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Abstract

Semantic communication has been regarded as a promising technology to serve upcoming intelligent

applications. However, few studies have addressed the problem of resource allocation in semantic

communication networks. Most resource allocation mechanisms act fairly to all original data, ignoring

the meaning behind the transmitted bits. In this paper, a dynamic resource allocation scheme for

the task-oriented semantic communication network (TOSCN) based on deep reinforcement learning

(DRL) is proposed, which allows data with richer semantic information to preferentially occupy limited

communication resources. This paper aims to design a deep deterministic policy gradient (DDPG)

agent at the micro base station to maximize the long-term transmission efficiency of tasks. Firstly, the

relationship between semantic information and task performance is investigated. Subsequently, a novel

wireless resource allocation model for TOSCN is proposed by taking the image classification task as

an example. Then, a joint optimization problem of the semantic compression ratio, transmit power,

and bandwidth of each user is formulated. The agent is trained in an interactive learning environment

to obtain a decent trade-off between the amount of data delivered to the receiver and the accuracy of

intelligent tasks. Simulation results demonstrate that the proposed scheme achieves significant advantages

in relieving communication pressure and improving task performance in resource-constrained wireless

networks.
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Index Terms

Resource allocation, deep reinforcement learning, semantic communication, deep deterministic

policy gradient, image classification.

I. INTRODUCTION

Under the support of 6G network, the deep integration of Artificial Intelligence (AI) and

wireless communication networks has become an inevitable development trend [1]. With the

massive connectivity of intelligent devices and the explosion of wireless data traffic, the

spectrum scarcity problem has become increasingly prominent, posing huge challenges to

wireless communication in the 6G era [2], [3]. The massive data generated by intelligent

devices has the characteristic of low value density [4]. However, the current communication

technologies focus on the accurate transmission of each symbol, ignoring the target task and the

meaning carried in transmission data [5], which results in unnecessary consumption of wireless

communication resources. Instead of continuing to pursue the improvement of the network sum-

rate, the wireless networks urgently need to make some changes from another perspective to

meet the lower latency requirements of emerging intelligent applications.

Recently, the task-oriented semantic communication, which can significantly improve com-

munication efficiency and robustness [6], is expected to become a brand-new communication

paradigm in future networks. On the one hand, the task-oriented semantic communication has

the ability to extract useful information and remove redundant information for target AI tasks,

thereby remarkably reducing the amount of transmitted data and transmission delay. On the other

hand, the precise bit recovery is not exacted in semantic communication systems. Thus it is not

as susceptible to channel conditions as conventional communication systems. Distinguished from

the well-discussed problem of reliable data transmission, introducing the concept of “semantic

information” shifts our attention from “how to transmit” to “what to transmit”. Therefore,

semantic communication is becoming a superb solution to alleviate the communication bottleneck

[7].

There have been some preliminary studies on semantic communication. Aiming at the problem

of minimizing the mean square error of image reconstruction tasks, the authors in [8] designed

an implicit joint source coding and channel coding scheme. The transmitter and receiver were

constructed as symmetric convolutional neural networks (CNNs) at the sending and receiving

ends, respectively. Compared to traditional coding methods, the peak signal-to-noise ratio of this

Page 28 of 56

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

image transmission mode showed better robustness when channel conditions became harsh. In

[6], an innovative semantic communication system was developed by introducing Transformer

in natural language processing yield and successfully used for text transmission. The practical

application of Transformer in wireless communication networks faces the dilemma of high model

deployment cost and training overhead. Combining the insights from semantic communication

with model pruning, the authors in [9] further investigated an affordable semantic communication

model for intelligent terminals. The authors in [10] provided a novel compression method for

image features, which could decrease the number of feature maps transmitted from smart devices

to edge servers and ensure the task success probability of downstream inference. These works

lay the groundwork for semantic communication.

Although existing researches have achieved promising results in the design of coding schemes

and robust transmissions for semantic communication, very few studies have focused on resource

allocation for future semantic communication networks. Most current resource allocation methods

take the maximization of energy efficiency or system capacity as the optimization objective and

treat the content uploaded by users equally [11], [12]. The ignorance of the specific meaning

behind transmitted bits leads to the intense competition of available wireless resources such

as bandwidth, power, etc. Considering human perception and user satisfaction, some wireless

transmission designs take quality-of-experience (QoE) as an optimization criterion [13]. However,

this optimization criterion may not be optimal for machine-to-machine communication scenarios

[14], [15]. The traditional communication mode for AI tasks generally transmits all raw data to

edge/cloud servers, and thereafter uses pre-trained DL models to acquire inference results. In fact,

which part of the data from transmitter is valuable depends on the specific task to be executed

[16], [17]. There is often only a small fraction of the data makes a major contribution to the final

inference result of the task. Taking pedestrian detection as a simple example, the background

and objects other than “pedestrian” in images are not concerned and can be properly compressed

due to their almost negligible contribution to the improvement of detection accuracy. If the target

task is changed to vehicle detection, only the information with respect to “vehicle” in the image

is regarded as valuable, while the information about “pedestrian” becomes redundancy instead.

In order to tackle the communication bottleneck and exert the greatest advantages of semantic

communication, it is necessary to develop more efficient and appropriate resource allocation

schemes that allocate limited communication resources to data with richer semantic information

in a task-oriented manner.
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Taking semantic information into account for resource allocation, the authors in [18] presented

a channel assignment and coding method for text transmission. The authors in [19] designed an

adaptive feature compression method to reduce the amount of data to be transmitted. By flexibly

controlling compression ratio, a resource allocation mechanism is proposed in [19] to optimize

the task success probability. In [20], the authors discussed the performance metric of task-

oriented semantic communication network (TOSCN) and defined it as a QoE model. The QoE

specifically consists of two components, semantic transmission rate score and semantic similarity

score, corresponding to user quality of service and target task performance, respectively. Based

on these, a semantic-aware resource allocation method was investigated that maximizes the QoE

in TOSCN by optimizing the number of transmitted semantic symbols, channel allocation, and

user power. The authors in [21] considered the wireless resource management problem in a

heterogeneous network using semantic communication mode, and proposed a new performance

metric for this network, named system throughput in message. Then, a heuristic algorithm was

applied to solve the problem of user association and bandwidth allocation in the heterogeneous

network enabled by semantic communication. The above-mentioned works lay the groundwork

for semantic communication and provide useful guidance for the research of this paper.

