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Abstract—This paper studies the unmanned aerial vehicle
(UAV) based multiple intelligent reflecting surface (IRS) network,
where the hovering UAV acts as a base station, and the IRS
enhances signal transmission to across obstacle between users
and UAV. To achieve the maximum sum rate of proposed
communication scenario, a non-convex problem considering IRS
association results, hovering altitude of UAV, and the phase
shift design of multi-IRS is formulated. From the IRS asso-
ciation problem, we can find that the IRS association results
are coupled to the decoding order of non-orthogonal multiple
access (NOMA). To tackle this, a mathematical interference
expansion scheme is developed to decouple it and transform it
to convex by binary relaxation method. The non-convexity of
hovering altitude optimization problem is solved by logarithm
operation, approximation, and auxiliary matrices. For the phase
shift optimization problem of multi-IRS, we propose a gradient
approximation based initial scheme and develop a univariate
optimization based approach on the basis to achieve the users
sum rate improvement in multi-IRS. In the end, we compare the
proposed scheme with baseline scheme to present the superiority
of this work under various network settings. The internal reasons
for the variation of simulation results are also analyzed.

Index Terms—Multi-IRS, sum rate maximization, UAV, IRS
association, hovering altitude, phase shift.

I. INTRODUCTION

The intelligent reflecting surface (IRS) has been selected as
a potential communication medium that can improve the radio
propagation environment intelligently in recent years [1]–[5].
IRS is composed of a set of intelligent reflecting elements,
and every reflecting element could improve the quality of
the initial received signal singly, generally including: phase,
frequency, and amplitude [6]. The current research on IRS
mainly considers the phase shift for performance improvement
of the transmit signal, so the IRS needs no extra transmission
power, which is energy efficient and different from other
technologies. As for the IRS deployment, it is usually fixed on
the outward wall of mansions, mobile vehicles, and ceilings
to help the information transmission for transmitters and
receivers in the base station (BS) scenarios. Additionally, the
integrated utilization of IRS and other network technologies
can give full play to its effectiveness, such as unmanned aerial
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vehicle (UAV) [7], non-orthogonal multiple access (NOMA)
technology [8], multiple-input and multiple-output [9], [10],
etc.

A. Related Works and Motivation
Initially, the researchers proposed to deploy a single IRS to

improve the wireless propagation environment in special areas.
For example, in [11], the authors designed a single-IRS based
multi-user network, where the problem of active BS precoding
and IRS reflecting coefficient for the goal of minimum mean
square error was solved. In [12], the authors investigated the
deployment scenarios both in indoor and outdoor environment,
and revealed the performance gain improved by deployed
IRS. In [13], the IRS was integrated to the study of multi-
direction beamforming, and the authors proposed a successive
signal detection method to optimize the data amount yielded
from systems. In [14], the authors focused on the tradeoff
between network capacity and consumed power by users in
IRS networks, where the reflecting units in IRS was solved
and added into the joint optimization design. The performance
of self-sustainable IRS was studied and unveiled in [15]. In
[16], the authors combined the index modulation with IRS
networks and proposed a spatial modulation scheme for data
rate optimization. In [17], a single IRS was designed to
enhance the communication of ultra-reliable and low-latency
based industrial automation with energy harvesting. While in
[18], the IRS was specially deployed on a UAV. The authors
of it studied the UAV height and the number of elements
optimization problem with mobile IRS. Also in the UAV based
scenario, the authors in [19] studied the composite channel
gain problem considering the wave interference under Rician
fading environment. The proximal policy optimization was
investigated to solve the beamforming design in [20] with
ergodic constraints. Similarly, the same question was studied
by [21], where the work focused on the ratio of data bits to
capacity with the given setting bound in the absence of direct
network link. The IRS was used to enhance the transmission
at the common edge of two cellular BSs in [22], where
the formulated problem considered the optimization of both
resource and phase shift limited to the required service.

