(t) + pCk

}})
+

K∑
k=1

U∑
u=1

Zk,u(t)pk,u(t)

−
K∑
k=1

U∑
u=1

Qk,u(t)E {Rk,u(t)}





= V E

(
ηEE

{
K∑
k=1

{
U∑

u=1

N∑
n=1

ak,u,n(t)pk,u,n(t)

}
+ pCk

})

+
K∑
k=1

U∑
u=1

Zk,u(t)

{
N∑

n=1

ak,u,n(t)pk,u,n(t)

}

−
K∑
k=1

U∑
u=1

Qk,u(t)E

{
N∑

n=1

Rk,u,n(t)

}
.

(28)

Let ωk,u,n(t) = ak,u,n(t)pk,u,n(t), ∀k ∈ K, u ∈ U , n ∈ N ; then we can get

Rk,u,n(t) =
B

N
ak,u,n(t)log2


1 +

ωk,u,n(t)gk,u,n(t)

ak,u,n(t)
(
σ2
k,n + Ik,u,n(t) + Ĩk,u,n(t)

)


 . (29)
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Then, we can rewrite (28) as follows

minV E

(
ηEE

{
K∑
k=1

U∑
u=1

pk,u(t)

})
−

K∑
k=1

{
U∑

u=1

Qk,u(t)E {Rk,u(t)}+
U∑

u=1

Zk,u(t)pk,u(t)

}

= V E

(
ηEE

{
K∑
k=1

U∑
u=1

N∑
n=1

ωk,u,n(t)

})
+

K∑
k=1

U∑
u=1

Zk,u(t)

{
N∑

n=1

ωk,u,n(t)

}

−
K∑
k=1

U∑
u=1

Qk,u(t)E

{
B
N

N∑
n=1

ak,u,n(t)log2

(
1 +

ωk,u,n(t)gk,u,n(t)

ak,u,n(t)(σ2

k,n
+Ik,u,n(t)+Ĩk,u,n(t))

)}
(30)

Since (30) is convex, to satisfy the series of constraints, the Lagrange function of the problem

(30) can be expressed by

F (λ, β) = minL(λ, β)

= V E

(
ηEE

{
K∑
k=1

U∑
u=1

N∑
n=1

ωk,u,n(t)

})
+

K∑
k=1

U∑
u=1

Zk,u(t)

{
N∑

n=1

ωk,u,n(t)

}
−

K∑
k=1

U∑
u=1

Qk,u(t)E

{
N∑

n=1

B
N
ak,u,n(t)log2

(
1 +

ωk,u,n(t)gk,u,n(t)

ak,u,n(t)(σ2

k,n
+Ik,u,n(t)+Ĩk,u,n(t))

)}

+
K∑
k=1

U∑
u=1

λk,u(t)

{
N∑

n=1

ωk,u,n(t)− P̂k,u

}

+
K∑
k=1

U∑
u=1

βk,u(t)

{
R̂k,u −

N∑
n=1

B
N
ak,u,n(t)log2

(
1 +

ωk,u,n(t)gk,u,n(t)

ak,u,n(t)(σ2

k,n
+Ik,u,n(t)+Ĩk,u,n(t))

)}
,

(31)

where λ , β are the Lagrange multiplier vectors for the constraints in (17). Taking the first

order derivation ofF (λ, β) with respect toωk,u,n(t), we can get the optimal power allocation as

follows

pk,u,n(t) =
ωk,u,n(t)

ak,u,n(t)
=

B
N
(Qk,u(t) + βk,u(t))

ln 2(V ηEE + Zk,u(t) + λk,u(t))
−

σ2
k,n + Ik,u,n(t) + Ĩk,u,n(t)

gk,u,n(t)
. (32)

Based on the subgradient method [27], the master dual problem in (32) can be solved by

λl+1
k,u=[λl

k,u−εl1(P̂k,u −
N∑

n=1

ωk,u,n(t))]
+

, ∀k ∈ K, u ∈ U ;

βl+1
k,u = [βl

k,u − εl2(
N∑

n=1

Rk,u,n −Rk,u)]
+

, ∀k ∈ K, u ∈ U.