Most of the existing resource allocation methods for semantic communication focus on the

optimization of the short-term network performance. However, there are some scenarios that need

to maximize a long-term system gain. In these cases, the loss of short-term gain may promote

the whole network to achieve a higher long-term gain. It is challenging to deal with this type of

problem using traditional optimization algorithms. Pure data-driven deep reinforcement learning

(DRL) has become a powerful tool for solving complex resource management problems in

recent years [22]–[24]. By efficiently learning the dynamic changes of the environment, DRL

can provide resource allocation strategies that maximize long-term rewards based on pre-trained

policy networks. In particular, deep deterministic policy gradient (DDPG) [25] is a kind of model-

free and off-policy algorithm with a fast convergence speed. Compared with the value-based Deep

Q Network algorithm, DDPG operates over continuous action spaces and directly outputs the

optimal allocation strategy without traversing the value function of each action policy, avoiding

the problems of excessive quantization error or soaring computational complexity caused by

naive discretization [26].

Motivated by the above observations, this paper aims to investigate a resource management

mechanism which enables the TOSCN to achieve long-term optimal performance. A system
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model consisting of multiple semantic communication users and an edge server is considered.

Inspired by [19], each user employs the adaptive semantic feature compression approach to

control the size of data packets to be delivered to the edge server within a slot. Each user is

equipped with a buffer to temporarily store data packets to be transmitted. The transmission

efficiency of tasks is defined as the weighted sum of the number of data packets from each user

and the corresponding achievable task accuracy at the receiver in a period of time. This paper

achieves the maximum transmission efficiency of tasks over a period of time by jointly optimizing

the compression ratio and wireless resource allocation strategy of semantic communication users.

In this case, a resource allocation strategy that only considers the maximization of the objective

function within a single time slot may not be desirable. For example, when the user has more

space left in the buffer, a resource allocation scheme that focuses on long-term benefits will avoid

giving the user the opportunity to transmit in the current time slot and allocate resources to other

users with tight buffers. When encountering the same situation, the scheme that only considers

the maximum transmission efficiency of tasks in a single time slot tends to allocate certain

resources to each user. This greedy transmission mode increases the degree of compression of

semantic features by users, resulting in a decrease in intelligent task accuracy. Therefore, DRL

is introduced in this paper to solve the resource allocation problem in TOSCN.

The detailed contributions of this paper are summarized as follows:

• This paper presents a construction method of the background knowledge base (BKB), which

stores relationships between semantic compression ratios and AI task performance under

various channel states. Take the image classification task as an example, a contribution-based

semantic feature compression approach guided by the BKB is investigated.

• A novel wireless resource allocation model for the TOSCN is proposed. A new metric,

namely the transmission efficiency of tasks, is defined to measure the network performance

from the semantic level. To achieve the preferential occupation of wireless resources by data

with richer semantic information, a joint optimization problem of the semantic compression

ratio, transmit power, and bandwidth of each intelligent device is formulated.

• With the ultimate goal of maximizing a long-term transmission efficiency of tasks, this paper

exploits DRL to tackle the wireless resource management problem in TOSCN. In order to

efficiently handle continuous action spaces, a DDPG-driven wireless resource allocation

scheme is proposed.
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The remainder of this paper is organized as follows. Section II illustrates the resource allocation

model. Section III details the proposed DRL-driven dynamic resource allocation scheme for task-

oriented semantic communication. The simulation results are presented in Section IV. Finally,

Section V provides a brief summary of the research in this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. The Task-Oriented Semantic Communication Model

Fig. 1. The architecture of task-oriented semantic communication system.

This paper consider a semantic communication system for image classification task, where the

receiver is responsible for feeding back inference results to the transmitter without reconstructing

the image. Similar to the traditional communication system framework, the task-oriented semantic

communication system includes a transmitter, a wireless channel, and a receiver (shown in Fig.

1). Particularly, traditional source coding is replaced by semantic coding that has the same

ability to remove source redundancy. The semantic encoder performs image feature extraction

and semantic compression, where the feature extractor consists of the convolutional layers of

18-layer deep residual nets (ResNet18) [27]. An image classifier composed of the fully connected

(FC) layer acts as the semantic decoder at the receiver.

The feature extractor performs implicit semantic encoding with the convolutional neural

network. For an input image S, the extracted semantic information can be expressed as

M=ESC(S, ζ), (1)

where ESC(·) is the semantic extraction network with trainable parameters ζ .

Feature maps are generally regarded as the representations of semantic information in image

processing [28]. Each feature map has a different contribution to the correct execution of the task,
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reflecting the relationship between semantic information and the target AI task. This complex

relationship can be naturally represented by model weights in NNs. Assuming that the final

inference result of FC layer is zc, the weight of the i-th feature map with respect to the class

label c can be denoted as ωc
i . Then, ωc

i can be calculated by using global average pooling and

gradient backpropagation as follows

ωc
i =

Global Average Pooling︷ ︸︸ ︷
1

W1H1

∑
m

∑
n

∂zc

∂F i
m,n︸ ︷︷ ︸

Gradient Backpropagation

, (2)

where F i
m,n denotes the activation value of the feature map at the m-th row and n-th column.