However, the research of single IRS cannot achieve the
ultimate performance of the network. The development of
multi-IRS deserves more attention for the large-capacity re-
quirements of the future network. In [23], the authors studied
the coverage probability in the double-IRS based communica-
tion system and optimized the reflecting beamforming for the
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maximum coverage probability. In [24], the authors studied
the statistical characterization and network model in multi-
IRS networks, where two purpose oriented solutions were
developed to show the ergodic network capacity and outage
probability performance. In [25], the authors designed a multi-
IRS network model to serve remote users, while the nearby
users still communicated directly through the BS. The same
design about remote and nearby users of BS can also be
found in the [26], but the authors of this paper focused on
NOMA design and highlighted the performance improvement
brought by it based on the signal-to-interference-plus-noise
(SINR) interfered by IRS. The degrees of freedom region
based on IRSs was investigated in [27], where the authors
revealed the influence mechanism of the elements number on
the network. A cooperative multi-RIS based wireless network
was studied in [28], where the closed-form expression of
IRS reflecting coefficient optimization was given according to
delay matching based method. However, the optimization for
lots of elements can be burdensome for online transmission
in IRS, so the authors in [29] studied the offline design
and online optimization based scalable model. The physical
layer security was introduced to IRSs in [30], where the
authors designed a multi-IRS enhanced secure communication
network. To maximize the capacity of line of sight (LoS)
channel empowered multi-IRS network, the authors in [31]
proposed a novel IRS beamforming solution. While in [32],
the authors considered the statistical characterization of ground
users for sum rate optimization. In [33], the authors studied
the deterministic propagation model based signal behaviors
and power scaling for IRSs. The authors also revealed that
the performance of IRS network was improved faster, while
the upper boundary was also limited. In [34], the authors
constructed the weighted rate optimization model for total
equipments considering unit modulus limits in the multi-IRS
network and developed two valid schemes to design it.

Following the technological advancements of UAV networks
[35], the combination of IRS and UAV is not too tough to
achieve. This combination has also received a certain degree
of attention because of the flexible communication. Generally,
this combination is divided into airborne IRS scheme [18],
[19], [36]–[38] and fixed IRS scheme [39]–[43]. In [18], the
authors not only studied the problems previously discussed,
but also divided the network into three settings with and
without IRS to compare the efficacy in different settings.
The optimal design in UAV-IRS setting was also displayed
at last. In [19], the authors considered the wave interference
of reflecting elements in airborne IRS, where the mathematical
boundary for channel gain was derived through approximation
assisted transformation of Gaussian distribution. In [36], the
authors studied the phase error model with von Mises distribu-
tion and tried to use the designed model to present the air to air
channel in mobile IRS networks. In [37], the authors simulated
and analyzed the performance for UAV carried IRS systems,
and the results presented the capacity improvement compared
to the conventional UAV networks. In [38], the expected sum
age-of-information was studied in UAV based IRS networks,
where the altitude of UAV based IRS was optimized by
proximal policy optimization based learning approach. In [39],

the average achievable rate was maximized by the designed
trajectory and beamforming solution. In [40], the reinforce-
ment learning empowered trajectory design problem in the
case of IRS enhanced UAV communications was researched,
and the authors gave the reflecting coefficient optimization
results through the iterative minimization method. In [41], the
authors not only considered the trajectory optimization of the
UAV, but also focused on the IRS scheduling problem. More-
over, the authors designed two different goals and schemes
to present results. In [42], the authors developed a parametric
approximation based successive convex approximation (SCA)
method to complete the iterative design in IRS-assisted UAV
model and revealed that the change of UAV trajectory was
limited by IRS’s size. The benefits of maneuvering of UAV
to network performance were also highlighted in [42]. The
secure UAV communication with IRS was considered in [43],
where the authors proposed a three-stage process to protect
signals to the legitimate user. In [44], the energy harvesting
was considered in UAV based IRS networks with the power
of sensitivity value, where two IRS empowered channel states
were presented to select based on the selection possibility of
it. In [45], the authors used the machine learning approach
to handle the UAV movement and network beamforming in
UAV based IRSs networks, where the utilization of IRS can
significantly reduce the energy consumption of conventional
UAV networks.

These researches presented models and mechanisms of UAV
based IRS symbiotic wireless networks, but we can find that
the authors focused on the problem of horizontal movement of
UAV in the common context of IRS phase shift optimization.
However, in some practical scenarios such as emergency
rescue and other energy limited networks, the horizontal
movement is often impractical because it consumes the limited
energy of the UAV with the limited payload [46]. At the same
time, the problem of studying the hovering altitude of UAV
in line with the actual needs has not been studied under the
setting of the fixed multi-IRS. Therefore, this work considers a
hovering UAV based network that there are obstacles blocking
communication to enrich the work of UAV-IRS. Based on
this setting we utilize the multi-IRS to enhance the signal for
guaranteeing the service of ground users. Besides, in order to
improve downlink capacity and alleviate the scarcity of limited
spectrum resources, we propose a NOMA-empowered IRS
downlink design. Note that NOMA has been studied with IRS
enhanced networks in [14], [45], but the performance of this
combination in the UAV environment is still worthy of study.
The effects of the channel environment, location deployment,
and association of IRSs in UAV networks on the NOMA-
empowered multi-IRSs are also an appealing study. Moreover,
these researches mainly optimized the energy efficiency and
minimum power consumption with a single IRS, the sum
rate optimization in the network is still attractive for NOMA-
empowered multi-IRS networks. Therefore, in this work we
aim at maximizing the total sum rate of NOMA-empowered
multi-IRS networks by solving the IRS association, hovering
altitude of UAV, and phase shift design problems, while
considering the coupling between IRS association results and
successive interference cancellation (SIC) decoding order of
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NOMA. During the solution to solve subproblems, the mathe-
matical interference expansion, approximated transformation,
and gradient approximation (GA) method are developed to
reduce complexity.