(33)

After the time intervalT , we get the average queue lengthQ, total average capacityRave, average

power consumptionP ave and the average energy efficient EEηaveEE as

Q̄ =
1

T

T∑

t=1

K∑

k=1

U∑

u=1

Qk,u(t) (34)

Rave =
1

T

T∑

t=1

Utot(t) (35)
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Algorithm 2 Lyapunov Optimization based Resource Allocation Algorithm
Initialize theak,u,n(t) using suboptimal Algorithm 1;

2: Initialize pk,u,n(t) using equal power allocation;

Initialize the value ofAmax
k,u andQk,u(t);

4: For each time slot, calculate the auxiliary variablesγk,u(t) for each time slot and admitted

traffic rk,u(t) by solving (25), (27) respectively;

repeat

6: Obtain the optimal allocation of power in the current time slot according to (32);

Update Lagrangian multipliers ofλ, β by solving (33);

8: Solve (12) using the Dinkelbach method in [1] to get the optimal value of ηEE in an

iteration way;

until Convergence or certain stopping criteria is met

10: Calculate the traffic queueQk,u(t) and the virtual queues ofHk,u(t) andZk,u(t) of next time

slot by solving (6), (18), (19) respectively.

P̄ =
1

T

T∑

t=1

K∑

k=1

U∑

u=1

pk,u(t) (36)

ηaveEE =
1

T

T∑

t=1

ηEE. (37)

The above proposed approach based on Lyapunov optimizationfor solving the EE optimization

problem in (19) can be summarized in Algorithm 2.

D. Complexity Analysis

The complexity of the proposed algorithms is analyzed in this subsection. The worst-case

complexity of proposed suboptimal Algorithm 1 isO(KUN+1/2K⌊U/Dn⌋
2) in which the

finding of preference lists isO(KUN). The optimal algorithm of subchannel matching can

only be obtained by searching over all possible combinations of users whose computational

complexity can be approximated asO(K [U !]Du

Dn
N ). It can be found from the analysis above,

proposed suboptimal subchannel matching Algorithm 1 has a much lower polynomial complexity

than the exhaustive search. In Algorithm 2, the calculationof (32) for each user in each SCBS on
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each subchannel entailsKUN operations. Then the complexity of Algorithm 2 isO(TLKUN)

whereL is the number of iterations each time slot. As the complexityof Algorithm 2 increases

with the number of users and the convergence ofEE is influenced by the control parameterV ,

the Algorithm 2 may be practical for a middle-scale realtimenetwork and the value ofV should

be well chosen. Furthermore, cellular users are always distributed in a cluster-way. Therefore,

the cellular users in a cell can be divided into several clusters, and the proposed algorithm can be

used in each cluster. Subchannels are not shared between different clusters. Since the number of

users in each cluster is small, the complexity of the proposed algorithms will be further reduced.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance bounds of the proposed Algorithm 2 based on

the Lyapunov optimization.

A. Stability of Queues

In this work, all the actual queuesQk,u(t) and virtual queues ofHk,u(t) andZk,u(t) are mean

rate stable. We assume the expectation ofPtot(t) andUtot(t) are bound by

Pmin ≤ E {Ptot(t)} ≤ Pmax (38)

Rmin ≤ E {Utot(t)} ≤ Rmax (39)

wherePmin, Pmax, Rmin andRmax are finite constants. From the boundedness assumptions, there

is positive constantC satisfying

∆(Φ(t)) ≤ C. (40)

It can be written as

E {L(Φ(t + 1))} − E {L(Φ(t))} ≤ C. (41)

Considering telescoping sums overt ∈ {0, 1, ..., T − 1} in above inequality, we can get

E {L(Φ(T ))} − E {L(Φ(0))} ≤ TC. (42)

Using (20), we can rewrite (42) as

E
{
Zk,u(T )