Obviously, ωc
i greater than zero indicates that the i-th feature map improves the inference

probability of class label c. Conversely, the i-th feature map has a reverse effect when ωc
i is

negative. Different from [10], the importance list of feature maps (ILFM) ωc for class label c

can be obtained by taking the absolute value of the weights of feature maps and then sorting

them from large to small, which can be denoted as

ωc = sort(|ωc
1|, ..., |ωc

N |). (3)

The number of feature maps N usually has a large value. However, the few feature maps ranked

higher in ILFM actually contain most of the image semantic information, which is sufficient

for the identification of the specific object in the image. To prove this viewpoint, a visual

explanation derived using the method in [29] is presented in Fig. 2. For the semantic concept

“steamship”, the gradients flowing into FC layer are combined with extracted feature maps to

obtain a coarse-grained class activation map (Fig. 2(a)), displaying the regions that contribute

greatly to class discrimination results. In order to further observe the discrepancy of the original

image information implied in the feature maps with higher and lower importance scores(Fig. 2(b)

and Fig. 2(e)), the gradients at the pixel level are backpropagated. High-resolution visualization

results (Fig. 2(c), Fig. 2(d), and Fig. 2(f)) are obtained by dot-multiplying the acquired gradients

with the corresponding pixel values. It can be observed that the top 16 feature maps with the

highest importance scores contain most of the information in the original image. In resource-

restricted and delay-intolerant systems, the feature maps with higher importance score can be

given priority to transmission. The feature maps with lower scores can be appropriately discarded

to achieve the purpose of cutting back the wireless communication cost. In this paper, the above
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(a) The class activation map. (b) Top 16 feature maps with the highest
importance score.

(c) Image information contained in (b).

(d) Image information contained in all
feature maps.

(e) The 16 feature maps with the lowest
importance score.

(f) Image information contained in (e).

Fig. 2. The image information implicit in feature maps.

operations are defined as semantic compression. After semantic compression, the data fed into

the channel encoder can be denoted as

O = U(M, η), (4)

where U(·) represents the semantic compression operation, whose calculation process can be

denoted as

U(F i, η) =

⎧⎨
⎩ F i, |ωc

i | ≥ ωη

0, |ωc
i | < ωη

, (5)

where F i is the i-th feature map, ωη is the compression threshold, and η ∈ [0, 1) denotes the

semantic compression ratio.

Next, the channel encoder maps the compressed data into symbols suitable for transmission
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over the wireless channel, which can be denoted by

X′ = ECC(O, θ), (6)

where ECC(θ) is the channel encoder network with trainable parameters θ.

To meet transmit power constraints, the data actually sent to the physical channel should be

further normalized as

X =
X′ ×√dim(X′)× P

‖X′‖2
, (7)

where dim(X′) denotes the dimension of the vector X′.

Inevitably, semantic compression leads to a decline in task performance, therefore, how to

find the right compression ratio to achieve an optimal trade-off between transmission costs and

semantic correctness is the most critical issue in the wireless resource allocation of semantic

communication. Based on the ILFM corresponding to different AI tasks, the mathematical

relationship between compression ratio and AI task performance is studied and stored in the BKB

shared by the semantic encoder and decoder. The subsequent resource allocation is instructed

by the constructed BKB, whose detailed process will be discussed in subsection B.

After passing through the physical channel, the data received by the receiver can be represented

as Y. Then the output M̂ after channel decoding at the edge server is given by

M̂=E−1SC(Y, χ), (8)

where E−1SC(·) is the channel decoder network with trainable parameters χ.

The semantic decoder is responsible for converting the data output by the channel decoder

into a series of probability values, and infers the result of image classification according to the

maximum probability value. Therefore, the final semantic restoration result corresponding to the

original input image can be obtained by

Ŝ = E−1CC(M̂, δ), (9)

where E−1CC(·) is the semantic decoder network with trainable parameters δ.

To minimize semantic errors, the softmax cross-entropy (CE) is used to characterize the

difference in probability distributions between the ground-truth labels of input images and

outputs. Considering the image classification problem with a label set [C] = {1, 2, ..., C} and an

instance S, the output of the last FC layer can be denoted as lp = [l1p, ..., l
C
p ]. Then the one-hot

Page 35 of 56

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

encoding corresponding to the ground-truth label of S can be denoted as lg = [l1g, ..., l
C
g ]. With

regard to class-balanced samples, the loss function for training the transmitter-receiver can be

expressed as

LCE= −
C∑
c=1

lcg · log
⎛
⎝ e

lcp

C∑

d=1
el

d
p

⎞
⎠ =

C∑
c=1

lcg · log
(
1 +

C∑
d=1,d �=c

el
d
p−lcp

)
. (10)

When encountering the problem that the image category labels exhibit an imbalanced or long-

tailed distribution [30], the loss function can be adjusted by introducing class prior probability

as follows

LCE= −
C∑
c=1

lcg · log
⎛
⎝ e

lcp+ρ·log p(c)

C∑

d=1
el

d
p+ρ·log p(d)

⎞
⎠ =

C∑
c=1

lcg · log
(
1 +

C∑
d=1,d �=c

(
p(d)
p(c)

)ρ
· eldp−lcp

)
, (11)

where ρ · log p(d) and ρ · log p(c) denote the label-dependent offsets of label d and c, respectively.

ρ is a positive constant with a suitable value. p(d) and p(c) denote the empirical class frequencies

of label d and c, respectively.

B. Resource Allocation Model

In this part, a novel wireless resource allocation model for TOSCN is considered. A joint

optimization problem of the semantic feature compression ratio, transmit power, and bandwidth

of each intelligent device is formulated. The proposed resource allocation scheme can be easily

expanded to different AI tasks, and the image classification task is mainly discussed in this

paper. In the NN model, the number of parameters of FC layer accounts for the majority.

Therefore, a distributed semantic communication network that deploys FC layer to the edge

server is considered to make devices affordable. Specifically, the communication process includes

the following four steps:

1) Intelligent devices sequentially perform feature extraction, semantic compression and

channel encoding for captured images based on BKB, and then generate a corresponding data

packet for each image.

2) The data packets are uploaded to the edge server.

3) The edge server perform intelligent processing and computation according to the trained

model.

4) The inference results of AI tasks are fed back to the corresponding devices for subsequent

processing.
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Fig. 3. The task-oriented semantic communication scenario in this paper.

As illustrated in Fig. 3, there are D intelligent devices and an edge server in the system

model. Consider a resource scheduling period with T time slots, every slot has a duration of L.