B. Contributions

The following points are the main contributions:
• We first design a hovering UAV based multi-IRS network

model considering the network characteristics of both IRS
and UAV. Then, the problem is modeled as a non-convex
optimization problem which maximizes sum rate of total
NOMA empowered users with the limit of maximum
association matrices, hovering altitude, and reflection
angles of elements. To effectively settle this issue, we
split it into a three-stage based optimization process,
which consists of IRS association, hovering altitude of
UAV, and phase shift design in multi-IRS networks.

• To solve the IRS association problem, the binary asso-
ciation coefficient is relaxed. An interference expansion
scheme is developed to handle the decoupling of IRS
association results and SIC decoding order of NOMA.
Then, we use mathematical transformations and auxiliary
matrices to resolve the non-convexity of the hovering de-
ployment problem of the UAV. The phase shift design of
multi-IRS is a typical multivariate optimization problem,
and a univariate search scheme based on GA method is
proposed to simplify the solving process.

• In the end, a three-stage joint optimization process is
presented, and we discuss the complexity brought by
the proposed solution. Numerical results indicates that
the IRS association results obtained by relaxation and
interference expansion scheme are binary, so the integer
restoration is not required after the initial relaxation.
At the same time, we compare the convergence of the
algorithm under different conditions, as well as making
comparisons among results generated by proposed algo-
rithm and baseline scheme to verify the superiority of the
work.

C. Paper Organization

The structure of this paper is divided into five main parts.
In addition to the introduction and motivational elaboration
in Section I above, Section II formulates the main problem
of the paper. Section III describes the solving process of
the formulated problem. Section IV lists and analyzes the
simulation results. Section V summarizes the whole work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The UAV-based multi-IRS networks are considered in Fig.
1, where users are served by the BS based UAV via coexisting
IRS. The UAV is equipped with a single antenna, and the
location can be denoted by

r = [rx, ry, rz]
T , (1)
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Fig. 1. Proposed UAV-based multi-IRS network with NOMA.

where the horizontal locations keep constant. The hovering
altitude rz is modeled to satisfy rz ∈

[
rmin
z , rmax

z

]
. rmax

z

and rmin
z denote the extreme range of movement of hovering

altitude that UAV can reach in this scene. The number of
ground users is denoted by N , and the location of user n can
be expressed as un = [ux

n, u
y
n, 0]

T . Considering the obstacles
between ground users and the UAV, M IRSs are deployed
at suitable locations to associate users. The channel state
information (CSI) is set to be known by the network [39],
[43]. The location of m-th IRS is denoted by

wm = [wx
m, wy

m, wz
m]T . (2)

There are a total of K reflecting elements on each IRS, and
the matrix of reflection coefficient of IRS m is denoted by

Θm = diag
(
ejθm,1 , · · ·, ejθm,k , · · ·, ejθm,K

)
, (3)

where θm,k means the reflecting coefficient of k-th reflecting
element on IRS m, and θm,k ∈ [0, 2π].

Let gm ∈ CK×1 represent the channel response vector
between hovering UAV and IRS m. Assumed gm utilize the
Rician model [41] and can be denoted by

gm =

√
α0(dm)

−2

(√
Rm

Rm + 1
gLoS
m +

√
1

Rm + 1
gNLoS
m

)
,

(4)
where α0 represents the standard channel power when the
propagation distance is 1m. dm is the distance between the
UAV and the IRS m, and it can be denoted by

dm =

√
∥r−wm∥2, (5)

Rm represents the Rician coefficient, and gNLoS
m is the small

scale fading which follows the complex Gaussian distribution
with zero mean and variance 1. gLoS

m is denoted by

gLoS
m = e−j 2πdm

w ×
[
1, e−j 2πd

w cos ρm , · · ·, e−j
2πd(K−1)

w cos ρm

]
,

(6)
where d and w denote the element spacing of IRS and
wavelength of carrier, respectively. ρm denotes the angle of
arrival (AoA). Similarly, let gm,n ∈ CK×1 represent the
channel response vector between the IRS m and ground user
n. gm,n ∈ CK×1 can be denoted by

gm,n=

√
α0(dm,n)

−2

(√
Rm,n

Rm,n+1
gLoS
m,n+

√
1

Rm,n+1
gNLoS
m,n

)
,

(7)
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where Rm,n represents the Rician coefficient, gNLoS
m,n means

the small scale fading which follows the same mathematical
distribution as gNLoS

m . gLoS
m,n is denoted by

gLoS
m,n=e−j

2πdm,n
w ×

[
1, e−j 2πd

w cos ρm,n ,· · ·, e−j
2πd(K−1)

w cos ρm,n

]
.