2} ≤ 2TC + 2E {L(Φ(0))} . (43)
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Given D(|Zk,u(T )|) = E(|Zk,u(T )|
2) − [E(|Zk,u(T )|)]

2 ≥ 0, we get E(|Zk,u(T )|
2) ≥

[E(|Zk,u(T )|)]2. Thus we get

E(|Zk,u(T )|) ≤
√

2TC + 2E {L(Φ(0))}. (44)

Taking the limitT → ∞ and dividingT at the same time, we have

lim
T→∞

E(|Zk,u(T )|)

T
= 0. (45)

Therefore, the queues ofZk,u(T ) are mean rate stable. Similarly, we can also prove the queues

Qk,u(T ) andHk,u(T ) are mean rate stable.

B. The Utility and Average Queue Length Performance

The EE performance and the average queue length performanceobtained by Algorithm 2 is

given in Theorem 2.

Theorem 2: Utilizing the proposed optimization solution,ηEE is bounded by

ηEE ≥ ηoptEE −
B

V Pmin

. (46)

The performance of the average network queue length is bounded by

Q̄ ≤
B + V (Rmax − ηoptEEPmin)

ε
(47)

whereηoptEE is the theoretical maximum achievable utility of all achievable solutions.

Proof: Please refer to Appendix C.

With the consideration ofηEE ≤ ηoptEE, which naturally holds from (13), the bound of EE is

ηoptEE− B
V Pmin

≤ ηEE ≤ ηoptEE. Therefore,ηEE can arbitrarily approachηoptEE by setting large enough

V to make B
V Pmin

arbitrarily small. The bound of average queue backlogQ̄ increases linearly

in V according to (47). Theorem 2 shows that there exists an[O(1/V ),O(V )] utility-backlog

tradeoff that leads to Little’s Theorem.

V. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are given to evaluate the performance of the proposed

algorithms. In the considered NOMA network, there areK SCBSs which consistsU users

distributed randomly in a circular with radius of30 m and the SCBSS are distributed randomly

in the circular of MBS whose radius is500 m. The noise power spectral density is−174
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dBm/Hz. We consider a normalized bandwidth which isB = 1 Hz. For the simulation, the

maximum average transmit power and the maximum instantaneous transmit power of userU in

SCBSk is set as2.5/U Watts and2.505/U Watts respectively. We assume the circuit power

of useru is 1 Watt. The time intervalT is set as5000 slots which means traffic arrival rates is

15 bps/Hz. We assume that each user can access only one subchannel in the OFDMA scheme.

In Fig. 2, the average queue length versus timet is evaluated under different values of control

parameterV . The user QoS requirement is set asR̂u = 2 bps/Hz and the maximum number

of matched subchannels of each user isDu = 2 with the maximum number of matched users

of each subchannel isDn = 2. It is shown that, the value of the average queue length increases

with time t and gradually fluctuates around a certain fixed value. And forthe same value oft,

a smaller value ofV leads to a smaller value of average queue length which satisfy with the

Theorem 2. This conclusion can also be obtained in Fig. 9.
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Fig. 2. Average queue length versus simulation time length.

Fig. 3 shows the EE performance versus timet with the same constraints of Fig. 2 except

the QoS constraint iŝRu = 1 bps/Hz instead. It can be observed that the EE performance

will gradually fluctuates around a certain fixed value with the increase oft which illustrates the

convergence of EE with timet. And the larger value ofU lead to smaller convergence ofEE.
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Fig. 3. EE performance versus simulation time length.

This is because the need of subchannels will increase with the increase of user number which

lead to the decrease of bandwidth of each subchannel.