Each device performs a specified image classification task over a period of time, such as surface

defect classification, commodity classification, etc. Supposed that the number of task categories

is J and the number of devices to perform task j is nj , it is easy to obtain
J∑

j=1

nj = D. Each

user is equipped with a vision sensor and performs semantic feature extraction on the captured

images accordinn g to their respective processing speed. The extracted semantic features will be

temporarily stored in a buffer with a maximum capacity vmax. If the buffer is full, the device

will stop processing images until the storage is released.

After the feature extraction, semantic compression and channel encoding of an image, the

data stream actually transmitted on the channel is defined as a data packet. Without considering

semantic compression, the data packets generated by feature extraction and channel encoding

have the same size b for all users. It is a reasonable assumption since images are typically resized

to a fixed height and width before feature extraction. Denoting the i-th user corresponding to

task j as ui,j , the size of a single data packet sent by user ui,j in the t-th time slot can be written

as

b̂i,jt = (1− ηi,jt )b, (12)
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12

where ηi,jt denotes the compression ratio of user ui,j .

During the t-th slot, the transmission rate of user ui,j can be calculated by

Ri,j
t = Bi,j

t log(1 +
P i,j
t hi,j

t

σi,j
t

2 ), (13)

where Bi,j
t and P i,j

t denote the bandwidth and transmit power assigned to user ui,j , respectively.

σi,j
t

2
and hi,j

t are the power of additive white Gaussian noise and channel gain between user ui,j

and the receiver, respectively. Denoting the noise power per unit bandwidth as N0, the received

noise power from user ui,j can be expressed as

σi,j
t

2
=N0B

i,j
t . (14)

The channel gains are represented as independent random variables while considering both

large-scale fading as well as small-scale Rayleigh fading. It is supposed that the gain of each

channel remains constant within a single slot interval and varies independently from slot to slot.

In the t-th slot, the channel gain hi,j
t between user ui,j and the receiver can be described as

hi,j
t = αi,jgi,jt , (15)

where the large-scale fading part αi,j can be further expressed as

αi,j = Gi,jβi,j(di,j)
−ϕi,j

, (16)

where Gi,j denotes the pathloss constant, βi,j is the shadowing component which obeys

logarithmic normal distribution, di,j is the distance from user ui,j to the receiver, and ϕi,j is

the pathloss exponent.

The small-scale fading part gi,jt is time-varying and can be modeled as a first-order complex

Gauss-Markov process as follows

gi,jt =ρ(L)gi,jt−1+ei,jt
√

1− ρ2(L), (17)

where ρ(L)=J0(2πfdL) denotes the autocorrelation function which is dependent on the maxi-

mum Doppler frequency fd and used to measure the correlation between two successive fading

blocks. J0(.) denotes the zeroth-order Bessel function. ei,jt denotes a circularly symmetric

complex Gaussian random variable with the unit variance.

Page 38 of 56

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13

It is assumed that the intelligent devices have parallel computing and processing capabilities to

encode the packets queued in buffers and waiting to be sent in advance. For simplicity, the data

collection, data encoding, and data transmission can be roughly considered as three independent

processes [31]. Therefore, the number of data packets that user ui,j can transmit in slot t satisfies

the following equation

vi,jt =
LRi,j

t

b̂i,jt
. (18)

Considering the actual transmission scenario and the maximum buffer capacity, the actual

number of packets delivered to the base station can be denoted as

vi,jt =min

{⌊
LRi,j

t

b̂i,jt

⌋
, v̂i,jt

}
, (19)

where �.� denotes the flooring operation, and v̂i,jt is the existing quantity of packets in the buffer

belongs to user ui,j at the start of the t-th slot.

Assuming that the number of packets accumulated by user ui,j during the t-th slot is v̄i,jt , the

existing quantity of packets at the start of the (t+ 1)-th slot can be denoted as

v̂i,jt+1=min{v̂i,jt − vi,jt + v̄i,jt , vmax}. (20)

Different from traditional communication, TOSCN can prioritize data with higher contribution

in resource allocation. In the previous subsection, we introduced a method to quantify the

contribution of different semantic features. The question that arises naturally is how to make the

sender and receiver acquire prior knowledge about the impact of contribution-based semantic

compression on AI task performance. Therefore, a BKB shared by the sender and receiver needs

to be constructed to instruct resource allocation. In fact, the accuracy of image classification

at the receiver is affected by both the semantic compression ratio and channel state. Regarding

the variation of the image classification accuracy with the channel state, there is currently no

specific mathematical expression. Fortunately, modeling the physical channel as a non-trainable

fully connected layer can simulate different channel states. Drawing support from the curve

fitting method, the mathematical relationships between compression ratios and task performance

in various channel states are explored. Based on the previously collected ILFM, the effect of

the semantic compression ratio on the classification accuracy of different tasks is evaluated. For

user ui,j , the mathematical characterization between classification accuracy Ai,j
t and semantic
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compression ratio ηi,jt under a fixed channel state can be modeled as follows

Ai,j
t = αj

1(η
i,j
t )

αj
2 + αj

3, (21)

where the value range of i is [1, nj]. α
j
1, α

j
2, and αj

3 are the parameters corresponding to task

j. The mean square error of the prediction accuracy and the actual accuracy is used as the loss

function, and the Levenberg-Marquardt method is employed to minimize the loss function and

solve the three parameters.

In TOSCN, the goal of resource management should be closely related to intentions. For

intelligent tasks that take into account the quality of human experience, the raw data needs

to be reconstructed at the receiver for human viewing. This means that the probability of a

task being performed correctly is not the only factor needs to be optimized. At this point,

more communication resources must be used to improve the visibility of reconstructed data,

such as image clarity. For machine-to-machine communication, it is only necessary to consider

whether the automated task can be performed correctly and how efficiently it is performed.