(8)
Let dm,n and ρm,n denote the distance and angle of departure,
and we have

dm,n =

√
∥wm − un∥2, and (9)

cos ρm,n =
ux
n − wx

m

dm,n
. (10)

Let vm,n= {ϖm,n, ∀m,n}, where vm,n denotes association
matrix containing association coefficient ϖm,n, and ϖm,n = 1
if IRS m is associated with user n, ϖm,n = 0, otherwise. To
stimulate the deployment effect of multi-IRS, we restrict the
number of users that can be associated with the same IRS and
can get

N∑
n=1

ϖm,n ≤ ϑ,∀m. (11)

Note that the existence of multi-IRSs provides a variety of
options for users. It is more reasonable that the numerical
size of ϑ should not be limited, because an IRS may fail
to associate any users. That means that all users may be
associated with the same IRS. Meanwhile, one user should
be associated with one IRS, thus we can get

M∑
m=1

ϖm,n = 1, ∀n. (12)

Specifically, each IRS uses the same subchannel, and
NOMA is used to improve spectral efficiency from IRS to
user. The SIC is employed at the user equipment to reduce
interference by NOMA. Based on the decoding order from the
channel condition, users which have the poorer channel state
receive the interference from stronger one. Let Nm,n denote
the user set that can generate the interference to user n of IRS
m obtained by the above channel condition based judgment
rules, then the SINR and sum rate of ground user n served by
IRS m is

SINRm,n =
pm,n

(
gT
mΘmgm,n

)2∑
n′∈Nm,n

pm,n′(gT
mΘmgm,n)

2
+ σ2

, and (13)

γm,n=ϖm,nlog2

1+ pm,n

(
gT
mΘmgm,n

)2∑
n′∈Nm,n

pm,n′(gT
mΘmgm,n)

2
+σ2

 ,

(14)
where

∑
n′∈Nm,n

pm,n′
(
gT
mΘmgm,n

)2
represents the received

interference from user n′ by NOMA, pm,n and σ2 denote the
transmit power and noise power, respectively.

B. Problem Formulation

The goal of this work is to maximize the sum rate of the
proposed UAV based multi-IRS NOMA network. Then the
sum rate can be optimized by solving

max
vm,n,rz,Θm

M∑
m=1

N∑
n=1

γm,n

s.t. C1 : ϖm,n ∈ [0, 1] , ∀m,n,

C2 :
N∑

n=1
ϖm,n ≤ ϑ,∀m,

C3 :
M∑

m=1
ϖm,n = 1, ∀n,

C4 : rz ∈
[
rmin
z , rmax

z

]
,

C5 : 0 ≤ θm,k ≤ 2π, ∀m, k.

(15)

Problem (15) can be solved by optimizing IRS association
matrix vm,n, UAV hovering altitude rz , and IRS reflection
matrix Θm. However, solving this problem directly has exces-
sive complexity considering following some reasons. Firstly,
the IRS association coefficient ϖm,n is a binary variable and it
determines the decoding order and interference to other users
by NOMA in equation (14), which resulting in the coupling of
IRS association and SIC decoding order. Second, the problem
fundamentally shows non-convexity with respect to (w.r.t.) the
UAV hovering altitude and reflecting coefficient matrices.

III. MULTI-STAGE BASED SOLUTION TO PROBLEM (15)

Deploy the UAV in the target area with a 

fixed horizontal location

Hovering 

altitude
Phase shift

IRS associationn

Three stage based joint process

Two stage based 

joint processjo pr

Fig. 2. The proposed multi-stage based optimization process.

In this section, problem (15) is divided into a three-stage
based process to solve as shown in Fig. 2. First, the network
will determine which user’s signal will be enhanced by every
IRS according to the IRS association results, when the UAV is
deployed in a special scenario where the direct communication
is difficult. Then, according to the assigned association results,
we return to optimize the hovering altitude of UAV. Finally we
optimize the design of multi-IRS utilizing the results-improved
two solutions. Note that a two-stage based joint optimization
process consisting of hovering altitude and phase shift is also
developed to show the performance at last.
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A. IRS Association

Substituting the known UAV altitude rz and IRS reflection
matrix Θm into the equation (14), we can get the problem of
the association matrix as follows:

max
vm,n

M∑
m=1

N∑
n=1

γm,n

s.t. C1− C3.