As shown in Fig. 4, the EE performance is evaluated with the simulation time slott. In

each time slott, the algorithms in Fig. 4 have the equal total power consumption. That is, the

total power consumption is time varied for each algorithm. With the increase of timet, the

EE will gradually fluctuates around a certain fixed value. From Fig. 4, we observe that the

performance ofV = 100 which is the proposed resource allocation algorithms with the control

parameterV = 100, including subchannel assignment and power allocation, ismuch better than

the algorithm of NOMA-EQ in [16]. This is because the algorithm of NOMA-EQ is limited of

equal power allocation of each subchannel in NOMA system. For different subchannel allocation

schemes, the EE performance using exhaustive search which denoted as NOMA-Opt is better

than using the suboptimal algorithm we proposed.

In Fig. 5, the performance of average EE is evaluated versus the parameterV with different

values ofDn which is the number of users matched with each subchannel andDn = 1 represents

it’s in a OFDMA scheme. The user QoS requirement is set asR̂u = 2 bps/Hz and the maximum

number of matched subchannels of each user isDu = 1. It is shown that, with the increase in
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the parameterV , the value of average EE increases and converges to a certainvalue both in

NOMA at the same value ofDu and in OFDMA. It is seen that the average EE in NOMA is

better than the average EE in OFDMA. And for the same value ofV , a larger value ofDn leads

to a larger value of average EE. This is because our proposed algorithm provides more freedom

in the bandwidth allocation of assigned subchannels. For the same set of users under same value

of Du, the more larger of the valuse ofDn is, the bandwidth of each subchannel is more larger.
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Fig. 4. EE performance versus simulation time length with different algorithms.

Fig. 6 shows the performance of average EE versus the parameter V with different values

of Du where the user QoS requirement is set asR̂u = 2 bps/Hz and the maximum number

of matched users of each subchannel isDn = 2. It is seen that, for arbitrary value ofDu, the

value of average EE Arbitrary increases and converges to a certain value with the increase in the

parameterV . For the same value of parameterV , a larger value ofDu leads to a larger value

of average EE due to the various selection of subchannels.

Fig. 7 illustrates the convergence of the total average capacity versus the parameterV with

different values ofDu. Different from the trend of average EE, for the same value ofDu, the

value of the total average transmit capacity decreases and converges to a value with the increase

of V . For the same value ofV , a larger value ofDu results in a larger value of total average
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Fig. 5. Average EE performance versus the parameterV with different values ofDn.

transmit capacity. This is because every user has more selections in subchannel to guarantee the

QoS requirement.

Fig. 8 shows average power consumption versus the parameterV with different values of

Du. The set of constraints is as Fig. 5 and Fig. 6. We see that the average power consumption

decreases steadily with increasingV . For the same value ofV , different from the trend of the total

average capacity, a larger value ofDu results in a lower value of average power consumption.

The average power consumption ofDu = 3 is 3% smaller than that ofDu = 1 whenV = 120.

Fig. 9 depicts the average queue length versus the parameterV with different values ofDu.

The user QoS requirement is set asR̂u = 2 bps/Hz and the maximum number of matched users

of each subchannel isDn = 2 in the NOMA scheme. With different values forDu, the average

queue length grows steadily with increasingV . For the same value ofV , a larger value ofDu

leads to a lower value of average queue length. It illustrates the users goes steadily faster with

a larger value ofDu and this result also satisfy with the Theorem 2.

In Fig. 10, the average EE versusV with different QoS requirements is illustrated. We set the

maximum number of allocated subchannels of each user isDu = 2 and the maximum number

of matched users of each subchannel isDn = 2. As shown in Fig. 10, for the same value of
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Fig. 6. Average EE performance versus the parameterV with different values ofDu.

V , a larger value of the QoS requirement results in a smaller converged value of average EE.

A smaller value of QoS requirement leads to a larger value of EE due to the fact that a smaller

value of QoS requirement enlarges the feasible region of theoptimizing variable.

Fig. 11 shows the average power consumption versusV with different QoS requirements. The

maximum number of allocated subchannels of each user isDu = 2 and the maximum number

of matched users of each subchannel isDn = 2. As the parameterV increases, average power

consumption continues to decrease. From Fig. 11, we can observe that for the same value ofV ,

a larger value of the QoS requirement results in a larger value of average power consumption.