By comprehensively considering the classification accuracy as well as the number of packets

successfully sent in a period, this paper uses the transmission efficiency of tasks as a metric to

verify the performance of the proposed resource allocation scheme. The transmission efficiency

of tasks is defined as the weighted sum of the number of data packets from each user and the

corresponding achievable task accuracy at the receiver. Specifically, the transmission efficiency

of tasks vt in slot t is defined as follows

vt=

J∑
j=1

nj∑
i=1

vi,jt × Ai,j
t . (22)

Obviously, the increase of the semantic compression ratio is capable of reducing data to be

transmitted, thereby decreasing the occupied bandwidth of users and the required transmission

delay. Nonetheless, the lossy compression of semantic features inevitably brings about a drop

in classification accuracy. For a decent trade-off between the quantity of data packets delivered

to the receiver and the accuracy of intelligent tasks, a maximization problem is formulated to

simultaneously optimize the compression ratio, transmit power, and bandwidth of each user

equipment (UE) according to the available wireless resources. The ultimate goal of this paper is

maximizing a long-term transmission efficiency of tasks. Based on the above assumptions, the
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corresponding optimization problem can be written as

max
Bi,j

t , P i,j
t , ηi,jt

T∑
t=1

vt (23)

s.t.

J∑
j=1

nj∑
i=1

Bi,j
t ≤ Bmax , ∀t, (23a)

J∑
j=1

nj∑
i=1

P i,j
t ≤ Pmax, ∀t, (23b)

Bi,j
t ≥ 0 , ∀i, j, t, (23c)

P i,j
t ≥ 0 , ∀i, j, t, (23d)

Ai,j
t ≥ Amin, ∀i, j, t, (23e)

where constraints (23a)-(23d) ensure that the allocated resources for bandwidth and transmitted

power are non-negative and no more than their limits. Constraint (23e) restricts the predicted

classification accuracy of each user to be no lower than Amin.

In the above problem, the loss of short-term gain may promote the whole network to achieve

higher long-term gains. Accordingly, a model-free DRL algorithm is used, which will be

discussed in next section.

III. DRL-DRIVEN RESOURCE ALLOCATION SCHEME

Due to the powerful decision-making capability, DRL has been widely applied in resource

allocation such as user association and power control in recent years. In this section, a DRL-

based dynamic resource allocation scheme for TOSCN is developed. The DDPG framework is

employed to acquire the sensible solution of the considered optimization problem.

A. The DDPG Framework

A standard DRL setup involving an agent that observes the noisy environment in discrete

time slots is considered. The DDPG agent interacts with the dynamic environment to obtain the

state, then it is input to the action network to get the bandwidth and power allocation strategy

as well as compression scheme for data sent by each user. After executing the action policy, the

agent will acquire feedback from environment and assess the value of the policy to optimize the

parameters of NNs.
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Fig. 4. The DDPG framework.

The framework of DDPG is given in Fig. 4. DDPG consists of an actor network and a critic

network as well as their respective copies, namely, target actor network and target critic network,

which get parameters from the actor or critic to soft-update its own parameters. This paper use

μ(s|ϑμ) with parameter ϑμ, μ′(s|ϑμ′
) with parameter ϑμ′

, C(s, a|ϑC) with parameter ϑC , and

C ′(s, a|ϑC′
) with parameter ϑC′

to denote the actor network, target actor network, critic network,

and target critic network, respectively. Specifically, the action network μ(s|ϑμ) selects action at

based on current state st and behavior noise Nt in each interaction, which can be expressed as

at=μ(st|ϑμ) +Nt, (24)

where Nt obeys the Gaussian distribution with mean μe and variance σ2
e . Note that the behavior

noise will only be added to the actions determined by the actor network in training stage, and it

is not needed in the inference stage and the update stage of network parameters. The introduction

of behavior noise increases the likelihood of finding better policies.

At time slot t, the agent will acquire an instant reward rt after performing at and thereafter

observing the next state st+1. The critic network is an approximator of action-value function,

which describes the expectation of total discounted future reward. Assuming that the discount

factor is denoted by β, the return reward Gt from slot t to the end of the iteration T can be
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denoted as follows

Gt = rt + βrt+1 + β2rt+2 + ...+ βT−irT =
T∑
i=t

β(t−i)rt. (25)

Therefore, the action-value function after the execution of at in state st by following the

deterministic policy μ(s|ϑμ) can be written as

C(st, at) = Er
i≥t

,si>t ,ai>t
(Gt|st, at). (26)

As in DQN, DDPG stores previous transitions as tuples (st, at, rt, st+1) in a fixed-capacity

experience replay buffer denoted by R. In the process of training the policy networks, tuples

from the replay buffer are randomly sampled to break potential associations between transitions

produced by exploration with time continuation. Denoting the target action-value of a sample is

yt, it is given by

yt = rt + βC ′(st+1, μ
′(st+1|ϑμ′

)|ϑC′
). (27)

Denoting the sampling batch size as N , the parameters of critic network ϑC are updated using

gradient backpropagation with a loss function of

L(ϑC) =
1

N

N∑
t=1

(yt − C(st, at|ϑC))
2
. (28)

The objective function Jψ is a metric of the effect of the action network μ(s|ϑμ), which can

be defined as

Jψ=Es∼ψ[C(s, μ(s|ϑμ))], (29)

where ψ denotes the state distribution function. The final objective of training the DDPG

framework is to seek an optimal action network to maximize Jψ, which can be expressed as

μ(s|ϑμ)= argmaxJψ. (30)

The update of action network can be achieved by applying the chain rule to the sampled

performance objective function as follows

∇ϑμJψ =
1

N

N∑
t=1

∇aC(s, a|ϑC)|s=st,a=μ(st|ϑμ)∇ϑμμ(s|ϑμ)|s=st . (31)
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Consequently, the process of updating ϑμ by gradient descent can be expressed as

ϑμ = ϑμ − αactor∇ϑμJψ, (32)

where αactor denotes the learning rate of action network.