(16)

C1 represents the binary of the association coefficient, C2
represents the maximum association number of users for an
IRS, and C3 represents that each user should be associated
and served by an IRS.
Restricted by the binary constraint C1, it is not effective to
directly solve problem (16). Relaxing ϖm,n as a continuous
variable, and we can get

0 ≤ ϖm,n ≤ 1,∀m,n. (17)

Thus, the initial problem (16) can be converted to

max
vm,n

M∑
m=1

N∑
n=1

γm,n

s.t. C2, C3, (17).

(18)

Note that IRS association results and SIC decoding order
of NOMA are coupled, so the above problem cannot also be
effectively solved considering the interference from NOMA
to the co-IRS users. To efficiently handle it, an interference
expansion scheme is developed below.

The original data rate of user n is γm,n in equation (14),
however let the user not be affected by the SIC decoding
order when processing to the interference from NOMA, which
means user with the poorest channel condition receives the
interference from total users of all IRSs, we can rewrite γm,n

as

γex
m,n=ϖm,nlog2

1+ pm,n

(
gT
mΘmgm,n

)2∑
n′∈N/n

pm,n′(gT
mΘmgm,n)

2
+σ2

 ,

(19)
where we can see∑
n′∈N/n

pm,n′
(
gT
mΘmgm,n

)2 ≥
∑

n′∈Nm,n

pm,n′
(
gT
mΘmgm,n

)2
,

(20)
and

M∑
m=1

N∑
n=1

γex
m,n ≤

M∑
m=1

N∑
n=1

γm,n. (21)

Therefore, the problem (18) can be represented by

max
vm,n

M∑
m=1

N∑
n=1

γex
m,n

s.t. C2, C3, (17).

(22)

Problem (22) is convex, and this paper uses CVX to solve it.
Even if we scale the original problem in mathematical space,
the optimal solution of the current (22) also satisfies problem
(16) as a suboptimal solution. The detailed interference expan-
sion scheme is shown in the following. Note that even though

the IRS association coefficient ϖm,n is relaxed to a continuous
variable, the optimized results of (22) are still binary variables
of 0 and 1, not a decimal. Therefore, there is no need to add
another loop to the outer layer of algorithm 1 to improve the
quality of the solution, iteratively.

Algorithm 1 Interference expansion scheme for IRS associa-
tion

1: Initialize the hovering altitude rz of UAV and IRS reflect-
ing coefficient matrix Θm.

2: Get SIC decoding order based on the interference expan-
sion scheme v0

m,n.
3: Get the IRS association matrix vm,n via CVX by solving

max
vm,n

M∑
m=1

N∑
n=1

[
ϖm,nlog2

(
1+

pm,n(gT
mΘmgm,n)

2∑
n′∈N/n

pm,n′ (gT
mΘmgm,n)

2+σ2

)]
s.t. C2, C3, (17).

4: Update vm,n.
5: Update γm,n.

B. UAV Hovering Altitude

As for the hovering altitude of UAV, the problem (15) can
be transformed to

max
rz

M∑
m=1

N∑
n=1

γm,n

s.t. C4.
(23)

To solve it, we can rewrite the objective as

γm,n = log2

( ∑
n∈Nm

pm,n

(
gT
mΘmgm,n

)2
+ σ2

)

−log2

( ∑
n′∈Nm,n

pm,n′
(
gT
mΘmgm,n

)2
+ σ2

)

=log2

(
α0

d2h+(rz−wz
m)

2

∑
n∈Nm

pm,n

(
g′T

mΘmgm,n

)2
+σ2

)
︸ ︷︷ ︸

γ′
m,n

−log2

 α0

d2h+(rz−wz
m)

2

∑
n′∈Nm,n

pm,n′

(
g′T

mΘmgm,n

)2
+σ2


︸ ︷︷ ︸

γ′′
m,n

,

(24)
where

d2m = (rx − wx
m)

2
+ (ry − wy

m)
2
, (25)

gT
m = g′T

m

(
α0

d2h + (rz − wz
m)

2

)
, and (26)

g′
m =

√
Rm

Rm + 1
gLoS
m +

√
1

Rm + 1
gNLoS
m . (27)

According to the convex optimization theory, the boundary of
γ′
m,n could be derived with it’s first order Taylor expansion

w.r.t. (rz − wz
m)

2, since the former is convex w.r.t. the latter.
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ε = ι0

 2
∑

n∈Nm

pm,n

∣∣gT
mΘmgm,n

∣∣gmgT
m,n

ln 2
∑

n∈Nm

pm,n(gT
mΘmgm,n)