In Fig. 12, the total average transmit capacity is evaluatedversusV with different QoS

requirements. The mean traffic arrival rateα = 15 bps/Hz and has the same constraints of Fig.

11. It can be observed that, the trend of this curve is similarto the average power consumption

curves in Fig. 11. For the same parameterV , a larger value of the QoS requirement results in

a larger value of the total average transmit capacity.

VI. CONCLUSION

We have investigated dynamic resource allocation in downlink NOMA networks. We have

proposed a suboptimal subchannel assignment algorithm based on the two-side matching method.
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Fig. 7. The total average transmit capacity versus the parameterV with different values ofDu.

We have formulated the power allocation as a mixed integer programming problem by considering

a minimum QoS requirement, and maximum power constraint. Based on the framework of

Lyapunov optimization, the problem of energy efficient optimization was broken down into three

subproblems, two of which are linear and the rest of which be solved via Lagrangian optimization.

The mathematical analysis and simulation results have demonstrated the effectiveness of the

proposed algorithms.

APPENDIX A

The proof of Theorem 1 is similar to the method in [26]. For thesake of notational simplicity,

we defineΘ as the set of of feasible solutions of the optimization problem in (12) andηEE =
K∑

k=1

U∑
u=1

gR(r̄k,u)

p̄tot
= G(P)

T (P)
, respectively. Without loss of generality, we defineηoptEE and{P∗} ∈ Θ as

the optimal energy efficiency and the optimal power allocation policy of the original objective

function in (12), respectively. We can get the optimal energy efficiency as

ηoptEE =
G(P∗)

T (P∗)
≥

G(P)

T (P)
, ∀ {P} ∈ Θ,⇒





G(P)− ηoptEET (P) ≤ 0

G(P∗)− ηoptEET (P
∗) = 0

. (48)
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Fig. 8. The average power consumption versus the parameterV with different values ofDu.

Therefore, we can conclude thatmax
p

G(P) − ηoptEET (P) = 0 is achievable by power allocation

policy {P∗} which completes the forward implication.

Then, the converse implication of Theorem 1 is proved as below. SupposeP∗
◦ is the optimal

power allocation policy of the equivalent objective function such that

G(P∗
◦ )− ηoptEET (P

∗
◦ ) = 0 (49)

Then, for any feasible power allocation policy{P} ∈ Θ, we can obtain the following inequality

G(P)− ηoptEET (P) ≤ G(P∗
◦ )− ηoptEET (P

∗
◦ ) = 0. (50)

The above inequality implies
G(P)

T (P)
≤ ηoptEE, ∀ {P} ∈ Θ (51)

and
G(P∗

◦ )

T (P∗
◦ )

= ηoptEE (52)

It implies the optimal power allocation policy{P∗
◦} for the equivalent objective function is also

the optimal resource allocation policy for the original objective function.

May 23, 2018 DRAFT



24

20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

Control parameter, V

A
ve

ra
ge

 q
ue

ue
 le

ng
th

 (
bp

s/
H

z)

 

 
D

u
=1

D
u
=2

D
u
=3

Fig. 9. The average queue length versus the parameterV with different values ofDu.

APPENDIX B

We denoteY1 and Y2 be the optimal utility of problems (15) and (17), respectively. The

optimal solutions that achieveY1 and Y2 are denoted byX1 and X2, respectively. Since the

utility functions of (15) and (17) are non-decreasing concave function which can be expressed

asU (·), by Jensen’s inequality, we have

U
(
X2

)
≥ U(X2) = Y2 (53)

Due to the the solutionX2 satisfies the constraintC5, we can get

U
(
X1

)
≥ U

(
X2

)
(54)

Moreover, sinceX2 also satisfies the constraints of the problem (15), then we have

Y1 ≥ U
(
X1

)
≥ Y2 (55)

For X1 is an optimal solution to the problem (15), it also satisfies the constraintsC1− C4. By

choosingX2 = X1 at each slot, then we get

Y2 ≥ U(X2) = U
(
X1

)
= Y1 (56)

Therefore,Y1 = Y2 is proved and we can further conclude the equivalence of the problems (15)

and (17).
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Fig. 10. Average EE performance versus the parameterV with different QoS requirements.