Directly copying the weight parameters of eval networks to the two target networks will

lead to large fluctuations in the loss function. In order to maintain the stability of learning, the

parameters of target networks, namely, ϑμ′
and ϑC′

, are soft-updated according to the update

coefficient ε as follows

ϑμ′
= εϑμ + (1− ε)ϑμ′

, (33)

ϑC′
= εϑC + (1− ε)ϑC′

. (34)

B. The Concrete DRL Design

To train the DDPG agent, simulated physical environments with time-varying channel states,

background knowledge corresponding to target tasks, buffer occupancy and the total available

wireless resources at the base station are constructed. The concrete state, action, and reward

function are defined as below:

1) State Space: In TOSCN, the state space is jointly determined by communication environ-

ment, task assignment, and the buffer occupancy of users. The system state at slot t can be

denoted as the following tuple

st = {n1, ..., nJ , h
1
t , ..., h

D
t , v̂

1
t , ..., v̂

D
t }, (35)

where J is the number of classification task categories, and nj is the number of devices to

perform task j. n1, ..., nJ are discrete variables that depend on the task assignment. h1
t , ..., h

D
t

denote the channel gains from users to the base station at slot t. v̂1t , ..., v̂
D
t denote the queue

length of users at the beginning of current slot.

2) Action Space: The agent directly maps the current state st to an action at which includes

the compression ratio, bandwidth proportion, and power proportion of each user. Specifically,

the action at can be defined as

at = {η1t , ..., ηDt , B1
t , ..., B

D
t , P

1
t , ..., P

D
t }. (36)
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The output of actor network in DDPG is a set of continuous values. Supposing that the total

number of features of each image is F , for user u in the scenario, the number of discarded

feature maps can be calculated by 
ηut F �, where 
.� denotes the ceiling operation. Similarly, the

actually allocated bandwidth and power for user u can be obtained by �Bu
t Bmax� and �P u

t Pmax�,
where �.� denotes the flooring operation. The softmax function is applied to the output action

B1
t , ..., B

D
t and P 1

t , ..., P
D
t to satisfy the constraints (23a)-(23d).

3) Reward: The agent aims to achieve the maximum improvement in the transmission

efficiency of tasks, therefore, a higher value of objective function is expected. Without violation

of the constraint (23e), the instant reward is naturally defined as the the transmission efficiency

of tasks in current slot t. To further cut down the training overhead of the DDPG agent and

improve the performance of the proposed scheme, the agent will be punished when constraint

(23e) is not satisfied. The reward function can be expressed as

r(st, at) =

⎧⎨
⎩ vt, if Au

t ≥ Amin, ∀u,
Au

t − Amin, if Au
t < Amin, ∃u.

(37)

4) State Normalization: A long-standing problem in reinforcement learning is that the

distribution of the input data affects the output of the activation function [32]. As far as the

tanh function is concerned, an excessively large or excessively small input value will locate the

result in the saturated part of the activation function, causing the output value is infinitely close to

1 or -1. This phenomenon makes it difficult to update the parameters of NNs by gradient descent

method. The observed states are preprocessed by batch normalization to narrow the variation

range of inputs, which can more effectively utilize the sensitive part of the activation function

to non-linearize the data with different physical units. To handle the magnitude difference of

variables in the state set, two scaling factors ϕD and ϕv are introduced in the proposed algorithm

to scale down n1, ..., nJ and v̂1t , ..., v̂
D
t , which are respectively equal to the maximum values of

the corresponding variables, namely, ϕt=vmax and ϕD=D.

The detailed process of solving problem (23) is given in Algorithm 1.
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Algorithm 1 DDPG-driven Agent Training for Resource Allocation

Input:
Episode length E, step length T , discount factor β, the soft-update coefficient ε, actor

learning rate αactor, critic learning rate αcritic, the capacity of experience buffer NM , batch

size N , the mean value μe, standard deviation σe of Gaussian distributed exploration noise

N , the number of tasks categories J , total available power Pmax, total available bandwidth

Bmax, minimum classification accuracy Amin, maximum queue length for packets vmax, and

total number of UEs D.

Output:
The actor network μ(s|ϑμ) that determines resource allocation strategy.

1: Initialize the parameters ϑμ, ϑμ′
, ϑC , and ϑC′

of the four neural networks.

2: for e = 1, 2, ..., E do
3: Reset the task assignment and user distribution.

4: Normalize the initial state to obtain s1.

5: for t = 1, 2, ..., T do
6: Get a resource allocation policy with current actor network and the behavior noise N .

7: Perform action at, compute instant reward r(st, at), and observe next state.

8: Normalize next state and get st+1.

9: if the experience replay buffer does not overflow then
10: Cache tuple (st, at, rt, st+1) in the experience buffer R.

11: else
12: Randomly replace a tuple in R.

13: Randomly sample N tuples from R.

14: Get the target action-value via (27).

15: Update ϑC via minimizing the loss function in (28).

16: Update ϑμ via (31) and (32).

17: Soft-update ϑμ′
and ϑC′

via (33) and (34).

18: end if
19: end for
20: end for

IV. NUMERICAL RESULTS

In this section, numerical simulations are shown to verify the advantage of the proposed

DDPG-based dynamic resource allocation scheme for task-oriented semantic communication. A

microcell with 6 UEs and a micro base station is considered. Each UE is instructed to recognize

objects in the captured images for subsequent processing. The detailed parameters of the DDPG-

based DRL framework are listed in Table I, unless specified.
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TABLE I

SIMULATION PARAMETERS.

Parameter Name Value Parameter Name Value

The number of intelligent devices, D 6 The learning rate of actor, αactor 0.0003

The number of task types, J 3 The learning rate of critic, αcritic 0.0005

Maximum capacity of buffers, vmax 6 Soft update coefficient, ε 0.01

Minimum classification accuracy, Amin 0.6-0.8 The capacity of the replay buffer, NM 150

Initial data size, b 0.2 M Sample batch size, N 64

Total system transmit power, Pmax 0.14 -0.2 W Iteration times, E 600

Cell radius, r 100 m The step size of DDPG, K 10

Effective thermal noise power, N0 -174 dBm/Hz The mean of behavior noise, μe 0

Total system bandwidth, Bmax 2 MHz-8 MHz The standard deviation of behavior noise, σe 0.1

Length of time slot, L 200 ms Discount factor, β 0.9

Path loss 128.1+37.6log10(d) The standard deviation of shadow fading 6 dB

TABLE II

THE NEURAL NETWORK ARCHITECTURE FOR IMAGE CLASSIFICATION TASKS.