2
+ σ2

−
2

∑
n′∈Nm,n

pm,n′
∣∣gT

mΘmgm,n

∣∣gmgT
m,n

ln 2
∑

n′∈Nm,n

pm,n′(gT
mΘmgm,n)

2
+ σ2

 (35)

The AoA in g′
m uses the value in the last iteration to make

it easier to solve. Then, γ′
m,n can be replaced as follows,

γ′
m,n≥ log2

(
α0

d2
h+(r

t
z−wz

m)2

∑
n∈Nm

pm,n

(
g′T

mΘmgm,n

)2
+σ2

)

−
(
(rz−wz

m)2−(rtz−wz
m)

2
)

ln 2(d2
h+(rtz−wz

m)2)
2(

α0

∑
n∈Nm

pm,n(g′T
mΘmgm,n)

2

α0

d2
h
+(rtz−wz

m)2
∑

n∈Nm

pm,n(g′T
mΘmgm,n)

2
+σ2

)
= γ′new

m,n.

(28)
where rtz denotes the hovering altitude of t-th iteration. Next
we introduce an auxiliary variable matrix µ containing vari-
ables µm, and let

(rz − wz
m)

2 ≥ µm,∀m. (29)

Based on this transformation, γ′′
m,n could be rewritten as

γ′′
m,n ≤ γ′′new

m,n

=log2

(
α0

d2
h+µm

∑
n′∈Nm,n

pm,n′

(
g′T

mΘmgm,n

)2
+ σ2

)
.

(30)
Thus, problem (23) can be transformed to

max
rz,µm

M∑
m=1

N∑
n=1

(
γ′new

m,n − γ′′new
m,n

)
s.t. C4, (29).

(31)

Note that constraint (29) appears to be concave w.r.t. rz , thus
it is transformed by it’s Taylor expansion. And, we can have

µm ≤
(
rtz − wz

m

)2
+ 2

(
rtz − wz

m

) (
rz − rtz

)
,∀m. (32)

The hovering altitude optimization problem is finally denoted
by the following convex form:

max
rz,µm

M∑
m=1

N∑
n=1

(
γ′new

m,n − γ′′new
m,n

)
s.t. C4, (32).

(33)

The following algorithm 2 gives the complete solution flow.
Note that adding an iterative loop to the solution process can
improve the quality of the final results.

Algorithm 2 SCA based scheme for hovering altitude opti-
mization

1: Initialize the IRS association matrix vm,n and IRS reflect-
ing coefficient matrix Θm.

2: Initialize a hovering altitude solution roz , the number of
iteration t = 0, and tolerance ξ.

3: repeat
4: Get the hovering altitude solution rz by solving

max
rz,µm

M∑
m=1

N∑
n=1

(
γ′new

m,n − γ′′new
m,n

)
s.t. C4, (32).

5: t = t+ 1.
6: rtz = rz .
7: until

∣∣rtz − rt−1
z

∣∣ ≤ ξ.

C. Phase Shift Design

After solving the above two problems, the phase shift design
problem of multi-IRS is eventually represented by

max
Θm

M∑
m=1

N∑
n=1

γm,n

s.t. C5.

(34)

Considering the complexity of multiple reflection coefficient
matrices, a gradient approximation based univariate optimiza-
tion (GAUO) solution [47] is utilized in this sub-section
to handle the above multivariate optimization problem. This
solution consists of two steps to achieve the transformation of
it.

Step 1: Let γm,n (θm) denote the sum rate of user n served
by IRS m w.r.t. the reflection coefficient matrix θm, where
θm = [θm,1, θm,2, · · ·, θm,k, · · ·, θm,K ]. Since γm,n (θm) is
relatively complicated w.r.t. θm, we can approximate the
gradient of it via matrix derivation and denote it by (35),
where

ι0 =

1, 1, · · ·, 1, 1︸ ︷︷ ︸
K

T

(36)

denotes the auxiliary vector to satisfy the matrix dimension
requirement of δ. Based on the approximated gradient, we
can have an improved initial scheme with the metric of the
objective through solving

δ = argmax
δ

M∑
m=1

N∑
n=1

γm,n

(
θ0
m + εδ

)
, (37)

where δ denotes the step coefficient, θ0
m denotes the initial

scheme, and
(
θ0
m + εδ

)
denotes the improved initial scheme.

This scheme is a typical univariate problem and can be solved
by Fibonacci section.
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Step 2: Let ∆k denote k-th column of matrix ∆, where

∆ = diag

1, 1, · · ·, 1, 1︸ ︷︷ ︸
K

 . (38)

The univariate problem for optimizing the k-th reflection
element coefficient of IRS m can be denoted by

ζm,k = argmax
ζm,k

M∑
m=1

N∑
n=1

γm,n

(
θj
m +∆kζm,k

)
. (39)

ζm,k is the factor coefficient of k-th reflection element of IRS
m, and θj

m denotes the results of j-th iteration.