APPENDIX C

PROOF OFTHEOREM 2

To prove the bounds on the EE and the average queue length, Lemma 1 is introduced below.

Lemma 1: For arbitrary arrival rates, a randomized stationary control policy Π exists and it

chooses feasible control decision independent of current traffic queues and virtual queues. We

get the following steady state values:

E[rΠu (t)] = r∗u (57)

E[RΠ
u (t)] ≥ E[rΠu (t)] + ε = r∗u + ε (58)

E[P̂u − pΠu (t)] ≤ δ (59)

E[UΠ
tot(t)] ≥ E[pΠtot(t)](η

opt
EE − δ). (60)

Proof: The proof of Lemma 1 is similar to one found in [28].
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Fig. 11. The average power consumption versus the parameterV with different QoS requirements.

Substituting (57)-(60) into (22) and taking a limitδ → 0, we can get

∆(Φ(t))− V E

{∑
u∈U

gR(γu)− ηEEptot

}

≤ B − V ηoptEEE(pΠtot(t)) + V ηEEE(pΠtot(t))

−ε
∑
u∈U

Qu(t).

(61)

For Qu(t) ≥ 0, the inequality (61) can be further simplified to

∆(Φ(t))− V E

{∑
u∈U

gR(γu)− ηEEptot

}

≤ B − V ηoptEEE(pΠtot(t))

+V ηEEE(pΠtot(t)).

(62)

Using telescoping sums overt ∈ {0, 1..., T − 1} and taking iterated expectation, we have




E {L(Φ(T ))} − E {L(Φ(0))}

−V E {Utot − ηEE(t)ptot}





≤ T [B − V ηoptEEE(pΠtot(t))}

+V E(pΠtot(t))
T−1∑
t=0

E {ηEE}.

(63)
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Fig. 12. The total average transmit capacity versus the parameterV with different QoS requirements.

Dividing (63) by V T , we get

1
T

T−1∑
t=0

E {ηEE(t)ptot} −
1
T

T−1∑
t=0

E {Utot}

≤ B
V
− ηoptEEE(pΠtot(t))

+E(pΠtot(t))
1
T

T−1∑
t=0

E {ηEE}+
E{L(Φ(0))}

V T
.

(64)

Taking the limitT → ∞, one has

lim
T→∞

[ 1
T

T−1∑
t=0

E {ηEE(t)ptot} −
1
T

T−1∑
t=0

E {Utot}]

= Ūtot − Ūtot = 0.

(65)

We obtain

B

V
− ηoptEEE(pΠtot(t)) + ηEEE(pΠtot(t)) ≥ 0. (66)

Rearranging (66), we get

ηEE ≥ ηoptEE −
B

V E(pΠtot(t))
≥ ηoptEE −

B

V Pmin

. (67)

Similarly, taking iterated expectation and applying telescoping sums overt ∈ {0, 1, ..., T − 1}
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to (61), we get 



E {L(Φ(T ))} − E {L(Φ(0))}

−V E {Utot − ηEE(t)ptot(t)}





≤ T [B − V ηoptEEE(pΠtot(t))]

−ε
T−1∑
t=0

[
∑
k∈K

∑
u∈U

E {Qu(t)}]

+V E(pΠtot(t))
T−1∑
t=0

E {ηEE}.

(68)

Dividing (68) by εT and taking a limit asT → ∞, we obtain

Q̄ = lim
T→∞

1
T

T−1∑
t=0

[
∑
u∈U

E {Qu(t)}]

≤





B−V η
opt

EE
E(pΠtot(t))

ε

+V
ε

lim
T→∞

1
T

T−1∑
t=0

E {ηEE(t)ptot(t)}





≤
B+V (Rmax−η

opt
EE

Pmin)

ε
.

(69)
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