Parameter Layer Name Output Size Activation Function

Transmitter

Conv2d 112×112, 64 Relu

ResNet18 Block 1 56×56, 64 Relu

ResNet18 Block 2 28×28, 128 Relu

ResNet18 Block 3 14×14, 256 Relu

ResNet18 Block 4 7×7, 512 Relu

Channel FC Layer None None

Receiver FC Layer 10 Softmax

The neural network architecture for image classification tasks is given in Table II. The adopted

image dataset are MNIST, Fashion-MNIST, and CIFAR-10, corresponding to task 1, task 2, and

task 3, respectively. For the sake of mitigating the impact of the randomness introduced by the

physical channel, all images are transmitted 10 times.

Firstly, the robustness of the proposed semantic communication method and baseline trans-

mission methods (JPEG coding) to variations of the average channel signal-to-noise ratio (SNR)

is investigated in Fig. 5. The semantic communication model is trained with an average SNR of
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Fig. 5. Classification accuracy versus SNR, with the feature map transmission scheme using semantic encoding and compression
and the raw image transmission scheme using JPEG encoding.

13 dB and a learning rate of 10-4. Consistent with the anticipation, the classification accuracy

of all these methods shows a significant downward tendency with low SNR (about less than 5

dB). Specifically, a higher degree of compression leads to a larger performance penalty in low

SNR regime. The overall performance of the DL-driven semantic communication method is far

superior to that of traditional communication method which suffer from the “cliff effect” due to

direct transmission of raw images without semantic-level processing. Most importantly, when the

channel quality drops below 2 dB, the encoded image using JPEG can hardly complete the task,

while the proposed method still maintains a good robustness and displays a graceful degradation

of the accuracy. The reason for the stronger noise immunity of the latter is that the values in

the feature maps extracted by CNN have a sparse distribution. Similar to the conclusions in [8],

the communication mode that transmits feature maps can achieve better task performance when

the actual SNR is around the training SNR. Despite being trained at a fixed SNR, the encoded

representations of images learned by our model exhibit a good resilience to the fluctuations in

channel quality. This characteristic is of great significance for data transmission in time-varying

channels or communication using multiple receive antennas with various wireless channel states.

Before resource allocation, the curve-fitting approach is utilized to find the optimal mathe-
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matical representation of the relationship between semantic compression ratio and classification

accuracy. The fitted parameters and the MSE of each task are given in Table III, which provide

guidance for the following experiments. As the compression ratio grows, the number of feature

maps actually transmitted may not be enough for the classifier to recognize the attributes

of objects in original images. Although the task performance inevitably degrades, a suitable

compression ratio can control the size of transmitted data and maintain the satisfactory accuracy.

TABLE III

FITTING PARAMETERS.

Parameter Task 1 (j=1) Task 2 (j=2) Task 3 (j=3)

αj
1 -0.633 -0.639 -0.737

αj
2 15.408 19.136 12.474

αj
3 0.925 0.901 0.917

MSE 9.128×10−5 1.911×10−4 2.269×10−4

In order to implement a long-term resource allocation, the actor and critic learn in different

simulation scenarios based on the above parameters and strive to maximize the reward value.

To demonstrate the performance gain of the DDPG algorithm, this paper compares the proposed

scheme with the following three baseline schemes:

• Asynchronous advantage actor-critic (A3C) driven resource allocation scheme: By creating

multiple workers to interact with the environment in parallel, the learned gradients are

propagated to a global network. A3C algorithm applies the idea of parallel computing,

which improves the utilization of computing resources. Since A3C algorithm can deal

with continuous and discrete action spaces, it is widely used in communication resource

scheduling.

• The greedy transmission scheme: The goal of the greedy transmission scheme is to maximize

short-term gains, namely maximize the quantity of packets successfully received by the edge

server within a time slot. This scheme is equivalent to pursuing the maximum system sum

rate at the technical level and does not consider semantic compression. It is implemented

based on the DDPG framework, and its state space, action space and immediate rewards

are consistent with the proposed scheme. In particular, both the semantic compression ratio

of UEs and the reward discount factor are set to 0.
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• The greedy transmission scheme combined with semantic compression: Similar to the

proposed scheme, this scheme jointly optimizes the bandwidth, power and semantic

compression ratio of UEs. The purpose of this scheme is to maximize the transmission

efficiency of tasks in a slot as much as possible. It is implemented based on the DDPG

framework, and its state space, action space and immediate rewards are consistent with the

proposed scheme. In particular, the reward discount factor is set to 0.

Fig. 6 demonstrates the convergence of the proposed DDPG-driven resource allocation schemes

and the above three baseline schemes with Pmax=0.2 W, and Bmax=3 MHz. It can be seen that the

reward values of all schemes show a stable convergence trend with the increase of iterations. The

proposed scheme can obtain a larger reward, which means a better balance between the accuracy

and number of executions of classification tasks. Obviously, the proposed DDPG scheme achieves

the highest reward value and relatively fast convergence speed. Although the A3C algorithm

requires multiple pairs of actors and critics to explore the best actions, the practice of placing

actors and critics in multiple threads for synchronous training greatly reduces the training time.

However, the asynchronous learning mode does not lead to higher reward values. Both the greedy

transmission schemes with and without semantic compression seek to maximize the benefit within

a time slot, and the obtained resource allocation strategy is not optimal in the long run.
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Fig. 6. The rewards for the proposed DDPG scheme and baseline schemes.
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Fig. 7. The number of received packets with increasing
iterations.
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Fig. 8. Classification accuracy with increasing iterations.