Algorithm 3 GAUO solution for phase shift design
1: Initialize the IRS association matrix Θm and hovering

altitude rz of UAV.
2: Initialize the reflection coefficient matrix θm, ∆, σ, and

j = 1.
3: Step 1
4: Get improved initial scheme by solving problem (37).
5: θ1

m = θ0
m + εδ.

6: Step 2
7: for m = 1 to M do
8: repeat
9: for k = 1 to K do

10: Get ζm,k for given θj
m by solving (39).

11: θj
m = θj

m +∆kζm,k.
12: end for
13: j = j + 1.
14: until

∣∣θj
m − θj−1

m

∣∣ ≤ σ.
15: end for

D. Overall Design and Analysis

A three-stage based joint optimization scheme can be devel-
oped in algorithm 4 to enhance the quality of overall solutions
while improving some complexity. In particular, when M
equals to 1, the algorithm evolves into a two-stage joint
optimization process. According to the complexity of interior
point method, the mathematical complexity in algorithm 1
is calculated by X1M

3.5, where X1 denotes the number of
iteration. And the complexity of algorithm 2 is X2 log

(
1
ξ

)
,

where X2 is the number of iteration in algorithm 2. The
complexity of algorithm 3 can be denoted by MX3KX4,
where X3 denotes the number of outer iteration, and X4

denotes the process of Fibonacci section in step 10. Eventually,
the complexity of the proposed joint process is ν

O

X

X1M
3.5︸ ︷︷ ︸

Stage 1

+X2 log (1/ξ)︸ ︷︷ ︸
Stage 2

+MX3KX4︸ ︷︷ ︸
Stage 3


 , (40)

where X denotes the number of iteration in the outer loop.

Algorithm 4 Three stage based joint optimization process

1: Initialize the IRS association matrix Θ0 and hovering
altitude r0z of UAV.

2: Initialize τ = 0 and tolerance η.
3: repeat
4: τ = τ + 1.
5: Optimize and get vτ

m,n by algorithm 1 based on the
known rτ−1

z and Θτ−1.
6: Optimize and get rτz by algorithm 2 based on the known

vτ
m,n and Θτ−1.

7: Optimize and get Θτ by algorithm 3 based on the
known rτz and vτ

m,n.
8: Update the objective fτ

obj based on vτ
m,n, rτz , and Θτ .

9: until
∣∣∣fτ

obj − fτ−1
obj

∣∣∣ ≤ η.

IV. NUMERICAL RESULTS

To demonstrate and verify the rationality of designed
scheme in this work, we list some main simulation results
in this section. The noise is −174 dBm/Hz [48]. The initial
location of UAV is [0, 0, rz]

T , where rz is 120, 150, or 180
in different scenarios. The number of IRS is set to be 2.
The locations of IRSs are [100, 100, 55]

T and [80, 80, 65]
T .

10 users are randomly distributed within a reasonable range
to receive signals from IRSs, and the maximum number ϑ
of users in an IRS is 6. α0 is set to be 10−3, Rm = 1,
Rm,n = 1, and d

w = 0.5.The initial association scheme
v0
m,n= {ϖm,n = 1, ∀m,n}. The transmit power of each user

is fixed on 0.01 Watt, and each IRS uses a subchannel with
the bandwidth 106 Hz.

Fig. 3 gives the convergence performance in proposed
solution. In Fig. 3(a), there are total 1 IRS, and the IRS is
set to associate all users. The two-stage process consists of the
hovering altitude of UAV and IRS reflecting coefficient matrix.
Fig. 3(b) and Fig. 3(c) depict the convergence of the scheme
with 2 IRSs, while the IRS association matrix stays unchanged
in Fig. 3(b), and Fig. 3(c) shows the convergence of algorithm
4, as well as the small gap between the proposed algorithm and
the optimal scheme obtained by exhaustive search approach.
From these three figures, results indicate that the proposed
algorithm could converge with a lower number of iteration.

The network deployment is shown in Fig. 4, where the
optimized location of UAV is [0, 0, 64.7255] in Fig. 4(a) and
[0, 0, 61.3625] in Fig. 4(b), represented by a square. The
locations of multi-IRSs are [80, 80, 65], [100, 100, 56], and
[120, 120, 50]. Fig. 4 also shows the IRS-user association
results optimized by proposed interference expansion based
algorithm 1, and we can see in Fig. 4(a) that IRS 1 is
associated with 4 users, while IRS 2 is associated with the
remaining six users. The IRS association coefficient results
obtained by algorithm 1 are still binary variables, so the
method of rounding is not used to restore the binary variable
even after relaxation. When the number of IRS increases, some
users will be associated with a more suitable IRS limited
to the maximum number associated with one IRS or the
network performance, and the altitude of the UAV will change
accordingly. In the scenarios, it is assumed that there is an
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Fig. 3. The convergence comparison.
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Fig. 4. The network deployment and IRS-user association results.

obstacle that hinders communication between users and the
UAV, so there is no direct link between these two. Based
on this assuming, the locations of users are relatively far
from this UAV, and IRSs are deployed at a high position
between users and UAV to facilitate communication. Note that
it is also assumed that the reflected signal of IRSs can be
perfectly passed to users, so the user does not have the case
of detachment of the IRS reflection area.
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Fig. 5. The optimized hovering altitude of UAV.
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Fig. 6. The sum rate of networks under different initial altitude.

Fig. 5 shows the hovering altitude changes of the UAV after
optimization using the proposed algorithm 2 at different initial
hovering altitudes. It can be seen that three curves converge to
the optimal solution with 5 to 7 iterations. The corresponding
network sum rate changes are shown in Fig. 6. The final sum
rate does not converge to the same value because the small-
scale fading is different for different initial hovering altitude.

The performance of the solved multi-IRS design is dis-
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Fig. 7. The sum rate versus the optimization of k-th reflecting element in
multi-IRS networks.

played in Fig. 7. The abscissa indicates the number of elements
which are now optimized. The different schemes in the figure
represent different initial reflection coefficient results. It can be
seen that the entire optimization result is a non-decreasing pro-
cess, because the proposed scheme is a univariate optimization
problem. As the optimization elements increase, the value of
the objective function will definitely be equal or higher. Very
few values of two adjacent points are the same because the
optimization effect of the second point is the same as the initial
result of this point, and the corresponding ζm,k is equal to 0, so
it will not change. There is a gap between different schemes,
even if the gap is not large, which means that the proposed
algorithm has lost the optimality to a certain extent. However,
this can be improved by adding a loop to the outermost layer
of the phase shift optimization algorithm.

The results variation of sum rate with different amount of
reflecting elements are displayed in Fig. 8. Baseline scheme in
this figure represents the existing simplified univariate search
method. From the analysis of results, the sum rate of these
two IRSs under different schemes shows incremental changes
following the replenishment of reflecting elements in multi-
IRS, because the increase in the number of elements also
produces higher channel gain. At the same time, the pro-
posed optimization algorithm performs better than the baseline
scheme because the initial value of the proposed algorithm
is better. The fixed scheme of IRS 1 is put at the end for
comparison. Note that the obtained sum rate at this time tends
to be obviously higher than the results in previous figures as
the number of elements in IRS in the simulation here is larger
than before.

We also set up different number of served users to test
results obtained by designed multi-IRS scheme in Fig. 9 and
Fig. 10. When m = 1, the only IRS still has to perform
association optimization, instead of directly associating all
users. The numerical size of ϑ exceeds all users when there
are 4 or 5 users, so the optimized association results show
that the IRS is associated with all users actually. Intuitively,
the relationship between the number of users in the multi-
IRS network and optimized sum rate is a linearly increasing
process in Fig. 9. This is because the number of users
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Fig. 8. The sum rate versus the number of reflection elements in multi-IRS
networks.
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Fig. 9. The sum rate versus the number of users with different number of
IRS.

served by network also increases, so it can choose users
with better gains to serve when we add more users to the
simulation scenario. The sum rate in proposed scheme is
slightly higher than that in the baseline scheme, and the
accumulated advantage still exists when the number of IRS
also increases. The proposed algorithm was compared with
the scheme without any optimization in Fig. 10, where we can
find the performance improvement by the proposed algorithm.

V. CONCLUSION

In this paper, we designed a hovering UAV based multi-
IRS NOMA network to achieve communication across ground
obstacles. A three-stage joint optimization process involving
IRS association, hovering altitude, and phase shift design in
multi-IRS was designed to maximize the network sum rate.
Particularly, a mathematical interference expansion scheme
was proposed to make the convex optimization transformation
of the IRS association problem by decoupling the user asso-
ciation and SIC decoding of NOMA. The hovering altitude
optimization problem of UAV was converted into the convex
to solve by means of logarithmic operation, relaxation, and
auxiliary variables. Finally, we used a GA method based
univariate search approach to optimize the reflecting coeffi-
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cient problem for multiple IRSs. The simulation results at
the end showed that our proposed optimization scheme can
outperform the baseline scheme. This work also presented
and analyzed how the performance results changed with some
network parameters to fully explain our design.
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