A more specific performance of the considered four resource allocation schemes can be

observed in Fig. 7 and Fig. 8. The advantage of the proposed resource allocation scheme is further

verified from the perspectives of the quantity of packets received by the edge server and the

achievable average classification accuracy in a period. Benefiting from the semantic compression

and the intelligent decision-making capability of the DDPG algorithm, the proposed resource

allocation scheme can significantly increase the quantity of packets received by the edge server

with a reasonable loss of task accuracy. In the output action set of the A3C-based scheme, more

semantic features are preserved than the DDPG-based scheme, which leads to a reduction in the

quantity of classification tasks processed by the receiver in one period. The greedy transmission

scheme sends all the extracted semantic features, maintaining the best image classification

accuracy. However, when the wireless resources are limited, the greedy transmission scheme

may be difficult to process the classification task in a timely manner. The greedy transmission

scheme considering semantic compression reduces the size of the data packet so that the data

in the buffer of each UE in the current time slot can be sent as much as possible. However,

excessive semantic compression will lead to unsatisfactory task accuracy.

The total number of packets received by the edge server versus the maximum available

bandwidth is depicted in Fig. 9. For these schemes considering semantic compression, the

quantity of packets received by the edge server increases with more available bandwidth and

gradually converges. This is because the distinction between maximizing long-term benefits

and maximizing short-term benefits will be narrowed when the total available bandwidth is

Page 51 of 56

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26

2 3 4 5 6 7 8

Bmax (MHz)

0

20

40

60

80

100

120

140

160

180
T
h
e
 n

u
m

b
e
r 

o
f 

re
c
e
iv

e
d
 p

a
c
k
e
ts

DDPG

A3C

Greedy

Greedy+SC

Fig. 9. The number of received packets versus the
maximum bandwidth.
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Fig. 10. Task accuracy versus the maximum bandwidth.

relatively sufficient. The greedy transmission scheme sends all feature maps and treats them

indiscriminately, thus the latency cost it needs to bear is much higher than the other two schemes,

which is fatal to latency-sensitive tasks. In the case of extremely scarce bandwidth, the proposed

scheme is more competitive than the other three schemes.

The image classification accuracy achieved by the above four resource allocation schemes

with different maximum bandwidths is investigated in Fig.10. Consistent with the prediction,

the greedy transmission scheme achieves the best accuracy whether the bandwidth is relatively

sufficient or scarce. In terms of task accuracy, the DDPG-based and A3C-based resource

allocation schemes are more advantageous than the greedy transmission scheme combined with

semantic compression that pursue reward maximization within a single slot. The proposed scheme

achieves comparable classification accuracy to the A3C-based scheme. In addition, in the case

of limited bandwidth resources, the proposed scheme can transmit 10%-20% more data packets

than the A3C-based scheme.

Under the same available bandwidth Bmax=3 MHz, the quantity of data packets arriving at

the receiver achieved by the above four resource allocation schemes with different maximum

transmit power is investigated in Fig. 11. When the total transmit power is increased from 140

mW to 200 mW, the greedy transmission scheme has little improvement in the quantity of packets

received. All semantic enabled resource allocation schemes outperforms the greedy scheme that

pursue the system sum rate at the technical level. It can be observed that the practice of jointly

optimizing compression ratio, bandwidth, and transmit power is suitable for machine-to-machine
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Fig. 11. The number of received packets versus the
maximum transmit power.
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Fig. 12. Task accuracy versus the maximum transmit power.

communications with low power consumption.

Fig. 12 shows the impact of total available power on the task accuracy of the four schemes with

the maximum available bandwidth Bmax=3 MHz. The greedy transmission scheme combined with

semantic compression brings a relatively large accuracy penalty to AI tasks. Both the proposed

DDPG scheme and A3C scheme approach the upper bound of the classification accuracy in

high transmit power regions. Fig. 11 and Fig. 12 again prove that the proposed DDPG-driven

resource allocation scheme can sacrifice a reasonable task accuracy in exchange for maximizing

the transmission efficiency of tasks. It is meaningful to ensure the execution quality of AI tasks

and alleviate communication pressure in scenarios with limited wireless resources.

V. CONCLUSION

In this paper, a novel DRL-driven resource allocation scheme with the constraints of limited

wireless resource for task-oriented semantic communication network was proposed. Different

from traditional communication modes that focused on technical-level metrics, the proposed

scheme assigned corresponding priority to data based on its contribution to the correct execution

of AI tasks, and controlled the amount of data actually transmitted according to currently available

wireless resources. Moreover, a joint optimization problem of the semantic feature compression

ratio, transmit power, and bandwidth of each intelligent device was formulated to maximize

the long-term transmission efficiency of tasks. In order to quickly arrive at the optimal solution

of this problem, a DDPG agent was trained in simulated scenarios where intelligent devices
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have different task assignments to perform dynamic resource management. The experimental

results demonstrate that the proposed scheme can significantly increases the number of packets

successfully transmitted by users with a reasonable performance penalty in resource-limited

wireless networks.

Page 54 of 56

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



29

REFERENCES

[1] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for 6G: Vision, enabling technologies, and applications,”

IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 5–36, Jan. 2021.

[2] H. Joshi, S. Santra, S. J. Darak, M. K. Hanawal, and S. V. S. Santosh, “Multiplay multiarmed bandit algorithm based

sensing of noncontiguous wideband spectrum for AIoT networks,” IEEE Trans. Ind. Inf., vol. 18, no. 5, pp. 3337–3348,

May 2022.

[3] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo, “Thirty years of machine learning: The road to pareto-

optimal wireless networks,” IEEE Commun. Surv. Tutorials, vol. 22, no. 3, pp. 1472–1514, Jan. 2020.

[4] O. Runsewe and N. Samaan, “Cloud resource scaling for time-bounded and unbounded big data streaming applications,”

IEEE Trans. Cloud Comput., vol. 9, no. 2, pp. 504–517, Oct. 2021.

[5] G. Shi, Y. Xiao, Y. Li, and X. Xie, “From semantic communication to semantic-aware networking: Model, architecture,

and open problems,” IEEE Commun. Mag., vol. 59, no. 8, pp. 44–50, Aug. 2021.

[6] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Trans. Signal

Process., vol. 69, pp. 2663–2675, Apr. 2021.

[7] Z. Weng and Z. Qin, “Semantic communication systems for speech transmission,” IEEE J. Sel. Areas Commun., vol. 39,

no. 8, pp. 2434–2444, Aug. 2021.
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